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Time Synchronization and
Logical Clocks

COS 418: Distributed Systems
Lecture 4

Kyle Jamieson

Today
1. The need for time synchronization

2. “Wall clock time” synchronization

3. Logical Time: Lamport Clocks
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A distributed edit-compile workflow

• 2143 < 2144 è make doesn’t call compiler

3

Physical time à

Lack of time synchronization result –
a possible object file mismatch 

1. Quartz oscillator sensitive to temperature, 
age, vibration, radiation
– Accuracy ca. one part per million (one 

second of clock drift over 12 days)

2. The internet is:
• Asynchronous: arbitrary message delays
• Best-effort: messages don’t always arrive

4

What makes time synchronization hard?
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Today
1. The need for time synchronization

2. “Wall clock time” synchronization
– Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time: Lamport clocks
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• UTC is broadcast from radio stations on land and satellite 
(e.g., the Global Positioning System)

– Computers with receivers can synchronize their clocks 
with these timing signals

• Signals from land-based stations are accurate to about 
0.1−10 milliseconds

• Signals from GPS are accurate to about one microsecond
– Why can’t we put GPS receivers on all our computers?
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Just use Coordinated Universal Time?

• Suppose a server with an accurate clock (e.g., GPS-
disciplined crystal oscillator)
– Could simply issue an RPC to obtain the time:

• But this doesn’t account for network latency
– Message delays will have outdated server’s answer
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Synchronization to a time server

Client Server

Time ↓

1. Client sends a request packet, 
timestamped with its local clock T1

2. Server timestamps its receipt of 
the request T2 with its local clock

3. Server sends a response packet 
with its local clock T3 and T2

4. Client locally timestamps its 
receipt of the server’s response T4
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Cristian’s algorithm: Outline
Client Server

Time ↓

T1

T2

T4

T3

How the client can use these timestamps to 
synchronize its local clock to the server’s local clock?
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• Client samples round trip time 𝛿= 
𝛿req + 𝛿resp = (T4 − T1) − (T3 − T2)

• But client knows 𝛿, not 𝛿resp
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Cristian’s algorithm: Offset sample calculation
Client Server

Time ↓

T1

T2

T4

T3

𝛿req

𝛿resp

Assume: 𝛿req ≈ 𝛿resp

Goal: Client sets clock ßT3 + 𝛿resp

Client sets clock ßT3 + ½𝛿

Today
1. The need for time synchronization

2. “Wall clock time” synchronization
– Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time: Lamport clocks
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• A single time server can fail, blocking timekeeping 

• The Berkeley algorithm is a distributed algorithm 
for timekeeping

– Assumes all machines have equally-accurate local 
clocks

– Obtains average from participating computers 
and synchronizes clocks to that average
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Berkeley algorithm
• Master machine: polls L other machines using Cristian’s 

algorithm à { 𝜃i } (i = 1…L)

12

Berkeley algorithm

Master
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Today
1. The need for time synchronization

2. “Wall clock time” synchronization
– Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time: Lamport clocks
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• Enables clients to be accurately synchronized to UTC 
despite message delays

• Provides reliable service
– Survives lengthy losses of connectivity
– Communicates over redundant network paths

• Provides an accurate service
– Unlike the Berkeley algorithm, leverages 

heterogeneous accuracy in clocks
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The Network Time Protocol (NTP)

• Servers and time sources are arranged in layers (strata)

– Stratum 0: High-precision time sources themselves
• e.g., atomic clocks, shortwave radio time receivers

– Stratum 1: NTP servers directly connected to Stratum 0

– Stratum 2: NTP servers that synchronize with Stratum 1
• Stratum 2 servers are clients of Stratum 1 servers

– Stratum 3: NTP servers that synchronize with Stratum 2
• Stratum 3 servers are clients of Stratum 2 servers

• Users’ computers synchronize with Stratum 3 servers
15

NTP: System structure
• Messages between an NTP client and server are 

exchanged in pairs: request and response
• Use Cristian’s algorithm

• For ith message exchange with a particular server, calculate:
1. Clock offset 𝜃i from client to server
2. Round trip time 𝛿i between client and server

• Over last eight exchanges with server k, the client 
computes its dispersion 𝜎k = maxi 𝛿i − mini 𝛿i
– Client uses the server with minimum dispersion

16

NTP operation: Server selection
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• Client tracks minimum round trip time and associated 
offset over the last eight message exchanges (𝛿0, 𝜃0)

– 𝜃0 is the best estimate of offset: client adjusts its clock by 
𝜃0 to synchronize to server
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NTP operation : Clock offset calculation

T1

T3T2

T4

o The most accurate offset θ0 is measured at the lowest delay δ0 (apex of 

)()( 2314 TTTT −−−=δ
)]()[(2

1
4312 TTTT −+−=θ

Server

Client

Clock filter algorithm

x

θ0

22-Jul-07 13

o The most accurate offset θ0 is measured at the lowest delay δ0 (apex of 
the wedge scattergram).

o The correct time θ must lie within the wedge θ0 ± (δ − δ0)/2.

o The δ0 is estimated as the minimum of the last eight delay 
measurements and (θ0 ,δ0) becomes the peer update.

o Each peer update can be used only once and must be more recent 
than the previous update.

Round trip time 𝛿

Offset 𝜃 Each point 
represents 
one sample

𝛿0

𝜃0

NTP operation: How to change time
• Can’t just change time: Don’t want time to run backwards

– Recall the make example

• Instead, change the update rate for the clock
– Changes time in a more gradual fashion
– Prevents inconsistent local timestamps
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• Clocks on different systems will always behave differently
– Disagreement between machines can result in 

undesirable behavior

• NTP, Berkeley clock synchronization
– Rely on timestamps to estimate network delays
– 100s 𝝁s−ms accuracy
– Clocks never exactly synchronized

• Often inadequate for distributed systems
– Often need to reason about the order of events
– Might need precision on the order of ns
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Clock synchronization: Take-away points Today
1. The need for time synchronization

2. “Wall clock time” synchronization
– Cristian’s algorithm, Berkeley algorithm, NTP

3. Logical Time: Lamport clocks

20
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• A New York-based bank wants to make its transaction 
ledger database resilient to whole-site failures

• Replicate the database, keep one copy in sf, one in nyc

Motivation: Multi-site database replication

New York
San 

Francisco

21

• Replicate the database, keep one copy in sf, one in nyc
– Client sends query to the nearest copy
– Client sends update to both copies

The consequences of concurrent updates

“Deposit
$100”

“Pay 1%
interest”

$1,000
$1,000

$1,100
$1,111

$1,010
$1,110

Inconsistent replicas!
Updates should have been performed 

in the same order at each copy
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Idea: Logical clocks

• Landmark 1978 paper by Leslie Lamport

• Insight: only the events themselves matter 
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Idea: Disregard the precise clock time
Instead, capture just a “happens before” 

relationship between a pair of events

• Consider three processes: P1, P2, and P3

• Notation: Event a happens before event b (a à b)

Defining “happens-before” (à)

Physical time ↓

P1 P2
P3

24
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• Can observe event order at a single process

Defining “happens-before” (à)

Physical time ↓

P1 P2
P3

a

b

25

1. If same process and a occurs before b, then a à b

Defining “happens-before” (à)

Physical time ↓

P1 P2
P3

a

b
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1. If same process and a occurs before b, then a à b

2. Can observe ordering when processes communicate

Defining “happens-before” (à)

P1 P2
P3

a

b
c
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Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

Defining “happens-before” (à)

P1 P2
P3

a

b
c

28

Physical time ↓
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1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. Can observe ordering transitively

Defining “happens-before” (à)

P1 P2
P3

a

b
c
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Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. If a à b and b à c, then a à c

Defining “happens-before” (à)

P1 P2
P3

a

b
c
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Physical time ↓

• Not all events are related by à

• a, d not related by à so concurrent, written as a || d

Concurrent events
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P1

a

b
c

P2
P3

Physical time ↓

d

• We seek a clock time C(a) for every event a

• Clock condition: If a à b, then C(a) < C(b)

Lamport clocks: Objective

32

Plan: Tag events with clock times; use clock 
times to make distributed system correct
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• Each process Pi maintains a local clock Ci

1. Before executing an event, Ci ß Ci + 1

The Lamport Clock algorithm

P1
C1=0

a

b
c

P2
C2=0 P3

C3=0

33

Physical time ↓

1. Before executing an event a, Ci ß Ci + 1:

– Set event time C(a) ß Ci

The Lamport Clock algorithm

P1
C1=1

a

b
c

P2
C2=1 P3

C3=1C(a) = 1

34

Physical time ↓

1. Before executing an event b, Ci ß Ci + 1:

– Set event time C(b) ß Ci

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=1 P3

C3=1

C(b) = 2

C(a) = 1

35

Physical time ↓

1. Before executing an event b, Ci ß Ci + 1

2. Send the local clock in the message m

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=1 P3

C3=1

C(b) = 2

C(a) = 1

C(m) = 2

36

Physical time ↓



10

3. On process Pj receiving a message m:

– Set Cj and receive event time C(c) ß1 + max{ Cj, C(m) }

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=3 P3

C3=1

C(b) = 2

C(a) = 1

C(m) = 2

C(c) = 3

37

Physical time ↓

Lamport Timestamps: Ordering all events
• Break ties by appending the process number to each event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
– This is called a total ordering of events

38

• Recall multi-site database replication:
– San Francisco (P1) deposited $100:
– New York (P2) paid 1% interest:

Making concurrent updates consistent

P1 P2

$
%

39

Could we design a system that uses Lamport Clock 
total order to make multi-site updates consistent?

We reached an inconsistent state

• Client sends update to one replica site j
– Replica assigns it Lamport timestamp Cj . j

• Key idea: Place events into a sorted local queue
– Sorted by increasing Lamport timestamps

Totally-Ordered Multicast

P1

%
1.2

$
1.1Example: P1’s

local queue:

40

Goal: All sites apply updates in (same) Lamport clock order

ß Timestamps
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1. On receiving an update from client, broadcast to others 
(including yourself)

2. On receiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every 

replica (including yourself)

3. On receiving an acknowledgement:
– Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed 
from head of queue

Totally-Ordered Multicast (Almost correct)

41

• P1 queues $, P2 queues %

• P1 queues and ack’s %
– P1 marks % fully ack’ed

• P2 marks % fully ack’ed

Totally-Ordered Multicast (Almost correct)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

$
1.1

%
1.2

%

✔ ✔✔

(Ack’s to self not shown here)
42

✘ P2 processes %

1. On receiving an update from client, broadcast to others 
(including yourself)

2. On receiving or processing an update:
a) Add it to your local queue, if received update
b) Broadcast an acknowledgement message to every 

replica (including yourself) only from head of queue

3. On receiving an acknowledgement:
– Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed 
from head of queue

Totally-Ordered Multicast (Correct version)

43 44

Totally-Ordered Multicast (Correct version)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$
%

%

$

✔✔ ✔

(Ack’s to self not shown here)

$
1.1

✔
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• Does totally-ordered multicast solve the problem of 
multi-site replication in general?

• Not by a long shot!  

1. Our protocol assumed:
– No node failures
– No message loss
– No message corruption

2. All to all communication does not scale
3. Waits forever for message delays (performance?)

So, are we done?
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• Can totally-order events in a distributed system: that’s useful!
– We saw an application of Lamport clocks for totally-

ordered multicast

• But: while by construction, a à b implies C(a) < C(b),
– The converse is not necessarily true:

• C(a) < C(b) does not imply a à b (possibly, a || b)
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Take-away points: Lamport clocks

Can’t use Lamport clock timestamps to infer 
causal relationships between events

Wednesday Topic:
Vector Clocks &

Distributed Snapshots

Friday Precept:
RPCs in Go

47

Why global timing?
• Suppose there were an infinitely-precise and globally

consistent time standard

• That would be very handy.  For example:

1. Who got last seat on airplane?

2. Mobile cloud gaming: Which was first,A shoots B or vice-versa?

3. Does this file need to be recompiled?

48
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• P1 queues $, P2 queues %

• P1 queues and ack’s %
– P1 marks % fully ack’ed

• P2 marks % fully ack’ed
– P2 processes %

• P2 queues and ack’s $
– P2 processes $

• P1 marks $ fully ack’ed
– P1 processes $, then %

Totally-Ordered Multicast (Attempt #1)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

$
1.1

%
1.2

$
%

%

$

✔✔ ✔✔

Note: ack’s to self not shown here
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• P1 queues $, P2 queues %

• P1 queues %
• P2 queues and ack’s $

• P2 marks $ fully ack’ed
– P2 processes $

• P1 marks $ fully ack’ed
– P1 processes $
– P1 ack’s %

• P1 marks % fully ack’ed
– P1 processes %

• P2 marks % fully ack’ed
– P2 processes %

Totally-Ordered Multicast (Correct version)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$
%

%

$

✔✔ ✔

(Ack’s to self not shown here)

$
1.1

✔
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• Universal Time (UT1)
– In concept, based on astronomical observation of the 

sun at 0º longitude
– Known as “Greenwich Mean Time”

• International Atomic Time (TAI)
– Beginning of TAI is midnight on January 1, 1958
– Each second is 9,192,631,770 cycles of radiation 

emitted by a Cesium atom
– Has diverged from UT1 due to slowing of earth’s rotation

• Coordinated Universal Time (UTC)
– TAI + leap seconds, to be within 0.9 seconds of UT1
– Currently TAI − UTC = 36
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Time standards
• Suppose we are running a distributed order 

processing system

• Each process = a different user
• Each event = an order

• A user has seen all orders with V(order) < the 
user’s current vector
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VC application: Order processing


