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Basic architecture

Clients submit applications to the cluster manager

Cluster manager assigns cluster resources to applications

Each Worker launches containers for each application

Driver containers run main method of user program

Executor containers run actual computation



Two levels of scheduling

Cluster-level: Cluster manager assigns resources to applications

Application-level: Driver assigns tasks to run on executors

A task is a unit of execution that corresponds to one partition of your data

E.g. Running Spark on a YARN cluster

Hadoop YARN is a cluster scheduling framework

Spark is a distributed computing framework



Two levels of scheduling

Cluster-level: Cluster manager assigns resources to applications

Application-level: Driver assigns tasks to run on executors

A task is a unit of execution that corresponds to one partition of your data

What are some advantages of having two levels?

Applications need not be concerned with resource fairness

Cluster manager need not be concerned with individual tasks (too many)

Easy to implement priorities and preemption



Spark overview



What is Apache                ?
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Fast and general engine for big data processing

Fast to run code
– In-memory data sharing
– General computation graphs

Fast to write code
– Rich APIs in Java, Scala, Python
– Interactive shell
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Spark Core

Spark 
Streaming

real-time

Spark SQL
structured data
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What is Apache                ?



Spark computation model

Recall that…

Map phase defines how each machine processes its individual partition

Reduce phase defines how to merge map outputs from previous phase

Most computation can be expressed in terms of these two phases

Spark expresses computation as a DAG of maps and reduces



Map phase

Reduce phase

Synchronization barrier



More complicated DAG



Spark basics

Transformations express how to process a dataset

Actions express how to turn a transformed dataset into results

sc.textFile("declaration-of-independence.txt")

.flatMap { line => line.split(" ") }

.map { word => (word, 1) }

.reduceByKey { case (counts1, counts2) => counts1 + counts2 }

.collect()
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Transformations express how to process a dataset

Actions express how to turn a transformed dataset into results
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.collect()



Spark basics

Transformations express how to process a dataset

Actions express how to turn a transformed dataset into results

sc.textFile("declaration-of-independence.txt")

.flatMap { line => line.split(" ") }

.map { word => (word, 1) }

.reduceByKey { case (counts1, counts2) => counts1 + counts2 }

.collect() // action



Spark optimization #1

Transformations can be pipelined until we hit

A synchronization barrier (e.g. reduce), or

An action

Example:

data.map { ... }.filter { ... }.flatMap { ... }.groupByKey().count()

These three operations can all be run in the same task

This allows lazy execution; we don’t need to eagerly execute map



Spark optimization #2

In-memory caching: store intermediate results in memory to bypass disk access

Example:

val cached = data.map { ... }.filter { ... }.cache()

(1 to 100).foreach { i =>

cached.reduceByKey { ... }.saveAsTextFile(...)

}

By caching transformed data in memory, we skip the map, the filter,
and reading the original data from disk every iteration



Spark optimization #3

Reusing map outputs (aka shuffle files) allows Spark to skip map stages

Along with caching, this makes iterative workloads much faster

Example:

val transformed = data.map { ... }.filter { ... }.reduceByKey { ... }

transformed.collect()

transformed.collect() // does not run map phase again



Recap

Spark is expressive because its computation model is a DAG

Spark is fast because of many optimizations, in particular:

Pipelined transformations

In-memory caching

Reusing map outputs



Brainstorm: Top K

Top K is the problem of finding the largest K values from a set of numbers

How would you express this as a distributed application?

In particular, what would the map and reduce phases look like?



Brainstorm: Top K

Top K is the problem of finding the largest K values from a set of numbers

How would you express this as a distributed application?

In particular, what would the map and reduce phases look like?

Hint: use a heap...



Top K

Assuming that a set of K integers fit in memory…

Key idea...

Map phase: everyone maintains a heap of K elements

Reduce phase: merge the heaps until you’re left with one



Top K

Problem: What are the keys and values here?

No notion of key here, just assign one key to all the values (e.g. key = 1)

Map task 1: [10, 5, 3, 700, 18, 4] → (1, heap(700, 18, 10))

Map task 2: [16, 4, 523, 100, 88] → (1, heap(523, 100, 88))

Map task 3: [3, 3, 3, 3, 300, 3] → (1, heap(300, 3, 3))

Map task 4: [8, 15, 20015, 89] → (1, heap(20015, 89, 15))

Then all the heaps will go to a single reducer responsible for the key 1

This works, but clearly not scalable...



Top K

Idea: Use X different keys to balance load (e.g. X = 2 here)

Map task 1: [10, 5, 3, 700, 18, 4] → (1, heap(700, 18, 10))

Map task 2: [16, 4, 523, 100, 88] → (1, heap(523, 100, 88))

Map task 3: [3, 3, 3, 3, 300, 3] → (2, heap(300, 3, 3))

Map task 4: [8, 15, 20015, 89] → (2, heap(20015, 89, 15))

Then all the heaps will (hopefully) go to X different reducers

Rinse and repeat (what’s the runtime complexity?)


