
12/1/17

Concurrency control

Bag of words...

Conflict serializability

Serializability

Two-phase locking

Optimistic concurrency control

Snapshot isolation

Linearizability
Consistency

Multiversion
concurrency control

Atomicity

Isolation

Durability

Conflict equivalence

Strict serializability

ACID semantics

Relevant in the context of database transactions (txn)

Atomicity: Either all ops happen or no ops happen

Consistency: Application constraints are not violated

Isolation: Concurrent txns appear as if executed serially

Durability: Results of committed txns survive failures

Consistency disambiguation

Consistency in ACID refers to integrity constraints in applications

e.g. Bank account balance should always be >= 0

Consistency in context of availability refers to linearizability

Linearizability: once a write completes, all later reads should see that value

Consistency here describes guarantees about a single item

e.g. CAP theorem, Dynamo

Isolation
How to ensure correctness when running concurrent txns?

Problems caused by concurrency?

Lost update: the result of a txn is overwritten by another txn

Dirty read: uncommitted results can be read by a txn

Non-repeatable read: two reads in the same txn can return different results

Phantom read: later reads in the same txn can return extra rows

BEGIN TRANSACTION

SELECT * FROM students

SELECT * FROM students

COMMIT

BEGIN TRANSACTION

UPDATE students SET gpa = 3.6 WHERE id = 1

INSERT INTO students VALUES (2, "Jack", 4.0)

COMMIT

Serial schedule — no problems

T1: R(A), W(A), R(B), W(B), Abort

T2: R(A), W(A), Commit

time

Quiz: Which concurrency problem is this?

T1: R(A), W(A) R(B), W(B), Abort

T2: R(A), W(A), Commit

Lost update Dirty read Non-repeatable read Phantom read

time

Quiz: Which concurrency problem is this?

T1: R(A) R(A), W(A), Commit

T2: R(A), W(A), Commit

Lost update Dirty read Non-repeatable read Phantom read

time

Quiz: Which concurrency problem is this?

T1: R(A), W(A) W(B), Commit

T2: R(A) W(A), W(B), Commit

Lost update Dirty read Non-repeatable read Phantom read

time

Quiz: Which concurrency problem is this?

T1: R(A), W(A) W(A), Commit

T2: R(A), R(B), W(B) Commit

Lost update Dirty read Non-repeatable read Phantom read

time

Levels of isolation

Serializability

Repeatable reads

Read committed

Stronger Weaker

Read uncommitted

Levels of isolation

Read uncommitted: no restrictions on reads

Read committed: no dirty reads

Repeatable reads: rows returned by two reads in the same txn are unchanged

Serializability: txns behave as if executed one after another (strongest)

Levels of isolation

Fixing concurrency problems

Strawman: Just run txns serially — prohibitive performance

Observation: Problems only arise when

1. Two txns touch the same table
2. At least one of these txns involve a write to the table

Key idea: Permit schedules whose effects are equivalent to serial schedules

Conflict serializability

Two operations conflict if

1. They belong to different txns
2. They operate on the same data
3. One of them is a write

Two operations are conflict equivalent if

1. They involve the same operations
2. All conflicting operations are ordered the same way

A schedule is conflict serializable if it is conflict equivalent to a serial schedule

Testing for conflict serializability

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for conflict serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for conflict serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for conflict serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for conflict serializability

T1: R(A), W(A), Commit

T2: R(A), R(B) W(B) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for conflict serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Conflict serializable

Testing for conflict serializability

T1: R(A), W(A), W(B), Commit

T2: R(B), W(B), R(A) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for conflict serializability

T1: R(A), W(A), W(B), Commit

T2: R(B), W(B), R(A) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for conflict serializability

T1: R(A), W(A) W(B), Commit

T2: R(B), W(B), R(A) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

Testing for conflict serializability

T1: R(A), W(A), W(B), Commit

T2: R(B), W(B), R(A) Commit

time

Intuition: Swap non-conflicting operations until you reach a serial schedule

NOT conflict serializable

Testing for conflict serializability

Another way to test conflict serializability:

Draw arrows between conflicting operations

Arrow points in the direction of time

If no cycles between txns, the schedule is conflict serializable

Testing for conflict serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

Another way to test conflict serializability:

Draw arrows between conflicting operations

Arrow points in the direction of time

If no cycles between txns, the schedule is conflict serializable

Another way to test conflict serializability:

Draw arrows between conflicting operations

Arrow points in the direction of time

If no cycles between txns, the schedule is conflict serializable

Testing for conflict serializability

T1: R(A), W(A), Commit

T2: R(A), R(B), W(B) Commit

time

No cycles,
conflict serializable

Testing for conflict serializability

time

Another way to test conflict serializability:

Draw arrows between conflicting operations

Arrow points in the direction of time

If no cycles between txns, the schedule is conflict serializable

T1: R(A), W(A), W(B), Commit

T2: R(B), W(B), R(A) Commit

Cycles exist,
NOT conflict
serializable

Implementing conflict serializability

Two-phase locking (2PL): acquire all locks before releasing any locks

Each txn acquires shared locks (S) for reads and exclusive locks (X) for writes

2PL guarantees conflict serializability by disallowing cycles

Edge from Ti to Tj means Ti acquired lock first and Tj has to wait

Edge from Tj to Ti means Tj acquired lock first and Ti has to wait

Cycles mean DEADLOCK

Two-phase locking (2PL): acquire all locks before releasing any locks

Each txn acquires shared locks (S) for reads and exclusive locks (X) for writes

time

T1: R(A), W(A), W(B), Commit

T2: R(B), W(B), R(A) Commit

Implementing conflict serializability

Lock_X(A)

Lock_X(B) Lock_S(A)

Lock_X(B)

DEADLOCK!

Implementing conflict serializability

Two-phase locking (2PL): acquire all locks before releasing any locks

Each txn acquires shared locks (S) for reads and exclusive locks (X) for writes

2PL guarantees conflict serializability by disallowing cycles

Edge from Ti to Tj means Ti acquired lock first and Tj has to wait

Edge from Tj to Ti means Tj acquired lock first and Ti has to wait

Cycles mean DEADLOCK

Deal with deadlocks by aborting one of the two txns (e.g. detect + timeout)

2PL: Releasing locks too soon?

What if we release the lock as soon as we can?

time

T1: R(A), W(A), Abort

T2: R(B), W(B), R(A) Abort

Lock_X(A)

Lock_X(B) Lock_S(A)

Rollback of T1 requires rollback of T2, since T2 read a value written by T1

Cascading aborts: the rollback of one txn causes the rollback of another

Unlock_X(A)

Strict 2PL

Release locks at the end of the txn

Variant of 2PL implemented by most databases in practice

Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Unlock(A) <granted>

Read(A)

Unlock(A)

Lock_S(B) <granted>

Lock_X(B)

Read(B)

 <granted> Unlock(B)

PRINT(A+B)

Read(B)

B := B +50

Write(B)

Unlock(B)

Is this a 2PL schedule?

No, and it is not conflict
serializable

Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Unlock(A) <granted>

Read(A)

Lock_S(B)

Read(B)

B := B +50

Write(B)

Unlock(B) <granted>

Unlock(A)

Read(B)

Unlock(B)

PRINT(A+B)

Is this a Strict 2PL schedule?

No, cascading aborts
possible

Is this a 2PL schedule?

Yes, and it is conflict
serializable

Lock_X(A) <granted>

Read(A) Lock_S(A)

A: = A-50

Write(A)

Lock_X(B) <granted>

Read(B)

B := B +50

Write(B)

Unlock(A)

Unlock(B) <granted>

Read(A)

Lock_S(B) <granted>

Read(B)

PRINT(A+B)

Unlock(A)

Unlock(B)

Is this a Strict 2PL schedule?

Yes, cascading aborts not
possible

Is this a 2PL schedule?

Yes, and it is conflict
serializable

Recap

Conflict serializability

Serializability

Two-phase locking

Optimistic concurrency control

Snapshot isolation

Linearizability
Consistency

Atomicity

Isolation

Durability

Conflict equivalence

Strict serializability

Multiversion
concurrency control

Recap

Conflict serializability

Serializability

Two-phase locking

Optimistic concurrency control

Snapshot isolation

Linearizability

Conflict equivalence

Strict serializability

Multiversion
concurrency control

Recap

Conflict serializability

Serializability

Two-phase locking

Optimistic concurrency control

Snapshot isolation

Conflict equivalence

Strict serializability

Multiversion
concurrency control

Recap

Optimistic concurrency control

Snapshot isolation

Multiversion
concurrency control

Two ways of implementing serializability

Issues with 2PL (pessimistic):

1. Assume conflict, always lock
2. High overhead for non-conflicting txn
3. Must check for deadlock

 Optimistic concurrency control (OCC):

1. Assume no conflict
2. Low overhead for low-conflict workloads
3. Ensure correctness by aborting txns if conflict occurs

Optimistic concurrency control

Modify (Read): Read committed values, write changes locally

Verify: Check if a conflict would occur at commit

Commit (Write): If no conflict, commit, else abort

Test 1
For all i and j such that Ti < Tj, check that Ti completes
before Tj begins

Ti
TjR V W

R V W

Test 2
For all i and j such that Ti < Tj, check that:

– Ti completes before Tj begins its Write phase
– WriteSet(Ti) ∩ ReadSet(Tj) is empty

Ti
Tj

R V W

R V W

Test 3
For all i and j such that Ti < Tj, check that:

– Ti completes Read phase before Tj does
– WriteSet(Ti) ∩ ReadSet(Tj) is empty
– WriteSet(Ti) ∩ WriteSet(Tj) is empty

Ti
Tj

R V W

R V W

Levels of isolation

Serializability Repeatable reads

Read committed

Stronger Weaker

Read uncommitted

Snapshot isolation

Snapshot isolation
All reads see a consistent snapshot of the database

Commit only if no write-write conflicts with concurrent txns

Intuition: each write creates a new snapshot, and concurrent reads may return
values from older snapshots

Snapshot isolation advantages
Super fast reads + most concurrency problems are solved

No non-repeatable reads
No dirty reads
No lost updates
(why?)

Snapshot isolation < serializability
Write skew problem: txns modify different items (hence no write conflict) but
violate integrity constraints

Rare in practice!

Snapshot isolation implementation
Most popular implementation: multiversion concurrency control (MVCC)

Each txn T is assigned a timestamp TS

Reads return the latest value written before TS

Writes abort if another txn has updated the value in the same snapshot after TS

(Details in lecture)

Further reading
https://inst.eecs.berkeley.edu/~cs186/fa05/lecs/17TransIntro-6up.pdf

https://inst.eecs.berkeley.edu/~cs186/fa05/lecs/18cc-6up.pdf

https://inst.eecs.berkeley.edu/~cs162/sp11/Lectures/lec18-transactionsx4.pdf

https://db.in.tum.de/teaching/ws1314/transactions/pdf/SnapshotIsolation.pdf?lang=de

https://courses.cs.washington.edu/courses/cse444/12sp/lectures/lecture16-transactions-snapshot.pdf

https://msdn.microsoft.com/en-us/library/ms189122(v=sql.105).aspx

https://inst.eecs.berkeley.edu/~cs186/fa05/lecs/17TransIntro-6up.pdf
https://inst.eecs.berkeley.edu/~cs186/fa05/lecs/18cc-6up.pdf
https://inst.eecs.berkeley.edu/~cs162/sp11/Lectures/lec18-transactionsx4.pdf
https://db.in.tum.de/teaching/ws1314/transactions/pdf/SnapshotIsolation.pdf?lang=de
https://courses.cs.washington.edu/courses/cse444/12sp/lectures/lecture16-transactions-snapshot.pdf
https://msdn.microsoft.com/en-us/library/ms189122(v=sql.105).aspx

