

Ex: Word count using partial aggregation

- 1. Compute word counts from individual files
- 2. Then merge intermediate output
- 3. Compute word count on merged outputs

How to handle machine failure?

- What when machines fail?
 How do we provide fault tolerance?
- Strawman scheme:
 Synchronous snapshot checkpointing
 - 1. Stop the world
 - 2. Write each machines' state to disk

The challenge of stream processing

- Large amounts of data to process in real time
- Examples
 - Social network trends (#trending)
 - Intrusion detection systems (networks, datacenters)
 - Sensors: Detect earthquakes by correlating vibrations of millions of smartphones
 - Fraud detection
 - Visa: 2000 txn / sec on average, peak ~47,000 / sec

29

31

Scale "up" Tuple-by-Tuple Micro-batch Lower Latency Higher Latency Lower Throughput Higher Throughput Why? Each read/write is an system call into kernel. More cycles performing kernel/application transitions (context switches), less actually spent processing data.

State complicates parallelization • Aggregations: - Need to join results across parallel computations Sum Filter CtoF Cnt Sum Avg Filter CtoF Cnt Sum CtoF Filter Cnt 35

Parallelization complicates fault-tolerance • Aggregations: - Need to join results across parallel computations Sum CtoF Filter Cnt Sum Avg Filter CtoF Cnt - blocks -Sum CtoF Filter Cnt 36

A Tale of Four Frameworks

- 1. Record acknowledgement (Storm)
- 2. Micro-batches (Spark Streaming, Storm Trident)
- 3. Transactional updates (Google Cloud dataflow)
- 4. Distributed snapshots (Flink)

Apache Storm

- · Architectural components
 - Data: streams of tuples, e.g., Tweet = <Author, Msg, Time>
 - Sources of data: "spouts"
 - Operators to process data: "bolts"
 - Topology: Directed graph of spouts & bolts

Fault tolerance via record acknowledgement (Apache Storm -- at least once semantics)

["the cow jumped over the moon"]

["over", 1]

["the", 2]

42

- Goal: Ensure each input "fully processed"
- Approach: DAG / tree edge tracking
 - Record edges that get created as tuple is processed.
 - Wait for all edges to be marked done
 - Inform source (spouts) of data when complete; otherwise, they resend tuple.
- Challenge: "at least once" means:
 - Operators (bolts) can receive tuple > once
 - Replay can be out-of-order
 - ... application needs to handle.

Fault tolerance via record acknowledgement (Apache Storm -- at least once semantics)

["the cow jumped over the moon"] ["the", 1]

["cow", 1]

jumped", i

["over", 1]

["the", 2]

- Spout assigns new unique ID to each tuple
- When bolt "emits" dependent tuple, it informs system of dependency (new edge)
- When a bolt finishes processing tuple, it calls ACK (or can FAIL)
- Acker tasks:
 - Keep track of all emitted edges and receive ACK/FAIL messages from bolts.
 - When messages received about all edges in graph, inform originating spout
- Spout garbage collects tuple or retransmits
- Note: Best effort delivery by not generating dependency on downstream tuples.

Fault tolerance via micro batches (Apache Spark Streaming, Storm Trident)

- Can build on batch frameworks (Spark) and tuple-by-tuple (Storm)
 - Tradeoff between throughput (higher) and latency (higher)
- · Each micro-batch may succeed or fail
 - Original inputs are replicated (memory, disk)
 - At failure, latest micro-batch can be simply recomputed (trickier if stateful)
- · DAG is a pipeline of transformations from micro-batch to micro-batch
 - Lineage info in each RDD specifies how generated from other RDDs
- To support failure recovery:
 - Occasionally checkpoints RDDs (state) by replicating to other nodes
 - To recover: another worker (1) gets last checkpoint, (2) determines upstream dependencies, then (3) starts recomputing using those usptream dependencies starting at checkpoint (downstream might filter)

Fault Tolerance via transactional updates (Google Cloud Dataflow)

- · Computation is long-running DAG of continuous operators
- · For each intermediate record at operator
 - Create commit record including input record, state update, and derived downstream records generated
 - Write commit record to transactional log / DB
- On failure, replay log to
 - Restore a consistent state of the computation
 - Replay lost records (further downstream might filter)
- Requires: High-throughput writes to distributed store

Fault Tolerance via distributed snapshots (Apache Flink)

- Rather than log each record for each operator, take system-wide snapshots
- · Snapshotting:
 - Determine consistent snapshot of system-wide state (includes in-flight records and operator state)
 - Store state in durable storage
- Recover:
 - Restoring latest snapshot from durable storage
 - Rewinding the stream source to snapshot point, and replay inputs
- Algorithm is based on Chandy-Lamport distributed snapshots, but also captures stream topology

Fault Tolerance via distributed snapshots (Apache Flink)

 Use markers (barriers) in the input data stream to tell downstream operators when to consistently snapshot

Optimizing stream processing

- Keeping system performant:
 - Careful optimizations of DAG
 - Scheduling: Choice of parallelization, use of resources
 - Where to place computation

- ...

• Often, many queries and systems using same cluster concurrently: "Multi-tenancy"