
1

Network File Systems:
Naming, cache control, consistency

COS 418: Distributed Systems
Lecture 3

Michael Freedman

• Local file systems
– Disks are terrible abstractions: low-level blocks, etc.
– Directories, files, links much better

• Distributed file systems
– Make a remote file system look local
– Today: NFS (Network File System)

• Developed by Sun in 1980s, still used today!

2

Abstraction, abstraction, abstraction!

3 Goals: Make operations appear:
Local

Consistent

Fast

3

NFS: Naming indirection, abstraction

“Mount” remote FS (host:path) as local directories

jim jane joeann

usersstudents

usrvmuni x

Client Server 2

. . . nfs

Remote

mount
staff

big bobjon

people

Server 1

export

(root)

Remote

mount

. . .

x

(root) (root)

2

Virtual File System enables transparency

Interfaces matter

6

fd = open(“path”, flags)

read(fd, buf, n)

write(fd, buf, n)

close(fd)

Computer maintains state that maps fd to inode, offset

7

VFS / Local FS

fd = open(“path”, flags)

read(“path”, buf, n)

write(“path”, buf, n)

close(fd)

8

Stateless NFS: Strawman 1

3

fd = open(“path”, flags)

read(“path”, offset, buf, n)

write(“path”, offset, buf, n)

close(fd)

9

Stateless NFS: Strawman 2

10

Embed pathnames in syscalls?

• Should read refer to current dir1/f or dir2/f ?

• In UNIX, it’s dir2/f. How do we preserve in NFS?

fh = lookup(“path”, flags)

read(fh, offset, buf, n)

write(fh, offset, buf, n)

getattr(fh)

Implemented as Remote Procedure Calls (RPCs)

11

Stateless NFS (for real) NFS File Handles (fh)

• Opaque identifier provider to client from server

• Includes all info needed to identify file/object on server

volume ID | inode # | generation #

• It’s a trick: “store” server state at the client!

4

• With generation #’s, client 2 continues to interact with
“correct” file, even while client 1 has changed “ f ”

• This versioning appears in many contexts,
e.g., MVCC (multiversion concurrency control) in DBs

13

NFS File Handles (and versioning) Are remote == local?

• With local FS, read sees data from “most recent”
write, even if performed by different process
– “Read/write coherence”, linearizability

• Achieve the same with NFS?

– Perform all reads & writes synchronously to server
– Huge cost: high latency, low scalability

• And what if the server doesn’t return?
– Options: hang indefinitely, return ERROR

15

TANSTANFL
(There ain’t no such thing as a free lunch)

Caching GOOD
Lower latency, better scalability

Consistency HARDER
No longer one single copy of data,

to which all operations are serialized

16

5

Caching options
• Read-ahead: Pre-fetch blocks before needed

• Write-through: All writes sent to server

• Write-behind: Writes locally buffered, send as batch

• Consistency challenges:

– When client writes, how do others caching data get
updated? (Callbacks, …)

– Two clients concurrently write? (Locking, overwrite, …)

Should server maintain per-client state?
(which files open for reading/writing, what cached, …)

Stateful
• Pros

– Smaller requests
– Simpler req processing
– Better cache coherence,

file locking, etc.
• Cons

– Per-client state limits
scalability

– Fault-tolerance on state
required for correctness

Stateless
• Pros

– Easy server crash recovery
– No open/close needed
– Better scalability

• Cons
– Each request must be

fully self-describing
– Consistency is harder,

e.g., no simple file locking

• Hard state: Don’t lose data
– Durability: State not lost

• Write to disk, or cold remote backup
• Exact replica or recoverable (DB: checkpoint + op log)

– Availability (liveness): Maintain online replicas

• Soft state: Performance optimization
– Traditionally: Lose at will

– More recently: Yes for correctness (safety), but how does
recovery impact availability (liveness)?

19

It’s all about the state, ’bout the state, …

• Stateless protocol
– Recovery easy: crashed == slow server
– Messages over UDP (unencrypted)

• Read from server, caching in NFS client

• NFSv2 was write-through (i.e., synchronous)

• NFSv3 added write-behind
– Delay writes until close or fsync from application

20

NFS

6

• Write-to-read semantics too expensive
– Give up caching, require server-side state, or …

• Close-to-open “session” semantics
– Ensure an ordering, but only between application
close and open, not all writes and reads.

– If B opens after A closes, will see A’s writes
– But if two clients open at same time? No guarantees

• And what gets written? “Last writer wins”

21

Exploring the consistency tradeoffs

• Recall challenge: Potential concurrent writers

• Cache validation:
– Get file’s last modification time from server: getattr(fh)
– Both when first open file, then poll every 3-60 seconds

• If server’s last modification time has changed, flush dirty blocks
and invalidate cache

• When reading a block
– Validate: (current time – last validation time < threshold)

– If valid, serve from cache. Otherwise, refresh from server
22

NFS Cache Consistency

• “Mixed reads” across version
– A reads block 1-10 from file, B replaces blocks 1-20,

A then keeps reading blocks 11-20.

• Assumes synchronized clocks. Not really correct.
– We’ll learn about the notion of logical clocks later

• Writes specified by offset
– Concurrent writes can change offset

– More on this later with techniques for conflict resolution

23

Some problems…

When statefulness helps

Callbacks
Locks + Leases

24

7

• Recall challenge: Potential concurrent writers

• Timestamp invalidation: NFS

• Callback invalidation: AFS, Sprite, Spritely NFS
• Server tracks all clients that have opened file
• On write, sends notification to clients if file changes.

Client invalidates cache.

• Leases: Gray & Cheriton ’89, NFSv4

25

NFS Cache Consistency

• A client can request a lock over a file / byte range
– Advisory: Well-behaved clients comply

– Mandatory: Server-enforced

• Client performs writes, then unlocks

• Problem: What if the client crashes?
– Solution: Keep-alive timer: Recover lock on timeout

• Problem: what if client alive but network route failed?

– Client thinks it has lock, server gives lock to other: “Split brain”

26

Locks

Leases

• Client obtains lease on file for read or write
– “A lease is a ticket permitting an activity;

the lease is valid until some expiration time.”

• Read lease allows client to cache clean data
– Guarantee: no other client is modifying file

• Write lease allows safe delayed writes
– Client can locally modify than batch writes to server
– Guarantee: no other client has file cached

• Client requests a lease
– May be implicit, distinct from file locking
– Issued lease has file version number for cache coherence

• Server determines if lease can be granted
– Read leases may be granted concurrently
– Write leases are granted exclusively

• If conflict exists, server may send eviction notices
– Evicted write lease must write back
– Evicted read leases must flush/disable caching
– Client acknowledges when completed

28

Using leases

8

Bounded lease term simplifies recovery

• Before lease expires, client must renew lease

• Client fails while holding a lease?
– Server waits until the lease expires, then unilaterally reclaims
– If client fails during eviction, server waits then reclaims

• Server fails while leases outstanding? On recovery:
– Wait lease period + clock skew before issuing new leases
– Absorb renewal requests and/or writes for evicted leases

Requirements dictate design

30

Case Study: AFS

Andrew File System (CMU 1980s-)
• Scalability was key design goal

– Many servers, 10,000s of users

• Observations about workload
– Reads much more common than writes
– Concurrent writes are rare / writes between users disjoint

• Interfaces in terms of files, not blocks
– Whole-file serving: entire file and directories
– Whole-file caching: clients cache files to local disk

• Large cache and permanent, so persists across reboots

AFS: Consistency
• Consistency: Close-to-open consistency

– No mixed writes, as whole-file caching / whole-file overwrites

– Update visibility: Callbacks to invalidate caches

• What about crashes or partitions?
– Client invalidates cache iff

• Recovering from failure

• Regular liveness check to server (heartbeat) fails.

– Server assumes cache invalidated if callbacks fail +
heartbeat period exceeded

