
COS 429: Computer Vision 

Feature Detectors and Descriptors: 
Corners, Blobs, and SIFT 

Figure credits: S. Lazebnik, S. Seitz 
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Why Extract Keypoints? 

• Motivation: panorama stitching 
– We have two images – how do we combine them? 

Step 3: align images 

Step 1: extract keypoints 
Step 2: match keypoint features 



Characteristics of Good Keypoints 

• Repeatability 
– Can be found despite geometric and photometric transformations  

• Salience 
– Each keypoint is distinctive 

• Compactness and efficiency 
– Many fewer keypoints than image pixels 

• Locality 
– Occupies small area of the image; robust to clutter and occlusion 



Applications   

• Keypoints are used for: 
– Image alignment  

– 3D reconstruction 

– Motion tracking 

– Robot navigation 

– Indexing and database retrieval 

– Object recognition 



Kinds of Keypoints 

• Corners 

 

 

 

• Blobs 



Edges vs. Corners 

• Edges = maxima in intensity gradient 



Edges vs. Corners 

• Corners = lots of variation in direction of gradient 
in a small neighborhood 



• How to detect this variation? 

• Not enough to check average      and 

Detecting Corners 
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Detecting Corners 

• Claim: the following “structure” matrix summarizes 
the second-order statistics of the gradient 
 
 
 
 

• Summations over local neighborhoods 
– Can have spatially-varying weights (Gaussian, etc.) 
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Detecting Corners 

• Examine behavior of C by testing its effect 
in simple cases 

• Case #1: Single edge in local neighborhood 



Case#1: Single Edge 

• Let (a,b) be gradient along edge 

• Compute C⋅ (a,b): 
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Case #1: Single Edge 

• However, in this simple case, the only nonzero terms 
are those where ∇f = (a,b) 

• So, C⋅ (a,b) is just some multiple of (a,b) 



Case #2: Corner 

• Assume there is a corner, with perpendicular 
gradients (a,b) and (c,d) 

(c,d) 

(a,b) 



Case #2: Corner 

• What is C⋅ (a,b)? 
– Since (a,b) ⋅ (c,d) = 0, the only nonzero terms are those 

where ∇f = (a,b) 

– So, C⋅ (a,b) is again just a multiple of (a,b) 

• What is C⋅ (c,d)? 
– Since (a,b) ⋅ (c,d) = 0, the only nonzero terms are those 

where ∇f = (c,d) 

– So, C⋅ (c,d) is a multiple of (c,d) 



Corner Detection 

• Matrix times vector = multiple of vector 

• Eigenvectors and eigenvalues! 

• In particular, if C has one large eigenvalue, 
there’s an edge 

• If C has two large eigenvalues, have corner 

• “Harris” corner detector 
– Harris & Stephens 1988 look at trace and determinant of C; 

Shi & Tomasi 1994 directly look at minimum eigenvalue 



Visualization of Structure Matrix 



Visualization of Structure Matrix 



Corner Detection Implementation  

1. Compute image gradient 

2. For each m×m neighborhood, compute matrix C 
(optionally using weighted sum) 

3. If smaller eigenvalue λ2 is larger than threshold τ, 
record a corner 

4. Nonmaximum suppression: only keep strongest 
corner in each m×m window 



Corner Detection Results 

• Checkerboard 
with noise 

Trucco & Verri 



Corner Detection Results 



Corner Detection Results 

Histogram of λ2 (smaller eigenvalue) 



Corner Detection 

• Application: good features for tracking, 
correspondence, etc. 
– Why are corners better than edges for tracking? 

• Other corner detectors 
– Look for maxima of curvature in edge detector output 

– Perform color segmentation on image, 
look for places where 3 segments meet 

– … 



Invariance 

• Suppose you rotate the image by some angle 
– Will you still find the same corners? 

 

• What if you change the brightness? 

 

• Scale? 

[Seitz] 



Scale-Invariant Feature Detection 

• Key idea: compute some function f over different 
scales, find extremum 
– Common definition of f: convolution with LoG or DoG 

– Find local minima or maxima over position and scale 



Blob Filter 

• Recall: Laplacian of Gaussian 
– Circularly symmetric operator for blob detection 
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Blob Detection – Single Scale 

* = 

maxima 

minima 

Source: N. Snavely 



Blob Detection – Over Multiple Scales 

T. Lindeberg. Feature detection with automatic scale selection.  
IJCV 30(2), pp 77-116, 1998.  

http://www.nada.kth.se/cvap/abstracts/cvap198.html


Multiscale Difference of Gaussians 

Difference-of-Gaussians Images 

Gaussian-filtered images with increasing σ 



 

Slide from Tinne Tuytelaars 

Lindeberg et al, 1996 

Slide from Tinne Tuytelaars 

Lindeberg et al., 1996 



 



 



 



 



 



 



 



Rotation Normalization 

• Rotate window according to dominant orientation 
– Eigenvector of C corresponding to maximum eigenvalue 

[Matthew Brown] 



Detected Features 

• Detected features with characteristic scales and 
orientations: 

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” 
IJCV 60 (2), pp. 91-110, 2004.  

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Feature Descriptors 

• Once we have detected distinctive and repeatable 
features, still have to match them across images 
– Image alignment (e.g., mosaics), 3D reconstruction, motion tracking, 

object recognition, indexing and retrieval, robot navigation, etc. 

? 

[Seitz] 



Properties of Feature Descriptors 

• Easily compared (compact, fixed-dimensional) 

• Easily computed 

• Invariant 
– Translation 

– Rotation 

– Scale 

– Change in image brightness 

– Change in perspective? 



Scale Invariant Feature Transform 

• Simple version: 
– Take 16×16 normalized window around detected feature 

– Create histogram of quantized gradient directions 

– Invariant to changes in brightness 

0 2π 
angle histogram 

[Seitz / Lowe] 



Full SIFT Descriptor 

• Divide 16×16 window into 4×4 grid of cells 

• Compute an orientation histogram for each cell 
– 16 cells * 8 orientations = 128-dimensional descriptor 

David G. Lowe. "Distinctive image features from scale-invariant keypoints.” 
IJCV 60 (2), pp. 91-110, 2004.  

http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf


Properties of SIFT 

• Fast (real-time) and robust descriptor for matching 
– Handles changes in viewpoint (~60° out of plane rotation) 

– Handles significant changes in illumination 

– Lots of code available 

[Seitz] 
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