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6.1 Tensor Decomposition

We begin with Spearman’s Hypothesis. He believed there are two types of intelligence: one is verbal and the other
mathematical. To test this hypothesis with data M , we denote

Mi,j = score of student i on test j

Now we denote the latent vectors of the hypothesis as follows:

uvi = student i’s verbal intelligence

umi = student i’s math intelligence

We would expect

M =

 |uv
|

( α
)

+

 |um
|

( β
)

This is called the ”Latent Factor Analysis”.

Now we assume that the test itself has two parts: A and B. We further assume that for part A of all testj , there exist
αj , βj > 0 such that

score on testj = αj × verbal intelligence + βj ×math intelligence

Similarly, for part B of all testj , there exist α
′

j , βj
′
> 0 such that

score on testj = α
′

j × verbal intelligence + β
′

j ×math intelligence

Therefore we have data of form Mi,j,σ where σ = A,B. This type is a tensor, a higher dimensional matrix, which
element is indexed as Ti,j,k.

6.2 Other examples of linear models

We know that matrices can be factored in many ways. For example,

M = UV =⇒ M = URRTV

, where R is a rotation matrix. Singular value decomposition (SVD) gives us another representation, and rectangular
matrices can be written in the form Σiσiuiv

T
i .
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6.2.1 Independent Component Analysis

Consider the cocktail party problem. You are at a crowded party and you have one ear that intakes sounds of various
sources. One thing to note is that these sound signals are superimposed linearly. However, the cocktail party phe-
nomenon is that, despite this environment where one receives a single signal composed of many source signals, one
can filter and focus on one conversation, and discard all other sources embedded in the received signal.

One can achieve the same goal for this linear problem by using Independent Component Analysis. The assumption is
that the mixed signal we receive (S = Ax) whereA is the mixing matrix, and x is the source matrix which coordinates
are independent random variables. The goal is to learn both A and x.

6.2.2 Topic Models

Suppose we have a corpus of documents. Given many documents, the goal is to recover topics. It turns out that simply
with Bag of Words vectors, one can easily solve this problem.

Let A(1) denote the distribution on words for topic 1. Similarly, A(2) denotes the distribution on words for topic 2.
Sampling from these distributions results in a Bag of Words vector as follows.

documentj =

|i
|


where i denotes the number of times that ith word appears in this particular document j. In practice, since this bag
of word vector contains indices to all words in the corpus, any realized or given document contains many more 0s. In
other words, only a few are non-zero. Given this setting, specifically the goal is to recover the distribution matrix A.

6.3 Jennrich’s Algorithm

Suppose T has a decomposition of the form:

T = Σri=1ui ⊗ vi ⊗ wi

where {vi} are independent, {wi} are independent for all i. Furthermore, every pair of {ui}s is independent.

Lemma 1. This decomposition is unique and it can be found in time poly(n, 1ε ) within accuracy ε.

The main idea is the Matricize. We pick random vectors a and b, and denote the following matrices.

Ma = Σri=1〈a, ui〉 ⊗ vi ⊗ wi

Mb = Σri=1〈b, ui〉 ⊗ vi ⊗ wi

Lemma 2. {vi} = eigenvectors of MaM
−1
b , and {wi} = eigenvectors of (M−1

a Mb)
T and we can obtain the pairing

information of the decomposition (which vector pairs with which, to be shown soon).

With this lemma, it will be easy to find uis by solving linear equations.
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Remark 1. Eigenvalues:
Av = λv

where A is n× n square matrix (not necessarily symmetric).

Suppose A has n (independent) eigenvectors, denoted as,

Q =

 q1 · · · qn


and

AQ = Q · diag(λ)

Then,
A = Q · diag(λ) ·Q−1

Also we use the following property:
(AB)−1 = B−1A−1

6.3.1 Algorithm

Ma = V DaW
T

where

Da =


〈a, u1〉

〈a, u2〉
...
〈a, un〉


Also

Mb = V DbW
T

with Db defined similarly as above.

Then we obtain,

MaM
−1
b = V DaW

T (V DbW
T )−1 (6.1)

= V DaW
T (WT )−1D−1

b V −1 (6.2)

= V DaD
−1
b V −1 (6.3)

(6.4)

Note the eigenvalue matrix DaD
−1
b , and the eigenvector matrix V .

We can follow the same procedure for the other matrix: (M−1
a Mb)

T , and obtain an eigenvalue matrix DbD
−1
a (which

is the reciprocal of diagonal entries in DaD
−1
b ) and their corresponding eigenvector matrix W .

The final step is to pair up vi and wi if and only if their eigenvalues are reciprocals and solve for each ui in T =
Σri=1ui ⊗ vi ⊗ wi.

This concludes Jennrich’s algorithm for tensor decomposition.


