
10/20/17

Viewstamped replication

A note on assignment 2
Your tests need to pass deterministically

Use SyncMap, err on using too many (correctness > performance here)

You don’t need maps of maps (bad design in general)

Due tonight!!

MIDTERM
Next Friday 10/27 at 10am or 11am, you choose (90 minutes)

Covers all material up to and including today’s class

Viewstamped replication
A way to implement replicated state machines

Goal: strong consistency across replicas

Similar to Paxos and RAFT, but less popular

Viewstamped replication
Normal operation

status
replica
view
op
commit

<empty>A normal
0
0
0
-1

status
replica
view
op
commit

<empty>B normal
1
0
0
-1

status
replica
view
op
commit

<empty>C normal
2
0
0
-1

2f + 1 = 3 nodes

Can tolerate f = 1
node failing at once

Client 136

Request
op: x = 18
cid: 136
request num: 0

status
replica
view
op
commit

<empty>A normal
0
0
0
-1

status
replica
view
op
commit

<empty>B normal
1
0
0
-1

status
replica
view
op
commit

<empty>C normal
2
0
0
-1

Prepare
view: 0
op: 1
commit: -1
<Request>

status
replica
view
op
commit

<0, 1> x = 18A normal
0
0
1
-1

status
replica
view
op
commit

<empty>B normal
1
0
0
-1

status
replica
view
op
commit

<empty>C normal
2
0
0
-1

<view, op>

status
replica
view
op
commit

<0, 1> x = 18A normal
0
0
1
-1

status
replica
view
op
commit

<0, 1> x = 18B normal
1
0
1
-1

status
replica
view
op
commit

<0, 1> x = 18C normal
2
0
1
-1

<view, op>

PrepareOK
view: 0
op: 1
replica: 2

PrepareOK
view: 0
op: 1
replica: 1

Primary only needs to
wait for f = 1 replies
before committing

status
replica
view
op
commit

<0, 1> x = 18A normal
0
0
1
1

status
replica
view
op
commit

<0, 1> x = 18B normal
1
0
1
-1

status
replica
view
op
commit

<0, 1> x = 18C normal
2
0
1
-1

<view, op>

Client 136

Reply
view: 0
request num: 0
result: x = 18 committed

status
replica
view
op
commit

<0, 1> x = 18A normal
0
0
1
1

status
replica
view
op
commit

<0, 1> x = 18B normal
1
0
1
-1

status
replica
view
op
commit

<0, 1> x = 18C normal
2
0
1
-1

<view, op>

committed

Primary informs backups
that op 1 is committed
during the next Prepare

status
replica
view
op
commit

<0, 1> x = 18A normal
0
0
1
1

status
replica
view
op
commit

<0, 1> x = 18B normal
1
0
1
-1

status
replica
view
op
commit

<0, 1> x = 18C normal
2
0
1
-1

<view, op>

committed
Client 136

Request
op: x += 3
cid: 136
request num: 1

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

A normal
0
0
2
1

status
replica
view
op
commit

<0, 1> x = 18B normal
1
0
1
-1

status
replica
view
op
commit

<0, 1> x = 18C normal
2
0
1
-1

<view, op>

committed

Prepare
view: 0
op: 2
commit: 1
<Request>

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

A normal
0
0
2
1

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
1

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

C normal
2
0
2
1

<view, op>

committed

PrepareOK
view: 0
op: 2
replica: 2

PrepareOK
view: 0
op: 2
replica: 1

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

A normal
0
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
1

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

C normal
2
0
2
1

<view, op>

committed
Client 136

Reply
view: 0
request num: 1
result: x = 21

Commit
view: 0
commit: 2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

A normal
0
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
1

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

C normal
2
0
2
1

<view, op>

committed

What if the next Prepare
never comes?

Primary times out and
sends a Commit
message to each backup

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

A normal
0
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

C normal
2
0
2
2

<view, op>

committed

Why is waiting for f nodes enough?
Op is guaranteed to have been executed on f + 1 nodes (majority)

A

Overlapping quorums

B C

x = 1

x = 1

Write quorum
contains f + 1 nodes

A

Overlapping quorums

B C

x = 1

FAILED

Write quorum
contains f + 1 nodes

A

Overlapping quorums

B C

x = 1

FAILED

ClientWrite quorum
contains f + 1 nodes

x = ?

A

Overlapping quorums

B C

x = 1

FAILED

Client

Read quorum
contains f + 1 nodes

Write quorum
contains f + 1 nodes

x = ?

A

Overlapping quorums

B C

x = 1

FAILED

Client

Read quorum
contains f + 1 nodes

Write quorum
contains f + 1 nodes

x = ?

A

Overlapping quorums

B C

x = 1

FAILED

Client

Read quorum
contains f + 1 nodes

Write quorum
contains f + 1 nodes

x = 1

A

Non-overlapping quorums?

B C

x = 1

FAILED

Client

x = ?

Uhhh...

Viewstamped replication
View change

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

C normal
2
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

A normal
0
0
2
2

<view, op>

committed
Client 25

Request
op: y = 100
cid: 25
request num: 0

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

C normal
2
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
3
2

<view, op>

committed

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C normal
2
0
3
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
3
2

<view, op>

committed

Prepare
view: 0
op: 3
commit: 2
<Request>

Primary fails before
sending Prepare to B

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C normal
2
0
3
2

<view, op>

committed
Logs are out of sync

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C normal
2
0
3
2

<view, op>

committed
C times out on hearing
from the primary and
starts view change

???

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C normal
2
0
3
2

<view, op>

committed

Who is the new primary?

Go through the list of
sorted IP addresses and
find the next one (i.e. B)

???

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C normal
2
0
3
2

<view, op>

committed

Start view change:

 Status = change
 Increment local view
 Send SVC to all nodes

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C change
2
1
3
2

<view, op>

committed

StartViewChange
view: 1
replica: 2

Start view change:

 Status = change
 Increment local view
 Send SVC to all nodes

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B normal
1
0
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C change
2
1
3
2

<view, op>

committed

StartViewChange
view: 1
replica: 2

Receive SVC where:

 SVC.view > local view {
 Status = view change
 Advance local view
 Send SVC to other nodes
 }

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B change
1
1
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C change
2
1
3
2

StartViewChange
view: 1
replica: 1

Receive SVC where:

 SVC.view > local view {
 Status = view change
 Advance local view
 Send SVC to other nodes
 }

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

<view, op>

committed

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B change
1
1
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C change
2
1
3
2

StartViewChange
view: 1
replica: 1

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

<view, op>

committed

Receive f SVCs where:

 SVC.view == local view {
 Send DVC to new primary
 }

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3

B change
1
1
2
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C change
2
1
3
2

Receive f SVCs where:

 SVC.view == local view {
 Send DVC to new primary
 }

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

<view, op>

committed

DoViewChange
replica: 2
view: 1
op: 3
commit: 2
<log>

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

B change
1
1
3
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C change
2
1
3
2

Logs are no longer out of sync!
status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

<view, op>

committedWith more nodes, we may
receive multiple different logs

Pick the one with highest view
and op number

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

B normal
1
1
3
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C change
2
1
3
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

<view, op>

committed

Receive f DVCs:

 Become new primary
 Send StartView to others

StartView
view: 1
replica: 1
op: 3
commit: 2
<log>

Why do we send the log here?

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

B normal
1
1
3
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C normal
2
1
3
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

<view, op>

committed

Notice <0, 3> is uncommitted
and from an old view...

Do we commit it?

PrepareOK
view: 0
op: 3
replica: 2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

B normal
1
1
3
3

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

C normal
2
1
3
2

status
replica
view
op
commit

<0, 1> x = 18
<0, 2> x += 3
<0, 3> y = 100

A normal
0
0
2
2

<view, op>

committed

Are uncommitted ops like
<0, 3> guaranteed to survive
into the new view?

What about committed ops?
(e.g. <0, 1> and <0, 2>)

Summary: view change in VR

New primary is pre-selected based on IP address (round-robin)

View change triggered by timeout, could be any node

Wait for f SVC that matches our view number before sending DVC

Wait for f DVC to start new view (primary)

- Why f in both cases?

- Provided that at most f servers fail, is liveness guaranteed?

Failure detection

Two kinds of failures

Server failures

Network partitions

These two are indistinguishable from a single machine!

Failure detection goals

Completeness: Each failure is detected

Accuracy: There is no mistaken detection

Speed: Time to first detection of a failure

Scale: Equal load on each node

… in terms of CPU and network bandwidth

A

B

C D

E

Centralized detection

A

B

C D

E

Gossip detection

Completeness, accuracy, speed, load?

P

B

C D

E

Centralized detection

P

B

C D

E

Gossip detection

If we’re running the view change protocol, what happens in each case?

What is gossip detection good for?

Certainly not viewstamped replication!

May cause liveness issues; primary cannot reach f nodes

Dynamo uses gossip for membership and failure detection

More suitable for completely decentralized environments

Additional reading for viewstamped replication
http://pmg.csail.mit.edu/papers/vr-revisited.pdf

https://blog.acolyer.org/2015/03/06/viewstamped-replication-revisited/

Q & A

