
12/8/17

Big data systems

Today

Basic architecture

Two levels of scheduling

Spark overview

Basic architecture

Cluster
Manager

Worker

Worker

Worker

Cluster

Cluster
Manager

Worker

Worker

Worker

Cluster

64GB RAM
32 cores

64GB RAM
32 cores

64GB RAM
32 cores

64GB RAM
32 cores

Cluster
Manager

Worker

Worker

Worker

Cluster

Client
Submit WordCount.java

Cluster
Manager

Worker

Worker

Worker

Cluster

Client
Launch executor

Launch driver

Launch executor

Cluster
Manager

Worker

Worker

Worker

Cluster

Client

Wordcount
driver

Wordcount
executor

Wordcount
executor

Cluster
Manager

Worker

Worker

Worker

Cluster

Client

Wordcount
driver

Wordcount
executor

Wordcount
executor

Client

Submit FindTopTweets.java

Cluster
Manager

Worker

Worker

Worker

Cluster

Client

Wordcount
driver

Wordcount
executor

Wordcount
executor

Client

Launch executor

Launch driver

Cluster
Manager

Worker

Worker

Worker

Cluster

Client

Wordcount
driver

Wordcount
executor

Wordcount
executor

Client

Tweets
executor

Tweets
driver

Cluster
Manager

Worker

Worker

Worker

Cluster

Client

Wordcount
driver

Wordcount
executor

Wordcount
executor

Client

Tweets
executor

Tweets
driverClient

App3
executor

App3
executor

App3
driver

Basic architecture

Clients submit applications to the cluster manager

Cluster manager assigns cluster resources to applications

Each Worker launches containers for each application

Driver containers run main method of user program

Executor containers run actual computation

Two levels of scheduling

Cluster-level: Cluster manager assigns resources to applications

Application-level: Driver assigns tasks to run on executors

A task is a unit of execution that corresponds to one partition of your data

E.g. Running Spark on a YARN cluster

Hadoop YARN is a cluster scheduling framework

Spark is a distributed computing framework

Two levels of scheduling

Cluster-level: Cluster manager assigns resources to applications

Application-level: Driver assigns tasks to run on executors

A task is a unit of execution that corresponds to one partition of your data

What are some advantages of having two levels?

Applications need not be concerned with resource fairness

Cluster manager need not be concerned with individual tasks (too many)

Easy to implement priorities and preemption

Spark overview

What is Apache ?

17

Fast and general engine for big data processing

Fast to run code
– In-memory data sharing
– General computation graphs

Fast to write code
– Rich APIs in Java, Scala, Python
– Interactive shell

18

Spark Core

Spark
Streaming

real-time

Spark SQL
structured data

MLlib
machine
learning

GraphX
graph

…

What is Apache ?

Spark computation model

Recall that…

Map phase defines how each machine processes its individual partition

Reduce phase defines how to merge map outputs from previous phase

Most computation can be expressed in terms of these two phases

Spark expresses computation as a DAG of maps and reduces

Map phase

Reduce phase

Synchronization barrier

More complicated DAG

Spark basics

Transformations express how to process a dataset

Actions express how to turn a transformed dataset into results

sc.textFile("declaration-of-independence.txt")

.flatMap { line => line.split(" ") }

.map { word => (word, 1) }

.reduceByKey { case (counts1, counts2) => counts1 + counts2 }

.collect()

Spark basics

Transformations express how to process a dataset

Actions express how to turn a transformed dataset into results

sc.textFile("declaration-of-independence.txt") // input data

.flatMap { line => line.split(" ") }

.map { word => (word, 1) }

.reduceByKey { case (counts1, counts2) => counts1 + counts2 }

.collect()

Spark basics

Transformations express how to process a dataset

Actions express how to turn a transformed dataset into results

sc.textFile("declaration-of-independence.txt")

.flatMap { line => line.split(" ") } // transformations

.map { word => (word, 1) }

.reduceByKey { case (counts1, counts2) => counts1 + counts2 }

.collect()

Spark basics

Transformations express how to process a dataset

Actions express how to turn a transformed dataset into results

sc.textFile("declaration-of-independence.txt")

.flatMap { line => line.split(" ") }

.map { word => (word, 1) }

.reduceByKey { case (counts1, counts2) => counts1 + counts2 }

.collect() // action

Spark optimization #1

Transformations can be pipelined until we hit

A synchronization barrier (e.g. reduce), or

An action

Example:

data.map { ... }.filter { ... }.flatMap { ... }.groupByKey().count()

These three operations can all be run in the same task

This allows lazy execution; we don’t need to eagerly execute map

Spark optimization #2

In-memory caching: store intermediate results in memory to bypass disk access

Example:

val cached = data.map { ... }.filter { ... }.cache()

(1 to 100).foreach { i =>

cached.reduceByKey { ... }.saveAsTextFile(...)

}

By caching transformed data in memory, we skip the map, the filter,
and reading the original data from disk every iteration

Spark optimization #3

Reusing map outputs (aka shuffle files) allows Spark to skip map stages

Along with caching, this makes iterative workloads much faster

Example:

val transformed = data.map { ... }.filter { ... }.reduceByKey { ... }

transformed.collect()

transformed.collect() // does not run map phase again

Recap

Spark is expressive because its computation model is a DAG

Spark is fast because of many optimizations, in particular:

Pipelined transformations

In-memory caching

Reusing map outputs

Brainstorm: Top K

Top K is the problem of finding the largest K values from a set of numbers

How would you express this as a distributed application?

In particular, what would the map and reduce phases look like?

Brainstorm: Top K

Top K is the problem of finding the largest K values from a set of numbers

How would you express this as a distributed application?

In particular, what would the map and reduce phases look like?

Hint: use a heap...

Top K

Assuming that a set of K integers fit in memory…

Key idea...

Map phase: everyone maintains a heap of K elements

Reduce phase: merge the heaps until you’re left with one

Top K

Problem: What are the keys and values here?

No notion of key here, just assign one key to all the values (e.g. key = 1)

Map task 1: [10, 5, 3, 700, 18, 4] → (1, heap(700, 18, 10))

Map task 2: [16, 4, 523, 100, 88] → (1, heap(523, 100, 88))

Map task 3: [3, 3, 3, 3, 300, 3] → (1, heap(300, 3, 3))

Map task 4: [8, 15, 20015, 89] → (1, heap(20015, 89, 15))

Then all the heaps will go to a single reducer responsible for the key 1

This works, but clearly not scalable...

Top K

Idea: Use X different keys to balance load (e.g. X = 2 here)

Map task 1: [10, 5, 3, 700, 18, 4] → (1, heap(700, 18, 10))

Map task 2: [16, 4, 523, 100, 88] → (1, heap(523, 100, 88))

Map task 3: [3, 3, 3, 3, 300, 3] → (2, heap(300, 3, 3))

Map task 4: [8, 15, 20015, 89] → (2, heap(20015, 89, 15))

Then all the heaps will (hopefully) go to X different reducers

Rinse and repeat (what’s the runtime complexity?)

