Vector Clocks and
Distributed Snapshots

Today

COS 418: Distributed Systems
Lecture 5

Kyle Jamieson

1. Logical Time: Vector clocks

2. Distributed Global Snapshots

Motivation: Distributed discussion board

Distributed discussion board

g question

Can't access paper review

| get this error when clicking on the link on 1

the instructors' angwer, where instruc

Thanks for letting me know - it was several

~ WEEK 2/5 - 2/11

v WEEK 2/12 - 2/18

Instr First office hours coming up ... 21317
Hi all -- as you reading SampleRate and Roofnet 8
for tomorrow's class, please begin to think
about your projects and

Instr Class is on today
I'm planning on holding class today, but
course understand if you have travel difficUities
for those of you comin

Can't access paper review
I get this error when clicking on the link on th
syllabus: "You don't have permission to view
submission #1. Enter

 Users join specific discussion groups
— Each user runs a process on a different machine
— Messages (posts or replies) sent to all users in group

* Goal: Ensure replies follow posts
Non-goal: Sort posts and replies chronologically

» Can Lamport Clocks help here? wﬂi

Lamport Clock-based discussion board

Lamport Clock-based discussion board

P1 Post
1 3
C(2)=2 Repl
P2 ()= eply
p3 C(3)=0
& oot
Want: Defer showing

Reply until P i
eply until Post arrives Time >

* Defer showing message if
C(message) > local clock + 1?

P1 Post
1 3
C(2)=2 Post

P2 i
33

p3 C(3)=0

& et

Want: Don’t defer!

Time >

* No! Gap could be due to other
independent posts

Lamport Clocks and causality

Vector clock: Introduction

* Problem generalizes: Replies to replies to posts
intermingle with replies to posts

» Lamport clock timestamps don’t capture causality

+ Given two timestamps C(a) and C(z), want to know
whether there’s a chain of events linking them:

a>b>.2>y>z

+ Chain of events captures replies to posts in our example

* One integer can’t order events in more than one process

* So, a Vector Clock (VC) is a vector of integers, one entry

for each process in the entire distributed system
— Label event e with VC(e) = [c4, C; ..., C,]

« Each entry ¢, is a count of events in process k
that causally precede e

Vector clock: Update rules

« Initially, all vectors are [0, O, ..., 0]

* Two update rules:

1. For each local event on process j, increment local entry c;
2. If process j receives message with vector [d,, d, ..., d,]:

— Set each local entry ¢, = max{c,, di}
— Increment local entry ¢;

Vector clock: Example

+ All processes’ VCs start at

[0, 0, 0] P1| |p2| |P3
aQ[1,0,0] gL
Applying local update rul bi@)‘ o
. ing local update rule
pplying p /2:0,o/c>[2,1,0]
gol220l
* Applying message rule LRog30[2,2,2]
— Local vector clock f
piggybacks on inter- | |

process messages
Physical time |

Comparing vector timestamps

* Rule for comparing vector timestamps:
—V(a) = V(b) when a, = b, for all k
—V(a) < V(b) when a, < b, for all kand V(a) # V(b)

+ Concurrency:
—a|| bifa;<b;and a;> b;, some , j

1"

Vector clocks establish causality

* V(w) <V(2) then there is a chain of events linked by
Happens-Before (=) between a and z

« If V(a) || V(w) then there is no such chain of events
between a and w

P1 P2 P3
[1,0,0]
2,0.0] X a010,1,0]
2,1,0
y (2,1,0]
z20[2,2,0]
N

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion:

Vector clocks: V(a) < V(z)
Conclusion:a> ... 2> z

Vector clock timestamps tell us
about causal event relationships

13

VC application:
Causally-ordered bulletin board system

VC, = (1,0,0) VC, = (1,1,0)

Py t
Original A “m
post
P,]
1s rep}/ﬁ' m*
VC,=(1,1,0) VG, = (1,1,0)
P,) Y

2 T i T
VG, =(0,0,0) vcg (1,0,0)

Physical time >

» User 0 posts, user 1 replies to O's post; user 2 observes

Today

1. Logical Time: Vector clocks

2. Distributed Global Snapshots
— Chandy-Lamport algorithm

— Reasoning about C-L: Consistent Cuts

Distributed Snapshots

* What is the state of a distributed system?

San Francisco

acct1 balance = New York
$1000 acct1 balance =

acct2 balance = $1000 .
$2000 acct2 balance =

$2000

Example of a global shapshot

G20 &

“H+EEBHAGSSARMIES
G20 HANGZHOU SUMMIT

fE-AM 20165984-58 HANGZHOU, CHINA 4-5 SEPTEMBER 2016

But that was easy

* In our system of world leaders, we were able to capture
their ‘state’ (i.e., likeness) easily

— Synchronized in space
— Synchronized in time

» How would we take a global snapshot if the leaders were
all at home?

* What if Obama told Trudeau that he should really put on a
shirt?

+ This message is part of our system state!

System model

* N processes in the system with no process failures
— Each process has some state it keeps track of

* There are two first-in, first-out, unidirectional channels
between every process pair P and Q

— Call them channel(P, Q) and channel(Q, P)
— The channel has state, too: the set of messages inside

— For today, assume all messages sent on channels arrive
intact and unduplicated

Global snapshot is global state

» Each distributed application has a number of processes
(leaders) running on a number of physical servers

» These processes communicate with each other via
channels

* Aglobal snapshot captures

1. The local states of each process (e.g., program
variables), along with

2. The state of each communication channel

20

Why do we need snapshots?

Just synchronize local clocks?

» Checkpointing: Restart if the application fails

+ Collecting garbage: Remove objects that don’'t have any
references

 Detecting deadlocks: The snapshot can examine the
current application state

— Process A grabs Lock 1, B grabs 2, A waits for 2,
B waits for 1...

+ Other debugging: Alittle easier to work with than printf...

21

» Each process records state at some agreed-upon time

» But system clocks skew, significantly with respect to CPU
process’ clock cycle

— And we wouldn’t record messages between
processes

» Do we need synchronization?

* What did Lamport realize about ordering events?

22

System model: Graphical example

When is inconsistency possible?

» Let's represent process state as a set of colored fokens

» Suppose there are two processes, P and Q:

Process P: Process Q:

@ channel(P, Q) Q O
@ channel(Q, P) ‘ .

Correct global snapshot =
. Exactly one of each token !

23

» Suppose we take snapshots only from a process
perspective

» Suppose shapshots happen independently at each
process

* Let’s look at the implications...

24

Problem: Disappearing tokens

* P, Q put tokens into channels, then snapshot

This snapshot misses Y, B, and O tokens

P Q
Y= 00
® o2 ¢

P={G} Q={R,P}

25

Problem: Duplicated tokens

* P snapshots, then sends Y
* Qreceives Y, then snapshots

This snapshot duplicates the Y token

P Q
Oxd Ve 0
® ® @

P={G,Y} Q={Y,R,P,B,0}

26

Idea: “Marker” messages

+ What went wrong? We should have captured the state of
the channels as well

» Let's send a marker message A to track this state

— Distinct from other messages
— Channels deliver marker and other messages FIFO

27

Chandy-Lamport algorithm: Overview

» We'll designate one node (say P) to start the snapshot
— Without any steps in between, P:
1. Records its local state (“snapshots”)
2. Sends a marker on each outbound channel

* Nodes remember whether they have snapshotted

* On receiving a marker, a non-snapshotted node
performs steps (1) and (2) above

28

Chandy-Lamport: Sending process

* P snapshots and sends marker, then sends Y

» Send Rule: Send marker on all outgoing channels
— Immediately after snapshot
— Before sending any further messages

P —— Q
() A

O 00
® ® o

snap: P={G, Y}

29

Chandy-Lamport: Receiving process (1/2)

+ At the same time, Q sends orange token O
» Then, Q receives marker A
* Receive Rule (if not yet snapshotted)
— On receiving marker on channel ¢ record c’s state as empty

channel(P,Q) = {}
P Q

Ol lny” I Y6
® o— ®

P={G,Y} Q={R,P,B}

30

Chandy-Lamport: Receiving process (2/2)

* Q sends marker to P
* P receives orange token O, then marker A
» Receive Rule (if already snapshotted):

— On receiving marker on c record c’s state: all msgs from ¢
since snapshot

channel(P,Q) 5 {}
P Q

O
Q«k@ N\ “//‘GO

P={G,Y} °“a““e"°’P’=€{;1°} Q={R,P,B}

Terminating a snapshot

+ Distributed algorithm: No one process decides when it
terminates

« Eventually, all processes have received a marker (and
recorded their own state)

» All processes have received a marker on all the N—1
incoming channels (and recorded their states)

 Later, a central server can gather the local states to build
a global snapshot

32

Today

1. Logical Time: Vector clocks

2. Distributed Global Snapshots

Chandy-Lamport algorithm

— Reasoning about C-L: Consistent Cuts

33

Inconsistent versus consistent cuts

+ Aconsistent cut is a cut that respects causality of

events
* Acut Cis consistent when:

— For each pair of events e and f, if:
1. fisinthe cut, and

2. e~>f,
— then, event e is also in the cut

35

Global states and cuts

» Global state is a n-tuple of local states (one per process
and channel)

* Acutis a subset of the global history that contains an initial

prefix of each local state
— Therefore every cut is a natural global state
— Intuitively, a cut partitions the space time diagram along

the time axis

» Cut={The last event of each process, and message of
each channel that is in the cut }

Consistent versus inconsistent cuts

(]

C

~

A B 1 D 1@
P1 ! o £
I /
1 Py £d
1 ’
I F)
P2 # !
(4
E | G \
\
\

I PN
N\

-—
’f

P3 1
H 1 \
1 \
! Inconsistent: G > D
but only D is in the cut

Consistent: H> F
and H in the cut

36

C-L returns a consistent cut

C-L can’t return this inconsistent cut

P1[—O o- /
1/ 7
1 4.7
y

A B Cc D "
P1[—0 O- 7
/
R4
F 4
P2 H
E I\ G C-Lcan't
\ return this cut
\
O \
P3 H \\l\/

Inconsistent: G > D
but only D is in the cut

i C-L ensures that if D is in the cut, then G is in the cut

/4
P2
7 16 \
<\
9 \\
\\
\\\

P3 o W

Friday Precept:
RPCs in Go

Monday Topic:
Eventual Consistency & Bayou

10

