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 Users join specific discussion groups
— Each user runs a process on a different machine
— Messages (posts or replies) sent to all users in group

* Goal: Ensure replies follow posts
Non-goal: Sort posts and replies chronologically

» Can Lamport Clocks help here? wﬂi




Lamport Clock-based discussion board

Lamport Clock-based discussion board
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Lamport Clocks and causality

Vector clock: Introduction

* Problem generalizes: Replies to replies to posts
intermingle with replies to posts

» Lamport clock timestamps don’t capture causality

+ Given two timestamps C(a) and C(z), want to know
whether there’s a chain of events linking them:

a>b>.2>y>z

+ Chain of events captures replies to posts in our example

* One integer can’t order events in more than one process

* So, a Vector Clock (VC) is a vector of integers, one entry

for each process in the entire distributed system
— Label event e with VC(e) = [c4, C; ..., C,]

« Each entry ¢, is a count of events in process k
that causally precede e




Vector clock: Update rules

« Initially, all vectors are [0, O, ..., 0]

* Two update rules:

1. For each local event on process j, increment local entry c;
2. If process j receives message with vector [d,, d, ..., d,]:

— Set each local entry ¢, = max{c,, di}
— Increment local entry ¢;

Vector clock: Example

+ All processes’ VCs start at
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Comparing vector timestamps

* Rule for comparing vector timestamps:
—V(a) = V(b) when a, = b, for all k
—V(a) < V(b) when a, < b, for all kand V(a) # V(b)

+ Concurrency:
—a|| bifa;<b;and a;> b;, some , j

1"

Vector clocks establish causality

* V(w) <V(2) then there is a chain of events linked by
Happens-Before (=) between a and z

« If V(a) || V(w) then there is no such chain of events
between a and w
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Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion:

Vector clocks: V(a) < V(z)
Conclusion:a> ... 2> z

Vector clock timestamps tell us
about causal event relationships
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VC application:
Causally-ordered bulletin board system
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» User 0 posts, user 1 replies to O's post; user 2 observes

Today

1. Logical Time: Vector clocks

2. Distributed Global Snapshots
— Chandy-Lamport algorithm

— Reasoning about C-L: Consistent Cuts

Distributed Snapshots

* What is the state of a distributed system?

San Francisco

acct1 balance = New York
$1000 acct1 balance =

acct2 balance = $1000 .
$2000 acct2 balance =

$2000




Example of a global shapshot

G20 &

“H+EEBHAGSSARMIES
G20 HANGZHOU SUMMIT

fE-AM 20165984-58 HANGZHOU, CHINA 4-5 SEPTEMBER 2016

But that was easy

* In our system of world leaders, we were able to capture
their ‘state’ (i.e., likeness) easily

— Synchronized in space
— Synchronized in time

» How would we take a global snapshot if the leaders were
all at home?

* What if Obama told Trudeau that he should really put on a
shirt?

+ This message is part of our system state!

System model

* N processes in the system with no process failures
— Each process has some state it keeps track of

* There are two first-in, first-out, unidirectional channels
between every process pair P and Q

— Call them channel(P, Q) and channel(Q, P)
— The channel has state, too: the set of messages inside

— For today, assume all messages sent on channels arrive
intact and unduplicated

Global snapshot is global state

» Each distributed application has a number of processes
(leaders) running on a number of physical servers

» These processes communicate with each other via
channels

* Aglobal snapshot captures

1. The local states of each process (e.g., program
variables), along with

2. The state of each communication channel
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Why do we need snapshots?

Just synchronize local clocks?

» Checkpointing: Restart if the application fails

+ Collecting garbage: Remove objects that don’'t have any
references

 Detecting deadlocks: The snapshot can examine the
current application state

— Process A grabs Lock 1, B grabs 2, A waits for 2,
B waits for 1... ... ..

+ Other debugging: Alittle easier to work with than printf...
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» Each process records state at some agreed-upon time

» But system clocks skew, significantly with respect to CPU
process’ clock cycle

— And we wouldn’t record messages between
processes

» Do we need synchronization?

* What did Lamport realize about ordering events?
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System model: Graphical example

When is inconsistency possible?

» Let's represent process state as a set of colored fokens

» Suppose there are two processes, P and Q:

Process P: Process Q:

@ channel(P, Q) Q O
@ channel(Q, P) ‘ .

Correct global snapshot =
. Exactly one of each token !
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» Suppose we take snapshots only from a process
perspective

» Suppose shapshots happen independently at each
process

* Let’s look at the implications...
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Problem: Disappearing tokens

* P, Q put tokens into channels, then snapshot

This snapshot misses Y, B, and O tokens

P Q
Y= 00
® o2 ¢

P={G} Q={R,P}
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Problem: Duplicated tokens

* P snapshots, then sends Y
* Qreceives Y, then snapshots

This snapshot duplicates the Y token

P Q
Oxd Ve 0
® ® @

P={G,Y} Q={Y,R,P,B,0}
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Idea: “Marker” messages

+ What went wrong? We should have captured the state of
the channels as well

» Let's send a marker message A to track this state

— Distinct from other messages
— Channels deliver marker and other messages FIFO

27

Chandy-Lamport algorithm: Overview

» We'll designate one node (say P) to start the snapshot
— Without any steps in between, P:
1. Records its local state (“snapshots”)
2. Sends a marker on each outbound channel

* Nodes remember whether they have snapshotted

* On receiving a marker, a non-snapshotted node
performs steps (1) and (2) above
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Chandy-Lamport: Sending process

* P snapshots and sends marker, then sends Y

» Send Rule: Send marker on all outgoing channels
— Immediately after snapshot
— Before sending any further messages

P —— Q
() A

O 00
® ® o

snap: P={G, Y}
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Chandy-Lamport: Receiving process (1/2)

+ At the same time, Q sends orange token O
» Then, Q receives marker A
* Receive Rule (if not yet snapshotted)
— On receiving marker on channel ¢ record c’s state as empty

channel(P,Q) = {}
P Q

Ol lny” I Y6
® o— ®

P={G,Y} Q={R,P,B}
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Chandy-Lamport: Receiving process (2/2)

* Q sends marker to P
* P receives orange token O, then marker A
» Receive Rule (if already snapshotted):

— On receiving marker on c record c’s state: all msgs from ¢
since snapshot

channel(P,Q) 5 {}
P Q

O
Q«k@ N\ “//‘GO

P={G,Y} °“a““e"°’P’=€{;1°} Q={R,P,B}

Terminating a snapshot

+ Distributed algorithm: No one process decides when it
terminates

« Eventually, all processes have received a marker (and
recorded their own state)

» All processes have received a marker on all the N—1
incoming channels (and recorded their states)

 Later, a central server can gather the local states to build
a global snapshot
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2. Distributed Global Snapshots

Chandy-Lamport algorithm

— Reasoning about C-L: Consistent Cuts
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Inconsistent versus consistent cuts

+ Aconsistent cut is a cut that respects causality of

events
* Acut Cis consistent when:

— For each pair of events e and f, if:
1. fisinthe cut, and

2. e~>f,
— then, event e is also in the cut
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Global states and cuts

» Global state is a n-tuple of local states (one per process
and channel)

* Acutis a subset of the global history that contains an initial

prefix of each local state
— Therefore every cut is a natural global state
— Intuitively, a cut partitions the space time diagram along

the time axis

» Cut={The last event of each process, and message of
each channel that is in the cut }

Consistent versus inconsistent cuts
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C-L returns a consistent cut

C-L can’t return this inconsistent cut
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Friday Precept:
RPCs in Go

Monday Topic:
Eventual Consistency & Bayou
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