
Don’t Mind the Gap: Bridging Network-wide
Objectives and Device-level Configurations

Ryan Beckett
Princeton

Ratul Mahajan
Microsoft

Todd Millstein
UCLA

Jitendra Padhye
Microsoft

David Walker
Princeton

Abstract— We develop Propane, a language and com-
piler to help network operators with a challenging, error-
prone task—bridging the gap between network-wide rout-
ing objectives and low-level configurations of devices that
run complex, distributed protocols. The language allows op-
erators to specify their objectives naturally, using high-level
constraints on both the shape and relative preference of traf-
fic paths. The compiler automatically translates these speci-
fications to router-level BGP configurations, using an effec-
tive intermediate representation that compactly encodes the
flow of routing information along policy-compliant paths. It
guarantees that the compiled configurations correctly imple-
ment the specified policy under all possible combinations
of failures. We show that Propane can effectively express
the policies of datacenter and backbone networks of a large
cloud provider; and despite its strong guarantees, our com-
piler scales to networks with hundreds or thousands of routers.

CCS Concepts
• Networks → Network control algorithms; Network relia-
bility; Network management; • Software and its engineering
→ Automated static analysis; Domain specific languages

Keywords
Propane; Domain-specific Language; BGP; Synthesis; Com-
pilation; Fault Tolerance; Distributed Systems

1. INTRODUCTION
It is well known that configuring networks is error prone

and that such errors can lead to disruptive downtimes [22,
10, 12, 16]. For instance, a recent misconfiguration led to
an hour-long, nation-wide outage for Time Warner’s back-
bone network [4]; and a major BGP-related incident makes
international news every few months [6].

A fundamental reason for the prevalence of misconfigura-
tions is the semantic mismatch between the intended high-
level policies and the low-level configurations. Many poli-
cies involve network-wide properties—prefer a certain neigh-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22-26, 2016, Florianopolis , Brazil
c© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934909

bor, never announce a particular destination externally, use a
particular path only if another fails—but configurations de-
scribe the behavior of individual devices. Operators must
manually decompose network-wide policy into device be-
haviors, such that policy-compliant behavior results from the
distributed interactions of these devices. Policy-compliance
must be ensured not only under normal circumstances but
also during failures. The need to reason about all possible
failures exacerbates the challenge for network operators. As
a result, configurations that work correctly in failure-free
environments have nonetheless been found to violate key
network-wide properties when failures occur [12].

To reduce configuration errors, operators are increasingly
adopting an approach in which common tasks are captured
as parameterized templates [18, 31]. While templates help
ensure certain kinds of consistency across devices, they do
not provide fundamentally different abstractions from exist-
ing configuration languages or bridge the semantic divide
between network-wide policies and device-level configura-
tion. Thus, they still require operators to manually decom-
pose policies into device behaviors.

As a complementary approach, configuration analysis tools
can help reduce misconfigurations by checking if low-level
configurations match high-level policy [12, 10]. However,
such tools cannot help operators with the challenging task of
generating configurations in the first place.

Software-defined networking (SDN) and its abstractions
are, in part, the research community’s response to the diffi-
culty of maintaining policy compliance through distributed
device interactions [8]. Instead of organizing networks around
a distributed collection of devices that compute forwarding
tables through mutual interactions, the devices are told how
to forward packets by a centralized controller. The controller
is responsible for ensuring that the paths taken are compliant
with operator specifications.

The centralized control planes of SDN, however, are not a
panacea. First, while many SDN programming systems [13]
provide effective intra-domain routing abstractions, letting
users specify paths within their network, they fail to provide
a coherent means to specify inter-domain routes. Second,
centralized control planes require careful design and engi-
neering to be robust to failures—one must ensure that all de-
vices can communicate with the controller at all times, even
under arbitrary failure combinations. Even ignoring failures,
it is necessary for the control system to scale to meet the de-
mands of large or geographically-distributed networks, and
to react quickly to environmental changes. For this chal-
lenge, researchers are exploring multi-controller systems with

328

interacting controllers, thus bringing back distributed control
planes [23, 5] and their current programming difficulties.

Hence, in this paper, we have two central goals:

1. Design a new, high-level language with natural abstrac-
tions for expressing intra-domain routing, inter-domain
routing and routing alternatives in case of failures.

2. Define algorithms for compiling these specifications
into configurations for devices running standard dis-
tributed control plane algorithms, while ensuring cor-
rect behavior independent of the number of faults.

To achieve the first goal, we borrow the idea of using reg-
ular expressions to specify network paths from recent high-
level SDN languages such as FatTire [29], Merlin [30], and
NetKAT [3]. However, our design also contains several key
departures from existing languages. The most important one
is semantic: the paths specified can extend from outside the
operator’s network to inside the network, across several de-
vices internally, and then out again. This design choice al-
lows users to specify preferences about both external and in-
ternal routes in the exact same way. In addition, we augment
the algebra of regular expressions to support a notion of pref-
erences and provide a semantics in terms of sets of ranked
paths. The preferences indicate fail-over behaviors: among
all specified paths that are still available, the system guar-
antees that the distributed implementation will always use
the highest-ranked ones. Although we target a distributed
implementation, the language is more general and could po-
tentially be used in an SDN context.

To achieve the second goal, we develop program analysis
and compilation algorithms that translate the regular poli-
cies to a graph-based intermediate representation and from
there to per-device BGP configurations, which include var-
ious filters and preferences that govern BGP behavior. We
target BGP for pragmatic reasons: it is a highly flexible rout-
ing protocol, it is an industry standard, and many networks
use it internally as well as externally. Despite the advent
of SDN, many networks will continue to use BGP for the
foreseeable future due to existing infrastructure investments,
the difficulty of transitioning to SDN, and the scalability and
fault-tolerance advantages of a distributed control plane.

The BGP configurations produced by our compiler are
guaranteed to be policy-compliant in the face of arbitrary
failures.1 This guarantee does not mean that the implemen-
tation is always able to send traffic to its ultimate destination
(e.g., in the case of a network partition), but rather that it
always respects the centralized policy, which may include
dropping traffic when there is no route. In this way, we pro-
vide network operators with a strong guarantee that is oth-
erwise impossible to achieve today. However, some poli-
cies simply cannot be implemented correctly in BGP in the
presence of arbitrary failures. We develop new algorithms
to detect such policies and report our findings to the opera-
tors, so they may fix the policy specification at compile time
1We assume that BGP is the only routing protocol running
in the network or the other protocols are correctly configured
and do not have adverse interactions with BGP [17, 11].

rather than experience undesirable behavior after the config-
urations are deployed.

We have implemented our language and compiler in a sys-
tem called Propane. To evaluate it, we use it to specify
real policies for datacenter and backbone networks. We find
that our language expresses such policies easily, and that the
compiler scales to topologies with hundreds or thousands of
routers, compiling in under 9 minutes in all cases.

2. BACKGROUND ON BGP
BGP is a path-vector routing protocol that connects au-

tonomous systems (ASes). An AS has one or more routers
managed by the same administrative entity. ASes exchange
routing announcements with their neighbors. Each announce-
ment has a destination IP prefix and some attributes (see be-
low), and it indicates that the sending AS is willing to carry
traffic destined to that prefix from the receiving AS. Traf-
fic flows in the opposite direction, from announcement re-
ceivers to senders.

When a route announcement is received by an AS, it is
processed by custom import filters that may drop the an-
nouncement or modify some attributes. If multiple announce-
ments for the same prefix survive import filters, the router
selects the best one based on local policy (see below). This
route is then used to send traffic to the destination. It is
also advertised to the neighbors, after processing through
neighbor-specific export filters that may stop the announce-
ment or modify some attributes.

All routing announcements are accompanied by an AS-
path attribute that reflects the sequence of ASes that the an-
nouncement has traversed thus far. While the AS-path at-
tribute has a global meaning, some attributes are meaning-
ful only within an AS or between neighboring ASes. One
such attribute is a list of community strings. ASes use such
strings to associate network-specific information with partic-
ular routes (e.g., “entered on West Coast”) and then use the
information later in the routing process. Communities are
also used to signal to neighbors how they should handle an
announcement (e.g., do not export it further). Another non-
global attribute is the multi-exit discriminator (MED). It is
used when an AS has multiple links to a neighboring AS. Its
(numeric) values signal to the neighbor how this AS prefers
to receive traffic among those links.

The route selection process assigns a local preference to
each route that survives the import filters. Routes with higher
local preference are preferred. Among routes with the same
local preference, other factors such as AS path length, MEDs,
and internal routing cost, are considered in order. Because
it is considered first during route selection, local preference
is highly influential, and ASes may assign this preference
based on any aspect of the route. A common practice is
to assign it based on the commercial relationship with the
neighbor. For instance, an AS may prefer in order customer
ASes (which pay money), peer ASes (with free exchange of
traffic), and provider ASes (which charge money for traffic).

The combination of arbitrary import and export filters and
route selection policies at individual routers make BGP a

329

Figure 1: Creating router-level policies is difficult.

highly flexible routing protocol. That flexibility, however,
comes at the cost of it being difficult to configure correctly.
When configuring BGP, network operators assume that neigh-
boring ASes correctly implement BGP and honor contracts
for MEDs and communities. Propane makes the same as-
sumption when deriving BGP configurations for a network.

3. MOTIVATION
When generating BGP configurations, whether manually

or aided by templates, the operators face the challenge of de-
composing network-wide policies into correct device-level
policies. This decomposition is not always straightforward
and ensuring policy-compliance is tricky, especially in the
face of failures. In this section, we illustrate this difficulty
using two examples based on policies that we have seen in
practice. The next section shows how Propane allows oper-
ators to express these policies naturally.

3.1 Example 1: The backbone
Consider the backbone network in Figure 1. It has three

neighbors, a customer Cust, a peer Peer, and a provider
Prov. The policy of this network is shown on the right. It
prefers that traffic leave the network through neighbors in
a certain order (P1) and does not want to act as a transit
between Peer and Prov (P2). It prefers to exchange traffic
with Cust over R1 rather than R2 because R1 is cheaper (P3).
To guard against another AS "hijacking" prefixes owned by
Cust, the network only sends traffic to a neighbor if Cust is
on the AS path (P4). Finally, to guard against Cust acciden-
tally becoming a transit for Prov, it does not use Cust for
traffic that will later traverse Prov (P5).

To implement policy P1, the operators must compute and
assign local preferences such that preferences at Cust-facing
interfaces > Peer-facing interfaces > Prov-facing inter-
faces. At the same time, to satisfy P3, the preference at
R2’s Cust-facing interface should be lower than that at R1.
Implementing P3 will also require MEDs to be appropri-
ately configured on R1 and R2. To implement P2, the op-
erators can assign communities that indicate where a cer-
tain routing announcement entered the network. Then, R4
must be configured to not announce to Peer routes that have
communities that correspond to the R2-Prov link but to an-
nounce routes with communities for the R2-Cust and R1-
Cust links. A similar type of policy must be configured for
R2 as well. Finally, to implement P4 and P5, the operators
will have to compute and configure appropriate prefix- and
AS-path-based import and export filters at each router.

Clearly, it is difficult to correctly configure even this small
example network manually; correctly configuring real, larger

Figure 2: Policy-compliance under failures is difficult.

networks can quickly become a nightmare. Such networks
have hundreds of neighbors spanning multiple commercial-
relationship classes, differing numbers of links to each neigh-
bor, along with several neighbor- or prefix-based exceptions
to the default behavior. A large AS with many peers in dif-
ferent geographic locations may be faced with complex chal-
lenges such as keeping traffic within national boundaries.
Templates help to an extent by keeping preference and com-
munity values consistent across routers, but operators must
still do much of the conceptually difficult work manually.

3.2 Example 2: The datacenter
While configuring policies for a fully functional network

is difficult, ensuring policy compliance in the face of fail-
ures can be almost impossible. Consider the datacenter net-
work in Figure 2 with routers organized as a fat tree and run-
ning BGP.2 The network has two clusters, one with services
that should be reachable globally and one with services that
should be accessible only internally. This policy is enabled
by using non-overlapping address space in the two clusters
and ensuring that only the address space for the global ser-
vices is announced externally. Further, to reduce the number
of prefixes that are announced externally, the global space is
aggregated into a less-specific prefix PG. The semantics of
aggregation is that the aggregate prefix is announced as long
as the router has a path to at least one sub-prefix.

The operator may implement the policy by having X and
Y: i) not export externally what they hear from G and H,
routers that belong to the local services cluster; and ii) ex-
port externally what they hear from routers C and D and ag-
gregate to PG if an announcement is subset of PG. This im-
plementation is appealing because X and Y do not need to be
made aware of which prefixes are global versus local and IP
address assignment can occur independently, e.g., local ser-
vices can be assigned new prefixes without updating those
routers’ configurations.

However, this implementation has incorrect behavior in
the face of failures. Suppose links X–G and X–H fail. Then,
X will hear announcements for PL* from C and D, having
traversed from G and H to Y to C and D. Per its policy im-
plementation, X will start "leaking" these prefixes externally.
Depending on the rationale for local services, this leak could
impact security (e.g., if the services are sensitive) or avail-
ability (e.g., if the PL* prefixes are reused for other services
outside of the datacenter). This problem does not manifest
without failures because then X has and prefers paths to PL*
2For scale and policy flexibility, datacenter networks in-
creasingly use BGP internally, with a private AS number per
router [19].

330

through G and H since they are shorter. A similar problem
will occur if links Y–G and Y–H fail. Link failures in dat-
acenters are frequent and it is not uncommon to have many
failed links at a given time [16].

To avoid this problem, the operator may disallow "val-
ley" paths, i.e., those that go up, down, and back up again.
This guard can be implemented by X and Y rejecting paths
through the other. But that creates a different problem in the
face of failures—an aggregation-induced black hole [20]. If
links D–A and X–C fail, X will hear an announcement for
PG2 from D and will thus announce PG externally. This an-
nouncement will bring traffic for PG1 to X as well, but be-
cause valleys are disallowed, X does not have a valid route
for PG1 and will drop all traffic for it despite the fact that a
valid path exists through Y .

Thus, we see that devising a configuration that ensures
policy compliance in the face of failures is complex and
error-prone. Propane lets operators implement their high-
level policy specification in a way that guarantees compli-
ance under all failures if possible—otherwise, it generates a
compile-time error. For aggregation, it also provides a lower
bound to operators on the number of failures under which
aggregation will not result in black holes.

4. PROPANE OVERVIEW
Policies for (distributed) control planes differ from data-

plane policies in a few important ways. First, they must ac-
count for all failures at compile time; there is no controller
at runtime, so the routers must be configured in advance to
handle failures in a compliant manner. In Propane, we en-
able such specifications through path preferences, with the
semantics that a less-preferred path is taken only when a
higher-preference path is unavailable in the network. Sec-
ond, paths in a control-plane policy may be under-specified
(e.g., "prefer customer" does not indicate a concrete path).
The Propane compiler treats such under-specifications as
constraints on the set of allowed paths and automatically
computes valid sets based on the topology.

This section introduces the Propane language using the
examples from the previous section. The next section de-
scribes the complete syntax of the language as well as our
strategy for compiling it to BGP.

4.1 Example 1: The backbone
Propane lets operators configure the network with the ab-

straction that they have centralized control over routing. Specif-
ically, the operator simply provides a set of high-level con-
straints that describe the paths traffic should—or should not—
take and their relative preferences. Propane specifications
are written modularly via a series of declarations. For exam-
ple, to begin specification of the backbone network from the
previous section, we first express the idea that we prefer that
traffic leave the network through R1 over R2 (to Cust) over
Peer over Prov (policy P1 and P3 from Figure 1):

define Prefs = exit(R1 » R2 » Peer » Prov)

This statement defines a set of ranked paths, which includes
all paths (and only those paths) for which traffic exits our

network through either router R1, router R2, Peer, or Prov.
The paths that exit through R1 are preferred (») to those
that exit through R2, which are preferred to those that leave
through Peer and then Prov. As we describe in the next
section, the exit expression, as well as other path expres-
sions used later in this section, is simply a shorthand for a
particular regular expression over paths that is expressible in
our policy language. The preference operator (») is flexible
and can be used between constraints as well as among indi-
vidual routers. For example, the above constraint could have
been written equivalently as exit(R1) ». . .» exit(Prov)

To associate ranked paths with one or more prefixes, we
define a Propane policy. Within a policy, statements with the
form t => p associate the prefixes defined by the predicate
t with the set of ranked paths defined by the path expres-
sion p. In general, prefix predicates can be defined by ar-
bitrary boolean combinations (and, or, not) of concrete pre-
fixes and community tags. Here, we assume we have already
defined the predicate PCust for the customer prefixes. In the
following code, ranked paths are associated with customer
prefixes, and all other prefixes (true). Policy statements
are processed in order with earlier policy statements taking
precedence over later policy statements. Hence, when the
predicate true follows the statement involving PCust, it is
interpreted as true & !PCust.

define Routing =
{PCust => Prefs & end(Cust)
true => Prefs }

Line 2 of this policy restricts traffic destined to known
customer prefixes (PCust) to only follow paths that end at
the customer. In addition, it enforces the network-wide pref-
erence that traffic leaves through R1 over R2 over Peer over
Prov. Line 3 applies to any other traffic not matching PCust
and allows the traffic to leave through any direct neighbor
with the usual preference of R1 over R2 over Peer over
Prov. To summarize our progress, the Routing policy im-
plements P1, P3, and P4 from Figure 1.

Since, routing allows transit traffic by default (e.g., traffic
entering from Peer and leaving through Prov), we sepa-
rately define a policy to enforce P2 and P5 from Figure 1,
using conjunction (&), disjunction (|) and negation (!) of
constraints. First, we create reusable abstractions for de-
scribing traffic that transits our network. In Propane, this
is done by creating a new parameterized definition.
define transit(X,Y) = enter(X|Y) & exit(X|Y)
define cust-transit(X,Y) = later(X) & later(Y)

Here we define transit traffic between groups of neighbors
X and Y as traffic that enters the network through some
neighbor inX or Y and then also leaves the network through
some neighbor in either X or Y . Similarly, we define cus-
tomer transit for customer X and provider Y as traffic that
later goes through both X and Y after leaving our network.
Using these two new abstractions, we can now implement
policies P2 and P5 with the following constraint.

define NoTrans =
{true => !transit(Peer,Prov) &

!cust-transit(Cust,Prov)}

331

The NoTrans constraint requires that all traffic not follow a
path that transits our network between Peer and Prov. Ad-
ditionally, it prevents traffic from ever following paths that
leave our network and later go through both Prov and Cust.
To implement both Routing and NoTrans simultaneously,
we simply conjoin them: Routing & NoTrans.

Collectively, the constraints above capture the entire pol-
icy. From them, our compiler will generate per-device im-
port and export filters, local preferences, MED attributes,
and community tags to ensure that the policy is implemented
correctly under all failures.

4.2 Example 2: The datacenter
Our datacenter example network has three main concerns:

(1) traffic for the prefix allocated to each top-of-rack router
must be able to reach that router, (2) local services must not
leak outside the datacenter, and (3) aggregation must be per-
formed on global prefixes to reduce churn in the network.

Propane allows modular specification of each of these
constraints. The first constraint is about prefix ownership—
we want traffic only for certain prefixes to end up at a partic-
ular location. The following definition captures this intent.

define Ownership =
{PG1 => end(A)
PG2 => end(B)
PL1 => end(E)
PL2 => end(F)
true => end(out)}

This definition says that traffic for prefix PG1 is allowed to
follow only paths that end at router A; traffic for PG2, but not
PG1, must end at router B; and so on. Any traffic destined for
a prefix that is not a part of the datacenter should be allowed
to leave the datacenter and end at some external location,
which is otherwise unconstrained. The special keyword out
matches any location outside the datacenter network, while
the keyword in will match any location inside the network.

For the second constraint, we define another policy:

define Locality =
{PL1 | PL2 => only(in)}

This definition says that traffic for local prefixes only follows
paths that are internal to the network at each hop. This con-
straint guarantees that the services remain accessible only to
locations inside the datacenter.

As in the backbone example, we can logically conjoin
these constraints to specify the network-wide policy. How-
ever, in addition to constraints on the shape of paths, Propane
allows the operator to specify constraints on the BGP con-
trol plane itself. For instance, a constraint on aggregation
is included to ensure that aggregation for global prefixes is
performed from locations inside (in) the network to loca-
tions outside (out). In this case, PG1 and PG2 will use the
aggregate PG (which we assume is defined earlier) when ad-
vertised outside the datacenter.

Ownership & Locality & agg(PG, in -> out)

Figure 3: Compilation pipeline stages for Propane.

Once Propane compiles the policy, it is guaranteed to re-
main compliant under all possible failure scenarios, modulo
any aggregation-induced black holes. In the presence of ag-
gregation, the Propane compiler will also efficiently find a
lower bound on the number of failures required to create an
aggregation-induced black hole.

5. COMPILATION
The examples above use what we call the front end (FE)

of Propane. It simplifies operators’ task of describing pre-
ferred paths, but that simplicity comes at the cost of compila-
tion complexity. The compiler must efficiently compute the
sets of paths represented by the intersection of preferences
and topology and ensure policy compliance under all failure
scenarios.

To handle these challenges, we decompose compilation
into multiple stages, shown in Figure 3, and develop efficient
algorithms for the translation between stages. The first stage
of the pipeline involves simple rewriting rules and substitu-
tions from the FE to the core Regular Intermediate Represen-
tation (RIR). Policies in RIR are checked well-formedness
(e.g., never constraining traffic that does not enter the net-
work), before being combined with the topology to obtain
the Product Graph Intermediate Representation (PGIR). The
PGIR is a data representation that compactly captures the
flow of BGP announcements subject to the policy and topol-
ogy restrictions. We develop efficient algorithms that op-
erate over the PGIR to ensure policy compliance under fail-
ures, avoid BGP instability, and prevent aggregation-induced
black holes. Once the compiler determines safety, it trans-
lates the PGIR to an abstract BGP (ABGP) representation.
ABGP can then be translated into various vendor-specific
device configurations as needed.

5.1 Regular IR (RIR)
The Propane FE is just a thin layer atop the RIR for de-

scribing preference-based path constraints. Figure 4 shows
the RIR syntax. A policy has one or more constraints. The
first kind of constraint is a test on the type of route and a cor-
responding set of preferred regular paths. Regular paths are
regular expressions where the base characters are abstract
locations representing either a router or an external AS. Spe-
cial in and out symbols refer to any internal or external
location respectively. In addition, Σ refers to any location.
We also use the standard regular expression abbreviation r+

for r ·r∗, a sequence of one or more occurrences of r. Predi-
cates (t) consist of logical boolean connectives (and, or, not)

332

Syntax

pol ::= p1, . . . , pn policies
p ::= t => r1» . . .»rm | cc constraints
x ::= d.d.d.d/d prefix
t ::= true true
| !t negation
| t1|t2 disjunction
| t1&t2 conjunction
| prefix = x prefix test
| comm = d community test

r ::= l location
| ∅ empty set
| in internal loc
| out external loc
| r1 ∪ r2 union
| r1 ∩ r2 intersection
| r1 · r2 concatenation
| !r path negation
| r∗ iteration

ln ::= r1 → r2 links
cc ::= agg(x, ln) | tag(d, t, ln) control constraints

Propane Expansions

any = out∗ · in+ · out∗

drop = ∅
internal = in+

only(X) = any ∩X∗

never(X) = any ∩ (!X)∗

through(X) = out∗ · in∗ ·X · in∗ · out∗

later(X) = out∗ · (X ∩ out) · out∗ · in+ · out∗

before(X) = out∗ · in+ · out∗ · (X ∩ out) · out∗

end(X) = any ∩ (Σ∗ ·X)
start(X) = any ∩ (X · Σ∗)
exit(X) = (out∗ · in∗ · (X ∩ in) · out · out∗)∪

(out∗ · in+ · (X ∩ out) · out∗)
enter(X) = (out∗ · out · (X ∩ in) · in∗ · out∗)∪

(out∗ · (X ∩ out) · in+ · out∗)
link(X,Y) = any ∩ (Σ∗ ·X · Y · Σ∗)

path(~X) = any ∩ (Σ∗ ·X1 . . . Xn · Σ∗)

novalley(~X) = any ∩
!path(X2, X1, X2) ∩ · · · ∩
!path(Xn, Xn−1, Xn)

Figure 4: Regular Intermediate Representation (RIR) syntax (left), and Propane language expansions (right).

as well as tests that match a particular prefix (or group of
prefixes) and tests for route advertisements with a particular
community value attached (i.e., an integer value associated
with a path).

Propane also supports constraints on the control-plane be-
havior of BGP. For example, prefix aggregation is an impor-
tant optimization to reduce routing table size. A constraint
of the form agg(x, ln) tells the compiler to perform aggre-
gation for prefix x across all links described by ln. It is also
often useful to be able to add community tags to exported
routes in BGP (e.g., to communicate non-standard informa-
tion to peers). A constraint of the form tag(d, t, ln) adds
community tag d for any prefixes matching t across links
ln. We list only the route aggregation and community tag-
ging constraints in Figure 4, but Propane also supports other
constraints such as limiting the maximum number of routes
allowed between ASes, or enabling BGP multipath.

Semantics. We give a semantics to RIR programs using sets
of ranked paths. Each path constraint r1» . . .»rj denotes a
set of ranked network paths. A network path is a topologi-
cally valid string of abstract locations l1l2 . . . lk. We use the
notation |p| to denote the length of the path p. A regular ex-
pression r matches path p, if p ∈ L(r), that is, the path is
in the language of the regular expression. Paths are ranked
lexicographically according to (1) the most preferred regular
expression matched, and (2) as a tie breaker, the path length.
Lower ranks indicate more preferred paths. More formally,
a path p has rank:

(min
i
{p ∈ L(ri)}, |p|)

The set of ranked paths depends on which paths are valid
in the topology, and thus when failures occur, the most pre-
ferred routes change. For any source s and destination d,
Propane will send traffic along the highest ranked available
path from s to d.

From FE to RIR. The first stage in Propane compilation
reduces the FE to the simpler RIR from Figure 4. The main
differences between the FE and RIR are: i) FE allows the
programmer to specify constraints using a series of (mod-
ular) definitions, and combine them later, ii) FE provides
high-level names that abstract sets of routes and groups of
prefixes/neighbors, and iii) FE allows the preference opera-
tor to be used more flexibly.

A key constraint when translating FE to RIR is ensuring
that all specified routes are well-formed. In particular, each
regular path constraint r must satisfy r ⊆ out∗ ·in+ ·out∗.
It ensures that users only control traffic that goes through
their network at some point, and that such traffic does not
loop back multiple times through their network.

The translation from FE to RIR is based on a set of rewrit-
ing rules. The first step merges separate constraints. It takes
the cross product of per-prefix constraints, where logical con-
junction (r1 & r2) is replaced by intersection on regular con-
straints (r1 ∩ r2), logical disjunction is replaced by union,
and logical negation (!r) is replaced by path negation (any∩
!(r)). The additional constraint any ensures the routes are
well-formed by restricting the paths to only those that go
through the user’s network. For example, in the datacen-
ter FE configuration from §4, combining the Locality and
Ownership policies results in the following RIR:

PG1 => end(A)
PG2 => end(B)
PL1 => only(in) ∩ end(E)
PL2 => only(in) ∩ end(F)
true => exit(out)

The next step rewrites the high-level constraints such as
exit according to the equivalences in Figure 4. Since pref-
erences can only occur at the outermost level for an RIR
expression, the final step is to “lift" occurrences of the pref-
erence operator in each regular expression. For example, the
regular expression r · (s » t) ·u is lifted to (r ·s ·u)»(r · t ·u)

333

by distributing the preference over the sequence operator.
In general, we employ the following distributivity equiva-
lences:

r � (s1» . . .»sn) = (r � s1)» . . .»(r � sn)
(s1» . . .»sn)� r = (s1 � r)» . . .»(sn � r)

where � stands for an arbitrary regular binary operator, and
r is a policy with a single preference. In cases where r does
not contain a single preference, such as (s » t) · (u » v),
it is not clear which of the paths s · v or t · u is preferred.
Propane rejects such ambiguous policies, requiring instead
that operators explicitly specify which paths to prefer — for
example as (s · u) » (s · v) » (t · u) » (t · v). Policies that
contain preferences nested under a unary operator (i.e., star
or negation) are also rejected by Propane as invalid.

5.2 Product graph IR
Now that the user policy exists in a simplified form, we

must consider the topology. In particular, we want a compact
representation that describes all the possible ways BGP route
announcements can flow through the network subject to the
policy and topology constraints. The PGIR captures these
constraints by “intersecting" each of the regular automata
corresponding to the RIR path preferences with the topology.
Paths through the PGIR correspond to real paths through the
topology that satisfy the user constraints.

Formal definition. While paths in an RIR policy describe
the direction traffic flows through the network, to imple-
ment the policy with BGP we are concerned about the way
control-plane information is disseminated — route announce-
ments flowing in the opposite direction. To capture this idea,
for each regular expression ri in an RIR policy, we construct
a deterministic finite state machine for the reversed regular
expression. An automata for regular expression ri is defined
as a tuple (Σ, Qi, Fi, q0i , σi). The alphabet Σ consists of
all abstract locations (i.e., routers or ASes), Qi is the set of
states for automaton i, Fi is the set of final states, q0i is the
initial state, and σi : Qi×Σ→ Qi is the state transition func-
tion. The topology is represented as a graph (V,E), which
consists of a set of vertices V and a set of directed edges
E : V × V . The combined PGIR is a tuple (V ′, E′, s, e, P)
with vertices V ′ : V × Q1 × · · · × Qj , edges E′ : V ′ × V ′,
a unique starting vertex s, a unique ending vertex e, and a
preference function P : V ′ → 2{1,...,j} , which maps nodes
in the product graph to a set of path ranks.

For a PGIR vertex n = (l, . . .) ∈ V ′, we say that n is
a shadow of topology location l. We also write ñ = l to
indicate that the topology location for node n is l. When two
PGIR nodes m and n shadow the same topology location
(i.e., m̃ = ñ), we write m ≈ n.

Throughout the remainder of the paper, we will use the
convention that metavariablesm and n stand for PGIR nodes
and l stands for a topology location. Capital letters likeX re-
fer to concrete topology locations, while capital letters with
subscripts such as X1 and X2 refer to concrete PGIR nodes
that share a topology location (i.e., X̃1 = X̃2 = X).

From RIR To PGIR. Let ai and bi denote states in the reg-
ular policy automata. The PGIR is constructed by adding
an edge from m = (lm, a1, . . . , ak) to n = (ln, b1, . . . , bk)
whenever σi(ai, ln) = bi for each i and (lm, ln) ∈ E is a
valid topology link. Additionally, we add edges from the
start node s to any n = (l, a1, . . . , ak) when σi(q0i , l) = ai
for each i. The preference function P is defined as P (n) =
{i | ai ∈ Fi}. That is, it records the path rank of each au-
tomaton that has reached a final state. Finally, there is an
edge from each node in the PGIR such that P (n) 6= ∅ to
the special end node e. We write (m ≤rank n) if either
P (m) = P (n) = ∅ or min P (m) ≤ min P (n), which
means that paths ending at PGIR node m are better (lower
rank) than paths ending at n.

Intuitively, the PGIR tracks the policy states of each au-
tomaton as route announcements move between locations.
Consider the topology in Figure 5. Suppose we want a pri-
mary route from neighbor W that allows traffic to enter the
network atA and utilize the C–D link before leaving the net-
work (through X or Y). As a backup, we also want to allow
traffic to enter the network from B, in which case the traffic
can also utilize the C–E link before leaving the network. For
simplicity, we assume that the route ends in either X , Y , or
Z. The RIR for the policy could be written as:

(W · A · C · D · out)»(W · B · in+ · out)

Figure 5 shows the policy automata for each regular expres-
sion preference. Since we are interested in the flow of con-
trol messages, the automata match backwards. The figure
also shows the PGIR after intersecting the topology and pol-
icy automata. Every path in the PGIR corresponds to a con-
crete path in the topology. In particular, every path through
the PGIR that ends at a node n such that the preference func-
tion P (n) = {i1, . . . , ik} is non-empty, is a valid topolog-
ical path that satisfies the policy constraints and results in a
particular path with preferences i1 through ik. For example,
the path X ·D ·C ·A ·W is a valid path in the topology that
BGP route announcements might take, which would lead to
obtaining a path with the lowest (best) rank of 1. BGP con-
trol messages can start from peer X, which would match the
out transition from both automata, leading to state 1 in the
first automaton, and state 1 in the second automaton. This
possibility is reflected in the product graph by the node with
state (X, 1, 1). From here, if X were to advertise this route to
D, it would result in the pathD·X , which would lead to state
2 in the first automaton, and state 2 in the second automaton,
and so on. The “–" state indicates the corresponding au-
tomaton cannot accept the current path or any extension of
it. Since node (W, 5,−) is in an accepting state for the first
automaton, it indicates that this path has rank 1.

Minimization. After building the PGIR as described above,
we minimize it in order to improve the precision of the sub-
sequent analysis that checks if the policies captured by it are
safe under failures. The minimization is based on the ob-
servation that, although every path in the PGIR is a valid
path in the topology, we do not want to consider paths that
form loops. In particular, BGP’s loop prevention mecha-

334

Topology

Policy Automata

0 1 2 3 4 5

out D C A W

0 1 2 3 4
out in

A,C,D,E

B

B

A,C,D,E

W

Product Graph IR

Figure 5: Product graph construction for policy (W · A · C · D · out)»(W · B · in+ · out).

nism forces an AS to reject any route that is already in the
AS path. For example, in Figure 5, the pathW ·A ·C ·B ·W
is a valid topological path, leading to a path that satisfies the
preference 2 policy, but which contains a loop.

We use graph dominators [21] as a relatively cheap ap-
proximation for removing many nodes and edges in the PGIR
that are never on any simple (loop free) path between the
start and end nodes. In the PGIR, a node m dominates a
node n if m appears on every path leading from the start
node to n. Similarly, a node m post-dominates a node n in
the PGIR ifm appears on every path from n to the end node.
We can safely remove nodes and edges in the PGIR when
any of the following conditions hold, where we have m, m′

and n, n′ such that m ≈ m′ and n ≈ n′.

• Remove m if it is not reachable from the start node
• Remove m if it can not reach the end node
• Remove m if it is (post-)dominated by some m′

• Remove edge (m, n) if some m′ post-dominates n
• Remove edge (m, n) if some n′ dominates m

For example, node (W, 1, 1) in Figure 5 is removed because
every path to the end node must always go through node
(W,−, 4). That is, node (W, 1, 1) is post-dominated by node
(W,−, 4) and both are shadows of topology location W .

We repeatedly apply the minimizations above until no fur-
ther minimization is possible. In the example from Figure 5,
colored nodes and dashed edges show edges and nodes re-
moved after minimization.

5.3 Failure-safety analysis
To implement path preferences in routing, BGP uses lo-

cal preferences on a per-device basis. However, the dis-
tributed nature of BGP makes setting preferences locally to
achieve a network-wide routing policy difficult. This task
becomes even more challenging in the presence of failures
since routers running BGP lack a global view of the network.

An illustrative example. To demonstrate the difficulty of
generating device-local preferences, consider the simple pol-
icy for the topology in Figure 6, which says to prefer the top
path over the bottom path: (A · B · D · E · G)»(A · C · D · F · G).
How could such a policy be implemented in BGP? Suppose
we set the local preferences to have D prefer E over F , and
have A prefer B over C. This works as expected under nor-
mal conditions, however, if the A–B link fails, then suddenly
D has made the wrong decision by preferringE. Traffic will
now follow the A ·C ·D ·E ·G path, even though this path
was not allowed by the policy. Thus, the distributed imple-
mentation has used a route that is not allowed by the policy.
To make matters worse, the second preference for the path
A · C · D · F · G is available in the network but not being
used. Thus, a path for the best possible route available af-
ter the A–B failure exists in the network, but the distributed
implementation will not find it. The first problem could be
fixed by tagging and filtering route advertisements appropri-
ately so that C rejects routes that go through E, however the
second problem cannot be fixed. In fact, this policy cannot
be implemented in BGP in a way that is policy compliant
under all failures since D cannot safely choose between E
and F without knowing whether the A–B link is available.

Problem formulation. The problem of determining local
preferences for each router is reflected in the structure of the
PGIR. Whenever a given router appears as multiple shadow
nodes in the PGIR, the compiler must decide which shadow
to prefer. In the example from Figure 5, the topology node
C can receive an advertisement from E in shadow (C,−, 2)
or from D in shadow (C, 3, 2). The compiler must deter-
mine a total ordering of shadow nodes for each router, which
reflects the relative preference of advertisements received
in each shadow and should be consistent with path ranks.
For example, if C’s shadow (C, 3, 2) can be preferred to
(C,−, 2), written as (C, 3, 2) ≤lp (C,−, 2), C can prefer
advertisements from (D, 2, 2) over (E,−, 2). D and E tag

335

Figure 6: A network where the policy (A ·B ·D ·E ·G)»(A ·C ·
D ·F ·G) is unimplementable in BGP under arbitrary failures.

their advertisements to let C know which shadow sent the
advertisement. Section 5.5 discusses tagging in detail.

Regret-free preferences. To order PGIR shadows (≤lp) for
each router in a way that is policy-compliant under all fail-
ures, we introduce the notion of regret-free preferences, mo-
tivated by the observations from the example in Figure 6. A
router (location) l has a regret-free preference for a set of
advertisements A over B if, whenever l selects an advertise-
ment to destination d from A over another from B, there is
always some policy-compliant path to d that is at least as
good (≤rank for the final node along the path) as any possi-
ble path (not necessarily from l) to d if l had selected an ad-
vertisement from B instead. In other words, the preference
of A over B at l is regret-free if l is never (under any failure)
worse-off by choosing an advertisement from A when avail-
able. The notion of regret-free preferences can be lifted to
PGIR nodes by considering the set of advertisements avail-
able to each node.

In the example of Figure 5, the choice for C to prefer
shadow (C, 3, 2) to (C,−, 2) is regret-free, since there will
always be at least as good a path to destinationW regardless
of any failures that might occur in the network. For exam-
ple, if the C–A link fails, then there is still a backup path
from (C, 3, 2) to (W,−, 4) that is just as good as any path
from (C,−, 2). Likewise, any combination of failures to
disconnect (C, 3, 2) from (W,−, 4) would also disconnect
(C,−, 2) from (W,−, 4).

A preference inference algorithm. Searching for precise
regret-free preferences in general is hard, and clearly enu-
merating all possible combinations of failures and prefer-
ence orderings is intractable. We thus adopt a conserva-
tive analysis that we found to be effective and efficient in
practice. The idea is to i) search for regret-free preferences
by comparing the set of paths available after accepting ad-
vertisements in two different PGIR shadows N1 and N2 of
topology node N , and ii) refine the comparison when nec-
essary by considering where the announcements must have
traversed before arriving at N1 or N2.

Algorithm 1 checks whether one shadow can be preferred
to another (N1 ≤lp N2). It walks from nodes N1 and N2

and ensures that for every step N2 can take to some new
topology location, N1 can, at the very least, also take a step
to an equivalent topology location (≈). When there is no
such equivalent step, the algorithm attempts to take into ac-
count where the advertisement must have already traversed.
In particular, it checks if there is an equivalent dominator
node and, if so, walks from this new node instead. The idea

Algorithm 1 Inferring regret-free preferences

1: procedure REGRET-FREE(G, N1, N2)
2: if N1 6≈ N2 then return false
3: q ← Queue()
4: q.Enqueue(N1, N2)
5: while !q.Empty() do
6: (m,n)← q.Dequeue()
7: if m �rank n then return false
8: for n′ in adj(G, n) do
9: if

(
∃m′ ∈ adj(G,m),m′ ≈ n′

)
or

10:
(
∃m′ ∈ G, dominates m, m′ ≈ n′

)
then

11: if (m′, n′) not marked then
12: mark (m′, n′) as seen
13: q.Enqueue(m′, n′)

14: else return false
15: return true

is that, since the advertisement must have already passed
through the dominator, we can check to see if we are guar-
anteed to find paths that are at least as good from this new
node instead. At each step, it requires that the current node
reachable from N1 has a path rank that is at least as good
as that of the current node reachable from N2 (m ≤rank n).
The intuition here is that if m �rank n, then we can very
likely fail every edge in the topology except for the path that
leads to the currentm and n, thereby generating a counterex-
ample. Algorithm 1 terminates since the number of related
states (m,n) that can be explored is finite.

For each router in the topology, local preferences are now
obtained by sorting the corresponding PGIR shadows ac-
cording to the (≤lp) relation determined by Algorithm 1.
If two nodes are incomparable, then the compiler rejects the
policy as unimplementable.

Avoiding loops. The checks for failure safety described above
overlook one critical point: A better (lower rank) path might
not be available due to loops rejected by BGP.

Consider the partial product graph shown in Figure 7. Our
preference inference algorithm will determine that node X1

should be locally preferred to node X2 since this will result
in a better (lower ranked) path to destination A. However,
when applying Algorithm 1, we failed to take into account
the possibility of loops. In particular, node A2 may be unus-
able for advertisements that go through X1 since the adver-
tisement may have already gone through A1 previously. In
this case, X will have made the wrong choice since prefer-
ring X2 would have resulted in a better path for the destina-
tion A (a path of rank 3 instead of 4).

On the other hand, this would not have been a problem
if paths ending at A1 had a lower rank than those ending at
A2 or A3. For example, if paths ending at A1 had rank 1,
then any time A2 is unusable due to a loop with A1, it ulti-
mately does not matter sinceA1 is preferred anyway. In fact,
checking if we are never worse off using A1 instead of A2

corresponds exactly with determining if A has a regret-free

336

Figure 7: A product graph where preference inference is un-
sound before considering loops. Path ranks shown by nodes.

preference for A1 over A2. More specifically, the compiler
checks that, any time there are two shadows N1 and N2 for
the same topology location, where N1 appears “above” (i.e.,
can reach) N2 in the PGIR, then N1 must be strictly pre-
ferred to N2 (i.e., N1 <lp N2).

5.4 Aggregation-safety analysis
As shown in §3, aggregation can lead to subtle black-

holing of traffic when failures occur. Determining when this
can happen requires knowledge, not only of the topology, but
also of the policy. For instance, a policy might require that
all traffic for a particular prefix go over a single link before
being aggregated. If that one link fails, a black hole might
be introduced. Because the PGIR encodes the complete user
policy and topology, Propane can efficiently check that ag-
gregates do not black hole traffic for up to k failures.

We view the aggregation problem as a variant of the min-
cut problem in the PGIR. Specifically, for each prefix that
falls under an aggregate, we are interested in finding a lower
bound on the number of failures required to disconnect the
prefix’s origin from its aggregation point. The difficulty,
however, is that each link in the topology might appear as
multiple links in the PGIR, thus preventing the direct appli-
cation of standard min-cut algorithms.

Instead, we adopt the following simple strategy: i) pick
a random path in the PGIR between the prefix’s origin and
aggregation point, ii) remove all similar edges in the PGIR
for each topology edge along the chosen path, and iii) repeat
until no such path exists. Because each path chosen is both
policy compliant and edge disjoint (due to ii), the number of
paths that we are able to remove lower bounds the number of
failures required to disconnect the prefix from its aggregate,
subject to the policy constraints.

Recall the datacenter example from §3, with the policy
PG1 => end(A), where PG1 falls under the PG aggregate.
Figure 8 shows the PGIR for PG1. Since we know aggre-
gation will occur at X , and that the PG1 prefix will originate
atA, we can compute the number of failures it would take to
disconnect A from X . We could remove the A–D–X path
first and would then need to remove any other A–D or D–
X links from the PGIR (in this case none). Next, we could
remove the links along the A–C–X path, repeating the pro-
cess. Because A is now disconnected from X , 2 is a lower
bound on the number of failures required to introduce an ag-
gregation black hole for prefix PG1. This process is repeated
for other aggregation locations (e.g., Y).

Figure 8: Aggregation safety for a datacenter.

5.5 Abstract BGP
The final stage of our compiler translates policies from

PGIR to a vendor-neutral abstraction of BGP (ABGP).

From PGIR to ABGP. Once we have the total ordering on
node preferences in the PGIR from the failure safety analy-
sis, the translation to ABGP is straightforward. The idea is
to encode the state of the automata using BGP community
values. Each router will match based on its peer and a com-
munity value corresponding to the state of the PGIR, and
then update the state before exporting to the neighbors per-
mitted by the PGIR. For example, router A in Figure 5 will
allow an announcement from C with a community value for
state (3, 2) (and deny anything else). If it sees such an an-
nouncement, it will remove the old community value and
add a new one for state (4, 2) before exporting it to W .

For each router r, the compiler sets a higher local pref-
erence for neighbors of a more-preferred PGIR node for r.
For example, C will prefer an advertisement from D in state
(2, 2) over an advertisement from E in state (−, 2).

Since the compiler can control community tagging only
for routers under the control of the AS being programmed,
it cannot match on communities for external ASes. Instead,
it translates matches from external ASes into a BGP regular
expression filter. For example, node D in Figure 5 would
match the single hop external paths X or Y . In general, if
routes are allowed from beyond X or Y , these will also be
captured in the BGP regular expression filters. The unknown
AS topology is modeled as a special node in the PGIR that
generates a filter to match any sequence of ASes.

Finally, the external ASW should prefer our internal router
A over B. In general, it is not possible to reliably control
traffic entering the network beyond certain special cases. In
this example, however, assuming our network and W have
an agreement to honor MEDs, the MED attribute can influ-
ence W to prefer A over B. Additionally, the compiler can
use the BGP no-export community to ensure that no other
AS beyond W can send us traffic. The compiler performs a
simple analysis to determine when it can utilize BGP special
attributes to ensure traffic enters the network in a particu-
lar way by looking at links in the product graph that cross
from the internal topology to the external topology. Figure 9
shows the full configuration from the compilation example.

After configuration generation, the compiler further pro-
cesses the ABGP policy, removing community tags when

337

Router A:
Match peer=C, comm=(3,2)
Export comm ← (4,2),

MED ← 80, peer ← W
Router B:
Match peer = C, comm = (-,2) or (3,2)
Export comm ← (-,3), comm ← noexport,

MED ← 81, peer ← W
Router C:
Match[LP=99] peer = E, comm = (-,2)
Export comm ← (-,2), peer ← B

Match peer = D, comm = (2,2)
Export comm ← (3,2), peer ← A,B

Router D:
Match regex(X + Y)
Export comm ← (2,2), peer ← C

Router E:
Match regex(Z)
Export comm ← (-,2), peer ← C

Figure 9: Abstract BGP router configurations.

possible, combining filters, removing dead filters, and so on.
In the ABGP policy shown in Figure 9, all community tags
can be removed, since there is never any ambiguity as to the
current state of the PGIR based only on the current router
importing the route and the neighbor from which the route is
being imported.

6. IMPLEMENTATION
Our Propane compiler is implemented in roughly 6700

lines of F# code. It includes command-line flags for enabling
or disabling the use of the BGP MED attribute, AS path
prepending, the no-export community, as well as for ensur-
ing at least k-failure safety for aggregate prefixes. Since each
predicate has a separate routing policy, we compile each
routing policy in parallel. Currently, Propane supports gen-
erating Quagga router configurations out of the box. Users
can add new vendor-specific adapters to translate from ABGP
to other router configuration languages, or incorporate the
compiler into an existing template-based system, e.g., by
mixing the Propane-generated BGP configuration with other,
non-BGP configuration elements.

Our compiler includes the following features that improve
its performance and usability.

Efficient PGIR construction. Constructing automata for
extended regular expressions (i.e., regular expressions with
negation and intersection operations) is known to have high
complexity [14]. The Propane compiler uses regular expres-
sion derivatives [28] with character classes to construct de-
terministic automata for extended regular expressions effi-
ciently. Since regular expressions are defined over a finite
alphabet, and since much of the AS topology is unknown,
we set the alphabet to include all uniquely referenced ex-
ternal ASes in the policy. To model the unknown external
AS topology beyond immediate peers, we include a special
topology node to represent any unknown location. Rather
than construct the product graph in full, our implementa-
tion prevents exploring parts of the graph during construc-
tion when no automata has a reachable accepting state.

Fast failure-safety analysis. When computing local pref-
erences and ensuring failure safety, as described in §5, the
compiler performs memoization of the Regret-Free function.
That is, whenever for two states N1 and N2 we compute
Regret-Free(G,N1, N2) and the function evaluates to true,
then each of the intermediate related states m and n must
also satisfy Regret-Free(G,m, n). Memoizing these states
dramatically reduces the amount of work performed to find
preferences in the common case.

Efficient configuration generation. The naive code gener-
ation algorithm described in §5.5 is extremely memory inef-
ficient since it generates a separate match-export pair for ev-
ery unique in-edge/out-edge pair for every node in the prod-
uct graph before minimization. Our implementation per-
forms partial minimization during generation by recogniz-
ing common cases such as when there is no restriction on
exporting to or importing from neighbors.

Checking policy correctness. Even when programming the
network centrally, it is possible for operators to make mis-
takes. Propane includes many analyses to identify common
mistakes at compile time. A subset includes: (i) a preference
analysis to determine when backup paths will never be used,
(ii) a reachability analysis to check if locations that should
be reachable according to the policy are not reachable after
combining the topology and policy, (iii) an anycast analy-
sis to find instances where the operator might accidentally
anycast a prefix (i.e., originates the prefix from multiple lo-
cations), (iv) an aggregate analysis to find unused aggregates
that do not summarize any specific prefix.

7. EVALUATION
We apply Propane on real policies for backbone and dat-

acenter networks. Our main goals are to evaluate if its lan-
guage is expressive enough for real-world policies, the time
the compiler takes to generate router configurations, and the
size of the resulting configurations.

7.1 Networks studied
We obtained routing policy for the backbone network and

datacenters of a large cloud provider. Multiple datacenters
share this policy. The backbone network connects to the dat-
acenters and also has many external BGP neighbors. The
high-level policies of these networks are captured in an En-
glish document which guides operators when writing con-
figuration templates for datacenter routers or actual config-
urations for the backbone network (where templates are not
used because the network has a less regular structure).

The networks have the types of policies that we outlined
earlier (§3). The backbone network classifies external neigh-
bors into several different categories and prefers paths through
them in order. It does not want to provide transit among
certain types of neighbors. For some neighbors, it prefers
some links over the others. It supports communities based
on which it will not announce certain routes externally or
announce them only within a geographic region (e.g., West

338

(a) Datacenter (b) Backbone
Figure 10: Compilation time.

Coast of the USA). Finally, it has many filters, e.g., to pre-
vent bogons (private address space) from external neighbors,
prevent customers from providing transit to other large net-
works, prevent traversing providers through peers, etc.

Routers in the datacenter network run BGP using private
AS numbers and peer with each other and with the back-
bone network over eBGP. The routers aggregate some pre-
fix blocks when announcing them to the backbone network,
they keep some prefixes internal, and attach communities for
some other prefixes that should not traverse beyond the ge-
ographic region. The datacenter networks also have policies
by which some prefixes should not be announced beyond a
certain tier in the datacenter hierarchy.

7.2 Expressiveness
We found that we could translate all network policies to

Propane. We verified with the operators that our translation
preserved intended semantics.3 For the backbone network,
the operator mentioned an additional policy not present in
the English document, which we added later. For both the
datacenter and backbone networks, Propane was able to guar-
antee policy-compliance under all possible failure scenarios.

Not counting the lines for various definitions like pre-
fix and customer groups or for prefix ownership constraints,
which we cannot reveal because of confidentiality concerns,
the routing policies for Propane were 43 lines for the back-
bone network and 31 lines for the datacenter networks.

7.3 Compilation time
We study the compilation of time for both policies as a

function of network size. Even though the networks we
study have a fixed topology and size, we can explore the im-
pact of size because the policies are network-wide and the
compiler takes the topology itself as an input. For the dat-
acenter network, we build and provide as input fat tree [1]
topologies of different sizes, assign a /24 prefix to each ToR
switch, and randomly map prefixes to each type of prefix

3Not intended as a scientific test, but we also asked the two
operators if they would find it easy to express their policies in
Propane. The datacenter operator said that he found the lan-
guage intuitive. The backbone operator said that formalizing
the policy in Propane seemed equally easy or difficult as for-
malizing in RPSL [2], but he appreciated that he would have
to do it only once for the whole network (not per-router) and
did not have to manually compute various local preferences,
import-export filters, and MEDs.

(a) Datacenter (b) Backbone
Figure 11: Configuration minimization.

group with a distinct routing policy. For the backbone net-
work, the internal topology does not matter since all routers
connect to each other through iBGP. We explore different
(full iBGP) mesh sizes and randomly map neighboring net-
works to routers. Even though each border router connects
to many external peers, we count only the mesh size.

All experiments are run on an 8 core, 3.6 GHz Intel Xeon
processor running Windows 7. Figure 10 shows the compila-
tion times for datacenter and backbone networks of different
sizes. For both policies, we measure the mean compilation
time per prefix predicate since the compiler operates on each
predicate in parallel. A single predicate can describe many
prefixes, for example by matching on a disjunction of pre-
fixes. At their largest sizes, the per-predicate compilation
time is roughly 10 seconds for the datacenter network and
45 seconds for the backbone network.

Compilation for the largest datacenter takes less than 9
minutes total. Unlike the datacenter policy, the number of
predicates for the backbone policy remains relatively fixed
as the topology size increases. Compilation for the largest
backbone network takes less than 3 minutes total. The inclu-
sion of both more preferences and more neighboring ASes in
the backbone policy increases the size of the resulting PGIR,
which in turn leads to PGIR construction and minimization
taking proportionally more time.

In both examples, we observe that Algorithm 1 for infer-
ring Regret-Free preferences is efficient, taking only a small
fraction of the total running time. PGIR minimization is the
most expensive compilation phase. If needed, minimization
can be limited to a fixed number of iterations for large net-
works. Both the backbone and datacenter policies could be
successfully compiled without performing minimization.

7.4 Configuration size
Figure 11 shows the size of the compiled ABGP poli-

cies as a function of the topology size. The naive transla-
tion of PGIR to ABGP outlined in §5 generates extremely
large ABGP policies by default. To offset this, the compiler
performs ABGP configuration minimization both during and
after the PGIR to ABGP translation phase. Minimization is
highly effective for both the datacenter and backbone poli-
cies. In all cases, minimized policies are a small fraction of
the size of their non-minimized counterparts.

However, even minimized configurations are hundreds or
thousands of lines per router. For the backbone network, the
size of Propane configurations is roughly similar to the BGP

339

components of actual router configurations, though qualita-
tive differences exist (see below). We did not have actual
configurations for the datacenter network; they are dynami-
cally generated from templates.

7.5 Propane vs. operator configurations
We comment briefly on how Propane-generated config-

urations differ from configurations written by operators. In
some ways they are similar. For example, preferences among
neighboring ASes are implemented with a community value
to tag incoming routes according to preference, which is then
used at other border routers to influence decisions.

In other ways, the Propane configurations are different,
relying on a different BGP mechanism to achieve the same
result. Some key differences that we observed were:
i) operators used the no-export community to prevent routes

from leaking beyond a certain tier of the datacenter, while
Propane selectively imported the route only below the tier;
ii) operators prevented unneeded propagation of more-

specific route announcements from a less-preferred neigh-
boring AS based on their out-of-band knowledge about the
topology, whereas Propane propagated these advertisements;
iii) operators used a layer of indirection for community

values, using community groups and re-writing values, to
implement certain policies in a more maintainable manner,
where Propane uses flat communities; and
iv) operators used BGP regular expression filters to en-

force certain invariants that are independent of any particular
prefix, whereas Propane enforced these invariants per prefix.

We are investigating if such differences matter to opera-
tors, e.g., if they want to read Propane configurations, and,
if necessary, how to reduce them.

8. RELATED WORK
Our work draws on four threads of prior work.

SDN languages. Propane was heavily influenced by SDN
programming languages such as NetKAT [3], Merlin [30],
FatTire [29], and path queries [27]. Each of these languages
uses regular expressions to describe paths through a network
and predicates to classify packets. In particular, FatTire al-
lows programmers to define sets of paths with a fault toler-
ance level (i.e., tolerate 1 or 2 faults) and the compiler gen-
erates appropriate OpenFlow rules. Propane is more expres-
sive as it allows users to specify preferences among paths,
and it generates distributed implementations that tolerate any
number of faults. Because FatTire generates data plane rules
up front, specifying higher levels of fault tolerance comes at
the cost of generating additional rules that tax switch mem-
ory. In contrast, Propane relies on distributed control plane
mechanisms to react to faults, which do not have additional
memory cost. Because of the differences in the underlying
technology, the analyses and compilation algorithms used in
Propane are quite different from previous work on SDN. Fi-
nally, in addition to using path-based abstractions for intra-
domain routing, Propane uses them for inter-domain routing
as well, unlike existing SDN languages.

Configuration automation. Many practitioners use config-
uration templates [18, 31], to ensure certain kinds of consis-
tency across similar devices. In addition, configuration lan-
guages such as RPSL [2], Yang [7], and Netconf [9] allow
operators to express routing policy in a vendor-neutral way.
However, all of these solutions remain low-level, for exam-
ple, requiring operators to specify exact local preferences.
Unlike Propane, there is no guarantee that these low-level
configurations satisfy the original, high-level intent.

Configuration analysis. The notion that configuring net-
work devices is difficult and error-prone is not new. In the
past, researchers have tried to tackle this problem by analyz-
ing existing router configurations [10, 26, 12, 32, 15] and
reporting errors or inconsistencies when they are detected.
Our research is complementary to these analysis efforts. We
hope to eliminate bugs by using higher-level languages and
a “correct-by-construction” methodology. Writing configu-
rations at a high level of abstraction simplifies policy imple-
mentation and prevents a whole host of low-level errors.

Configuration synthesis. ConfigAssure [24, 25] is another
system designed to help users define and debug low-level
router configurations. Inputs to ConfigAssure include a con-
figuration database, which contains a collection of tuples
over constants and configuration variables, and a require-
ment, which is a set of constraints. The authors use a com-
bination of logic programming and SAT solving to find con-
crete values for configuration variables. ConfigAssure han-
dles configuration for a wide range of protocols and many
different concerns. In contrast, the scope of Propane is much
narrower. In return, Propane offers compact, higher-level
abstractions customized for our domain, such as regular paths,
as well as domain-specific analyses customized to those ab-
stractions, such as our failure safety analysis. The imple-
mentation technology is also entirely different, as we define
algorithms over automata and graphs as opposed to using
logic programming and SAT-based model-finding.

9. CONCLUSIONS
We introduced Propane, a language and compiler for im-

plementing network-wide policies using a distributed set of
devices running BGP. Propane allows operators to describe
their policy through high-level constraints on both the shape
and relative preferences of paths for different types of traffic.
When Propane compiles a policy, the resulting BGP config-
urations are guaranteed to implement the centralized policy
in a distributed fashion, regardless of any number of network
failures. Applying Propane to real-world networks showed
that its language is expressive and its compiler is scalable.

Acknowledgments. We thank R. Aditya, George Chen, and
Lihua Yuan for feedback on the work and the SIGCOMM re-
viewers for comments on the paper. This work is supported
in part by the National Science Foundation awards CNS-
1161595 and CNS-1111520 as well as a gift from Cisco.

340

10. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,

commodity data center network architecture. In
SIGCOMM, August 2008.

[2] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens,
D. Meyer, T. Bates, D. Karrenberg, and M. Terpstra.
Routing policy specification language (RPSL). RFC
2622, RFC Editor, June 1999.
http://www.rfc-editor.org/rfc/rfc2622.txt.

[3] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin,
D. Kozen, C. Schlesinger, and D. Walker. NetKAT:
Semantic foundations for networks. In POPL, January
2014.

[4] M. Anderson. Time warner cable says outages largely
resolved. http://www.seattletimes.com/business/
time-warner-cable-says-outages-largely-resolved,
August 2014.

[5] P. Berde, M. Gerola, J. Hart, Y. Higuchi,
M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,
P. Radoslavov, W. Snow, and G. Parulkar. ONOS:
Towards an open, distributed SDN OS. In HotSDN,
August 2014.

[6] News and press | BGPMon.
http://www.bgpmon.net/news-and-events/.

[7] M. Bjorklund. YANG - a data modeling language for
the network configuration protocol (NETCONF). RFC
6020, RFC Editor, October 2010.
http://www.rfc-editor.org/rfc/rfc6020.txt.

[8] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: Taking control
of the enterprise. In SIGCOMM, August 2007.

[9] R. Enns, M. Bjorklund, J. Schoenwaelder, and
A. Bierman. Network configuration protocol
(NETCONF). RFC 6241, RFC Editor, June 2011.
http://www.rfc-editor.org/rfc/rfc6241.txt.

[10] N. Feamster and H. Balakrishnan. Detecting BGP
configuration faults with static analysis. In NSDI, May
2005.

[11] N. Feamster, J. Winick, and J. Rexford. A model of
BGP routing for network engineering. In
SIGMETRICS, June 2004.

[12] A. Fogel, S. Fung, L. Pedrosa, M. Walraed-Sullivan,
R. Govindan, R. Mahajan, and T. Millstein. A general
approach to network configuration analysis. In NSDI,
March 2015.

[13] N. Foster, M. J. Freedman, A. Guha, R. Harrison, N. P.
Katta, C. Monsanto, J. Reich, M. Reitblatt, J. Rexford,
C. Schlesinger, A. Story, and D. Walker. Languages
for software-defined networks. IEEE Communications
Magazine, 51(2):128–134, February 2013.

[14] W. Gelade and F. Neven. Succinctness of the
complement and intersection of regular expressions.
ACM Trans. Comput. Logic, 13(1):4:1–4:19, January

2012.
[15] A. Gember-Jacobson, R. Viswanathan, A. Akella, and

R. Mahajan. Fast control plane analysis using an
abstract representation. In SIGCOMM, August 2016.

[16] P. Gill, N. Jain, and N. Nagappan. Understanding
network failures in data centers: Measurement,
analysis, and implications. In SIGCOMM, August
2011.

[17] T. G. Griffin and G. Wilfong. On the correctness of
IBGP configuration. In SIGCOMM, August 2002.

[18] Hatch – create and share configurations.
http://www.hatchconfigs.com/.

[19] P. Lapukhov, A. Premji, and J. Mitchell. Use of BGP
for routing in large-scale data centers. Internet draft,
August 2015.

[20] F. Le, G. G. Xie, and H. Zhang. On route aggregation.
In CoNEXT, December 2011.

[21] T. Lengauer and R. Tarjan. A fast algorithm for finding
dominators in a flowgraph. In TOPLAS, July 1979.

[22] R. Mahajan, D. Wetherall, and T. Anderson.
Understanding BGP misconfiguration. In SIGCOMM,
August 2002.

[23] J. McCauley, A. Panda, M. Casado, T. Koponen, and
S. Shenker. Extending SDN to large-scale networks.
In Open Networking Summit, April 2013.

[24] S. Narain. Network configuration management via
model finding. In LISA, December 2005.

[25] S. Narain, G. Levin, S. Malik, and V. Kaul.
Declarative infrastructure configuration synthesis and
debugging. Journal of Network Systems Management,
16(3):235–258, October 2008.

[26] S. Narain, R. Talpade, and G. Levin. Guide to Reliable
Internet Services and Applications, chapter Network
Configuration Validation. Springer, 2010.

[27] S. Narayana, M. Tahmasbi, J. Rexford, and D. Walker.
Compiling path queries. In NSDI, March 2016.

[28] S. Owens, J. Reppy, and A. Turon. Regular-expression
derivatives re-examined. In J. Funct. Program., March
2009.

[29] M. Reitblatt, M. Canini, N. Foster, and A. Guha.
FatTire: Declarative fault tolerance for software
defined networks. In HotSDN, August 2013.

[30] R. Soulé, S. Basu, P. J. Marandi, F. Pedone,
R. Kleinberg, E. G. Sirer, and N. Foster. Merlin: A
language for provisioning network resources. In
CoNEXT, December 2014.

[31] configuration templates | thwack.
https://thwack.solarwinds.com/search.jspa?q=
configuration+templates.

[32] K. Weitz, D. Woos, E. Torlak, M. D. Ernst,
A. Krishnamurthy, and Z. Tatlock. Formal semantics
and automated verification for the border gateway
protocol. In NetPL, March 2016.

341

