Big data systems

12/8/17
Today

Basic architecture
Two levels of scheduling
Spark overview
Basic architecture
Cluster Manager

Worker

Worker

Worker

Cluster

Client

Submit WordCount.java
Client

Cluster Manager

Wordcount driver

Wordcount executor

Wordcount executor

Cluster
Cluster Manager

Worker

Worker

Cluster

Client

Submit FindTopTweets.java

Wordcount driver

Wordcount executor

Wordcount executor
Cluster Manager

Cluster

Client

Launch executor

Launch driver

Wordcount driver

Wordcount executor

Wordcount executor
Basic architecture

Clients submit applications to the cluster manager
Cluster manager assigns cluster resources to applications
Each Worker launches containers for each application
Driver containers run main method of user program
Executor containers run actual computation
Two levels of scheduling

Cluster-level: Cluster manager assigns resources to applications

Application-level: Driver assigns *tasks* to run on executors

A *task* is a unit of execution that corresponds to one *partition* of your data

E.g. Running Spark on a YARN cluster

Hadoop YARN is a cluster scheduling framework

Spark is a distributed computing framework
Two levels of scheduling

Cluster-level: Cluster manager assigns resources to applications

Application-level: Driver assigns tasks to run on executors

A task is a unit of execution that corresponds to one partition of your data

What are some advantages of having two levels?

Applications need not be concerned with resource fairness

Cluster manager need not be concerned with individual tasks (too many)

Easy to implement priorities and preemption
Spark overview
What is Apache Spark?

Fast and general engine for big data processing

Fast to *run* code
 - In-memory data sharing
 - General computation graphs

Fast to *write* code
 - Rich APIs in Java, Scala, Python
 - Interactive shell
What is Apache Spark?

Spark SQL
structured data

Spark Streaming
real-time

MLlib
machine learning

GraphX
graph

Spark Core

What is Apache Spark?
Spark computation model

Recall that…

- **Map phase** defines how each machine processes its individual partition
- **Reduce phase** defines how to merge map outputs from previous phase

Most computation can be expressed in terms of these two phases

Spark expresses computation as a DAG of maps and reduces
Details for Job 0

Status: SUCCEEDED
Completed Stages: 2

- Event Timeline
- DAG Visualization

Map phase

Reduce phase

Synchronization barrier
More complicated DAG
Spark basics

Transformations express how to process a dataset

Actions express how to turn a transformed dataset into results

```scala
c.sc.textFile("declaration-of-independence.txt")
  .flatMap { line => line.split(" ") }
  .map { word => (word, 1) }
  .reduceByKey { case (counts1, counts2) => counts1 + counts2 }
  .collect()
```
Spark basics

Transformations express how to process a dataset

Actions express how to turn a transformed dataset into results

```scala
sc.textFile("declaration-of-independence.txt") // input data
  .flatMap { line => line.split(" ") }
  .map { word => (word, 1) }
  .reduceByKey { case (counts1, counts2) => counts1 + counts2 }
  .collect()
```
Spark basics

Transformations express how to process a dataset

Actions express how to turn a transformed dataset into results

```scala
sc.textFile("declaration-of-independence.txt")
  .flatMap { line => line.split(" ") } // transformations
  .map { word => (word, 1) }
  .reduceByKey { case (counts1, counts2) => counts1 + counts2 }
  .collect()
```
Spark basics

Transformations express how to process a dataset

Actions express how to turn a transformed dataset into results

```scala
sc.textFile("declaration-of-independence.txt")
  .flatMap { line => line.split(" ") }
  .map { word => (word, 1) }
  .reduceByKey { case (counts1, counts2) => counts1 + counts2 }
  .collect() // action
```
Transformations can be pipelined until we hit

- A synchronization barrier (e.g. reduce), or
- An action

Example:

data.map { ... }.filter { ... }.flatMap { ... }.groupByKey().count()

These three operations can all be run in the same task

This allows lazy execution; we don’t need to eagerly execute map
Spark optimization #2

In-memory caching: store intermediate results in memory to bypass disk access

Example:

```scala
val cached = data.map { ... }.filter { ... }.cache()
(1 to 100).foreach { i =>
  cached.reduceByKey { ... }.saveAsTextFile(...)
}
```

By *caching transformed data* in memory, we skip the map, the filter, and reading the original data from disk every iteration
Spark optimization #3

Reusing map outputs (aka shuffle files) allows Spark to skip map stages. Along with caching, this makes iterative workloads much faster.

Example:

```scala
val transformed = data.map { ... }.filter { ... }.reduceByKey { ... } 
transformed.collect() 
transformed.collect() // does not run map phase again
```
Recap

Spark is expressive because its computation model is a DAG

Spark is fast because of many optimizations, in particular:

- Pipelined transformations
- In-memory caching
- Reusing map outputs
Brainstorm: Top K

Top K is the problem of finding the largest K values from a set of numbers.

How would you express this as a distributed application?

In particular, what would the map and reduce phases look like?
Brainstorm: Top K

Top K is the problem of finding the largest K values from a set of numbers.

How would you express this as a distributed application?
In particular, what would the map and reduce phases look like?

Hint: use a heap...
Top K

Assuming that a set of K integers fit in memory…

Key idea...

Map phase: everyone maintains a heap of K elements
Reduce phase: merge the heaps until you’re left with one
Problem: What are the keys and values here?

No notion of key here, just assign one key to all the values (e.g. key = 1)

Map task 1: [10, 5, 3, 700, 18, 4] \(\rightarrow\) (1, heap(700, 18, 10))

Map task 2: [16, 4, 523, 100, 88] \(\rightarrow\) (1, heap(523, 100, 88))

Map task 3: [3, 3, 3, 3, 300, 3] \(\rightarrow\) (1, heap(300, 3, 3))

Map task 4: [8, 15, 20015, 89] \(\rightarrow\) (1, heap(20015, 89, 15))

Then all the heaps will go to a single reducer responsible for the key 1

This works, but clearly not scalable...
Top K

Idea: Use X different keys to balance load (e.g. X = 2 here)

Map task 1: [10, 5, 3, 700, 18, 4] → (1, heap(700, 18, 10))
Map task 2: [16, 4, 523, 100, 88] → (1, heap(523, 100, 88))
Map task 3: [3, 3, 3, 3, 300, 3] → (2, heap(300, 3, 3))
Map task 4: [8, 15, 20015, 89] → (2, heap(20015, 89, 15))

Then all the heaps will (hopefully) go to X different reducers

Rinse and repeat (what’s the runtime complexity?)