
1

Big Data Processing

COS 418: Distributed Systems
Lecture 21

Michael Freedman

Data-Parallel Computation
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Ex: Word count using partial aggregation

1. Compute word counts from individual files

2. Then merge intermediate output

3. Compute word count on merged outputs
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Putting it together…

map combine partition reduce
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Synchronization 
Barrier
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Fault Tolerance in MapReduce

• Map worker writes intermediate output to local disk, 
separated by partitioning. Once completed, tells 
master node.

• Reduce worker told of location of map task outputs, 
pulls their partition’s data from each mapper, execute 
function across data

• Note:
– “All-to-all” shuffle b/w mappers and reducers
– Written to disk (“materialized”) b/w each stage

Graph-Parallel Computation
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Graphs are Everywhere
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Properties of Graph Parallel Algorithms
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Iterative Algorithms
• MR doesn’t efficiently express iterative algorithms:
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MapAbuse: Iterative MapReduce
• System is not optimized for iteration:
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The GraphLab Framework

Consistency	Model

Graph	Based
Data	Representation

Update	Functions
User	Computation
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Data Graph
Data	is	associated	with	both	vertices	and	edges

Vertex	Data:
• User	profile
• Current	interests	estimates

Edge	Data:
• Relationship	
(friend,	classmate,	relative)

Graph:
• Social	Network
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Distributed Data Graph
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Partition	the	graph	across	multiple	machines:

• Ghost vertices maintain adjacency structure 
and replicate remote data.

“ghost”	vertices
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Distributed Data Graph

Pagerank (scope)		{
//	Update	the	current	vertex	data

//	Reschedule	Neighbors	if	needed
if	vertex.PageRank changes	then	

reschedule_all_neighbors;	
}

vertex.PageRank = α
ForEach inPage: 

vertex.PageRank += (1−α)× inPage.PageRank

Update Function
A user-defined program, applied to a 

vertex; transforms data in scope of vertex
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Selectively triggers 
computation at neighbors
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Pagerank (scope)		{
//	Update	the	current	vertex	data

//	Reschedule	Neighbors	if	needed
if	vertex.PageRank changes	then	

reschedule_all_neighbors;	
}

vertex.PageRank = α
ForEach inPage: 

vertex.PageRank += (1−α)× inPage.PageRank

Update Function
A user-defined program, applied to a 

vertex; transforms data in scope of vertex
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Selectively triggers 
computation at neighbors

Update function applied (asynchronously) 
in parallel until convergence

Many schedulers available to prioritize computation

How to handle machine failure?

• What when machines fail?  
How do we provide fault tolerance?

• Strawman scheme: 
Synchronous snapshot checkpointing

1. Stop the world

2. Write each machines’ state to disk

Step 1. Atomically, one initiator:
1. Turns red
2. Records its own state
3. Sends marker to neighbors

Step 2. On receiving marker.                    
non-red node atomically: 

1. Turns red,
2. Records its own state, 
3. Sends markers along all outgoing 

channels

First-in, first-out 
channels 

between nodes

Chandy-Lamport checkpointing

Stream Processing

20
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• Single node
– Read data from socket
– Process

– Write output

21

Simple stream processing

• Convert Celsius temperature to Fahrenheit
– Stateless operation:   emit (input * 9 / 5) + 32
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Examples:  Stateless conversion

CtoF

• Function can filter inputs
– if (input > threshold)  {  emit input }
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Examples:  Stateless filtering

Filter

• Compute EWMA of Fahrenheit temperature
– new_temp = ⍺ * ( CtoF(input) ) + (1- ⍺) * last_temp
– last_temp = new_temp
– emit new_temp
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Examples:  Stateful conversion

EWMA
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• E.g., Average value per window 
– Window can be # elements (10) or time (1s)

– Windows can be disjoint (every 5s)

– Windows can be “tumbling” (5s window every 1s)
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Examples:  Aggregation (stateful)

Avg
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Stream processing as chain

AvgCtoF Filter
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Stream processing as directed graph

AvgCtoF Filter

KtoF
sensor
type 2

sensor 
type 1 alerts

storage

Enter “BIG DATA”

28
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• Large amounts of data to process in real time

• Examples
– Social network trends (#trending)

– Intrusion detection systems (networks, datacenters)
– Sensors:  Detect earthquakes by correlating 

vibrations of millions of smartphones
– Fraud detection 

• Visa:  2000 txn / sec on average, peak ~47,000 / sec
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The challenge of stream processing

Tuple-by-Tuple
input ← read
if (input > threshold)  {  

emit input 
}

Micro-batch
inputs ← read
out = []
for input in inputs {

if (input > threshold) {
out.append(input)

}
}
emit out
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Scale “up”

Tuple-by-Tuple
Lower Latency

Lower Throughput

Micro-batch
Higher Latency

Higher Throughput
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Scale “up”

Why?  Each read/write is an system call into kernel.  
More cycles performing kernel/application transitions 

(context switches), less actually spent processing data.

32

Scale “out”
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Stateless operations: trivially parallelized

C F

C F

C F

• Aggregations:
– Need to join results across parallel computations
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State complicates parallelization

AvgCtoF Filter

• Aggregations:
– Need to join results across parallel computations
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State complicates parallelization

Avg
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CtoF
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Filter

Filter

Filter

• Aggregations:
– Need to join results across parallel computations
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Parallelization complicates fault-tolerance
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• Compute trending keywords
– E.g., 

37

Can parallelize joins

Sum
/ key

Sum
/ key

Sum
/ key

Sum
/ key

Sort top-k

- blocks -

portion tweets

portion tweets

portion tweets
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Can parallelize joins
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Parallelization complicates fault-tolerance

Sum
/ key
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partitioned

tweets A Tale of Four Frameworks

1. Record acknowledgement (Storm)

2. Micro-batches (Spark Streaming, Storm Trident)

3. Transactional updates (Google Cloud dataflow)

4. Distributed snapshots (Flink)

40
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• Architectural components
– Data:  streams of tuples, e.g., Tweet = <Author, Msg, Time>
– Sources of data: “spouts”
– Operators to process data: “bolts”
– Topology: Directed graph of spouts & bolts
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Apache Storm
• Goal: Ensure each input ”fully processed”

• Approach:  DAG / tree edge tracking
– Record edges that get created as tuple is 

processed. 

– Wait for all edges to be marked done

– Inform source (spouts) of data when 
complete;  otherwise, they resend tuple.

• Challenge:  “at least once” means:
– Operators (bolts) can receive tuple > once

– Replay can be out-of-order

– ... application needs to handle.
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Fault tolerance via record acknowledgement
(Apache Storm -- at least once semantics)

• Spout assigns new unique ID to each tuple

• When bolt “emits” dependent tuple, it 
informs system of dependency (new edge) 

• When a bolt finishes processing tuple, it 
calls ACK (or can FAIL)

• Acker tasks:
– Keep track of all emitted edges and 

receive ACK/FAIL messages from bolts.  
– When messages received about all edges 

in graph, inform originating spout

• Spout garbage collects tuple or retransmits

• Note:  Best effort delivery by not generating 
dependency on downstream tuples.

43

Fault tolerance via record acknowledgement
(Apache Storm -- at least once semantics)

• Split stream into series of small, atomic 
batch jobs (each of X seconds)

• Process each individual batch using 
Spark “batch” framework 

– Akin to in-memory MapReduce 

• Emit each micro-batch result

– RDD = “Resilient Distributed Data”

44

Apache Spark Streaming:
Discretized Stream Processing

Spark

Spark
Streaming

batches of X 
seconds

live data 
stream

processed 
results
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• Can build on batch frameworks (Spark) and tuple-by-tuple (Storm)
– Tradeoff between throughput (higher) and latency (higher)

• Each micro-batch may succeed or fail 
– Original inputs are replicated (memory, disk)
– At failure, latest micro-batch can be simply recomputed (trickier if stateful)

• DAG is a pipeline of transformations from micro-batch to micro-batch
– Lineage info in each RDD specifies how generated from other RDDs

• To support failure recovery:
– Occasionally checkpoints RDDs (state) by replicating to other nodes
– To recover: another worker (1) gets last checkpoint, (2) determines 

upstream dependencies, then (3) starts recomputing using those 
usptream dependencies starting at checkpoint (downstream might filter)
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Fault tolerance via micro batches
(Apache Spark Streaming, Storm Trident)

• Computation is long-running DAG of continuous operators

• For each intermediate record at operator
– Create commit record including input record, state update, and 

derived downstream records generated
– Write commit record to transactional log / DB

• On failure, replay log to 
– Restore a consistent state of the computation
– Replay lost records (further downstream might filter)

• Requires:  High-throughput writes to distributed store
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Fault Tolerance via transactional updates 
(Google Cloud Dataflow)

• Rather than log each record for each operator,                          
take system-wide snapshots

• Snapshotting:
– Determine consistent snapshot of system-wide state              

(includes in-flight records and operator state)
– Store state in durable storage

• Recover:
– Restoring latest snapshot from durable storage
– Rewinding the stream source to snapshot point, and replay inputs

• Algorithm is based on Chandy-Lamport distributed snapshots, 
but also captures stream topology
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Fault Tolerance via distributed snapshots
(Apache Flink)

• Use markers (barriers) in the input data stream to tell 
downstream operators when to consistently snapshot

Fault Tolerance via distributed snapshots
(Apache Flink)

48
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• Keeping system performant:
– Careful optimizations of DAG

– Scheduling:  Choice of parallelization, use of resources

– Where to place computation

– …

• Often, many queries and systems using same 
cluster concurrently:  “Multi-tenancy”
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Optimizing stream processing


