
1

Big Data Processing

COS 418: Distributed Systems
Lecture 21

Michael Freedman

Data-Parallel Computation

2

3

Ex: Word count using partial aggregation

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs

4

Putting it together…

map combine partition reduce

2

5

Synchronization
Barrier

6

Fault Tolerance in MapReduce

• Map worker writes intermediate output to local disk,
separated by partitioning. Once completed, tells
master node.

• Reduce worker told of location of map task outputs,
pulls their partition’s data from each mapper, execute
function across data

• Note:
– “All-to-all” shuffle b/w mappers and reducers
– Written to disk (“materialized”) b/w each stage

Graph-Parallel Computation

7

Graphs are Everywhere

U
se
rs

Movie
s

Netflix

Collaborative	Filtering

Do
cs

Words

Wiki

Text	Analysis

Social	Network

Probabilistic	Analysis

3

Properties of Graph Parallel Algorithms

Dependency
Graph

Iterative
Computation

What I Like

What My
Friends Like

Factored	
Computation	

Sl
ow

Pr
oc
es
so
r

Iterative Algorithms
• MR doesn’t efficiently express iterative algorithms:

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

Ba
rr
ie
r

Ba
rr
ie
r

Ba
rr
ie
r

MapAbuse: Iterative MapReduce
• System is not optimized for iteration:

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Data

Data

Data

Data

Data

Data

Data

CPU 1

CPU 2

CPU 3

Iterations

D
isk Penalty

D
isk Penalty

D
isk Penalty

Startup Penalty

Startup Penalty

Startup Penalty

The GraphLab Framework

Consistency	Model

Graph	Based
Data	Representation

Update	Functions
User	Computation

12

4

Data Graph
Data	is	associated	with	both	vertices	and	edges

Vertex	Data:
• User	profile
• Current	interests	estimates

Edge	Data:
• Relationship	
(friend,	classmate,	relative)

Graph:
• Social	Network

13

Distributed Data Graph

14

Partition	the	graph	across	multiple	machines:

• Ghost vertices maintain adjacency structure
and replicate remote data.

“ghost”	vertices

15

Distributed Data Graph

Pagerank (scope)		{
//	Update	the	current	vertex	data

//	Reschedule	Neighbors	if	needed
if	vertex.PageRank changes	then	

reschedule_all_neighbors;	
}

vertex.PageRank = α
ForEach inPage:

vertex.PageRank += (1−α)× inPage.PageRank

Update Function
A user-defined program, applied to a

vertex; transforms data in scope of vertex

16

Selectively triggers
computation at neighbors

5

Pagerank (scope)		{
//	Update	the	current	vertex	data

//	Reschedule	Neighbors	if	needed
if	vertex.PageRank changes	then	

reschedule_all_neighbors;	
}

vertex.PageRank = α
ForEach inPage:

vertex.PageRank += (1−α)× inPage.PageRank

Update Function
A user-defined program, applied to a

vertex; transforms data in scope of vertex

17

Selectively triggers
computation at neighbors

Update function applied (asynchronously)
in parallel until convergence

Many schedulers available to prioritize computation

How to handle machine failure?

• What when machines fail?
How do we provide fault tolerance?

• Strawman scheme:
Synchronous snapshot checkpointing

1. Stop the world

2. Write each machines’ state to disk

Step 1. Atomically, one initiator:
1. Turns red
2. Records its own state
3. Sends marker to neighbors

Step 2. On receiving marker.
non-red node atomically:

1. Turns red,
2. Records its own state,
3. Sends markers along all outgoing

channels

First-in, first-out
channels

between nodes

Chandy-Lamport checkpointing

Stream Processing

20

6

• Single node
– Read data from socket
– Process

– Write output

21

Simple stream processing

• Convert Celsius temperature to Fahrenheit
– Stateless operation: emit (input * 9 / 5) + 32

22

Examples: Stateless conversion

CtoF

• Function can filter inputs
– if (input > threshold) { emit input }

23

Examples: Stateless filtering

Filter

• Compute EWMA of Fahrenheit temperature
– new_temp = ⍺ * (CtoF(input)) + (1- ⍺) * last_temp
– last_temp = new_temp
– emit new_temp

24

Examples: Stateful conversion

EWMA

7

• E.g., Average value per window
– Window can be # elements (10) or time (1s)

– Windows can be disjoint (every 5s)

– Windows can be “tumbling” (5s window every 1s)

25

Examples: Aggregation (stateful)

Avg

26

Stream processing as chain

AvgCtoF Filter

27

Stream processing as directed graph

AvgCtoF Filter

KtoF
sensor
type 2

sensor
type 1 alerts

storage

Enter “BIG DATA”

28

8

• Large amounts of data to process in real time

• Examples
– Social network trends (#trending)

– Intrusion detection systems (networks, datacenters)
– Sensors: Detect earthquakes by correlating

vibrations of millions of smartphones
– Fraud detection

• Visa: 2000 txn / sec on average, peak ~47,000 / sec

29

The challenge of stream processing

Tuple-by-Tuple
input ← read
if (input > threshold) {

emit input
}

Micro-batch
inputs ← read
out = []
for input in inputs {

if (input > threshold) {
out.append(input)

}
}
emit out

30

Scale “up”

Tuple-by-Tuple
Lower Latency

Lower Throughput

Micro-batch
Higher Latency

Higher Throughput

31

Scale “up”

Why? Each read/write is an system call into kernel.
More cycles performing kernel/application transitions

(context switches), less actually spent processing data.

32

Scale “out”

9

33

Stateless operations: trivially parallelized

C F

C F

C F

• Aggregations:
– Need to join results across parallel computations

34

State complicates parallelization

AvgCtoF Filter

• Aggregations:
– Need to join results across parallel computations

35

State complicates parallelization

Avg

CtoF

CtoF

CtoF

Sum
Cnt

Sum
Cnt

Sum
Cnt

Filter

Filter

Filter

• Aggregations:
– Need to join results across parallel computations

36

Parallelization complicates fault-tolerance

Avg

CtoF

CtoF

CtoF

Sum
Cnt

Sum
Cnt

Sum
Cnt

Filter

Filter

Filter

- blocks -

10

• Compute trending keywords
– E.g.,

37

Can parallelize joins

Sum
/ key

Sum
/ key

Sum
/ key

Sum
/ key

Sort top-k

- blocks -

portion tweets

portion tweets

portion tweets

38

Can parallelize joins

Sum
/ key

Sum
/ key top-k

Sum
/ key

portion tweets

portion tweets

portion tweets

Sum
/ key

Sum
/ key

Sum
/ key top-k

top-k

Sort

Sort

Sort

Hash
partitioned

tweets

39

Parallelization complicates fault-tolerance

Sum
/ key

Sum
/ key top-k

Sum
/ key

portion tweets

portion tweets

portion tweets

Sum
/ key

Sum
/ key

Sum
/ key top-k

top-k

Sort

Sort

Sort

Hash
partitioned

tweets A Tale of Four Frameworks

1. Record acknowledgement (Storm)

2. Micro-batches (Spark Streaming, Storm Trident)

3. Transactional updates (Google Cloud dataflow)

4. Distributed snapshots (Flink)

40

11

• Architectural components
– Data: streams of tuples, e.g., Tweet = <Author, Msg, Time>
– Sources of data: “spouts”
– Operators to process data: “bolts”
– Topology: Directed graph of spouts & bolts

41

Apache Storm
• Goal: Ensure each input ”fully processed”

• Approach: DAG / tree edge tracking
– Record edges that get created as tuple is

processed.

– Wait for all edges to be marked done

– Inform source (spouts) of data when
complete; otherwise, they resend tuple.

• Challenge: “at least once” means:
– Operators (bolts) can receive tuple > once

– Replay can be out-of-order

– ... application needs to handle.
42

Fault tolerance via record acknowledgement
(Apache Storm -- at least once semantics)

• Spout assigns new unique ID to each tuple

• When bolt “emits” dependent tuple, it
informs system of dependency (new edge)

• When a bolt finishes processing tuple, it
calls ACK (or can FAIL)

• Acker tasks:
– Keep track of all emitted edges and

receive ACK/FAIL messages from bolts.
– When messages received about all edges

in graph, inform originating spout

• Spout garbage collects tuple or retransmits

• Note: Best effort delivery by not generating
dependency on downstream tuples.

43

Fault tolerance via record acknowledgement
(Apache Storm -- at least once semantics)

• Split stream into series of small, atomic
batch jobs (each of X seconds)

• Process each individual batch using
Spark “batch” framework

– Akin to in-memory MapReduce

• Emit each micro-batch result

– RDD = “Resilient Distributed Data”

44

Apache Spark Streaming:
Discretized Stream Processing

Spark

Spark
Streaming

batches of X
seconds

live data
stream

processed
results

12

• Can build on batch frameworks (Spark) and tuple-by-tuple (Storm)
– Tradeoff between throughput (higher) and latency (higher)

• Each micro-batch may succeed or fail
– Original inputs are replicated (memory, disk)
– At failure, latest micro-batch can be simply recomputed (trickier if stateful)

• DAG is a pipeline of transformations from micro-batch to micro-batch
– Lineage info in each RDD specifies how generated from other RDDs

• To support failure recovery:
– Occasionally checkpoints RDDs (state) by replicating to other nodes
– To recover: another worker (1) gets last checkpoint, (2) determines

upstream dependencies, then (3) starts recomputing using those
usptream dependencies starting at checkpoint (downstream might filter)

45

Fault tolerance via micro batches
(Apache Spark Streaming, Storm Trident)

• Computation is long-running DAG of continuous operators

• For each intermediate record at operator
– Create commit record including input record, state update, and

derived downstream records generated
– Write commit record to transactional log / DB

• On failure, replay log to
– Restore a consistent state of the computation
– Replay lost records (further downstream might filter)

• Requires: High-throughput writes to distributed store
46

Fault Tolerance via transactional updates
(Google Cloud Dataflow)

• Rather than log each record for each operator,
take system-wide snapshots

• Snapshotting:
– Determine consistent snapshot of system-wide state

(includes in-flight records and operator state)
– Store state in durable storage

• Recover:
– Restoring latest snapshot from durable storage
– Rewinding the stream source to snapshot point, and replay inputs

• Algorithm is based on Chandy-Lamport distributed snapshots,
but also captures stream topology

47

Fault Tolerance via distributed snapshots
(Apache Flink)

• Use markers (barriers) in the input data stream to tell
downstream operators when to consistently snapshot

Fault Tolerance via distributed snapshots
(Apache Flink)

48

13

• Keeping system performant:
– Careful optimizations of DAG

– Scheduling: Choice of parallelization, use of resources

– Where to place computation

– …

• Often, many queries and systems using same
cluster concurrently: “Multi-tenancy”

49

Optimizing stream processing

