

Bitcoin: 10,000 foot view

Public

- Transactions are signed: $txn = Sign_{Alice} (BTC, PK_{Bob})$
- All transactions are sent to all network participants
- No equivocation: Log append-only and consistent
 - All transactions part of a hash chain
 - Consensus on set/order of operations in hash chain

Intro to crypto in 5 minutes

Public-Key Cryptography

• Each party has (public key, private key)

Alice's public key PK

- Known by anybody
- Bob uses PK to encrypt messages to Alice
- Bob uses PK to verify signatures from Alice

Alice's private/secret key: sk

- Known only by Alice
- Alice uses sk to decrypt ciphertexts sent to her
- Alice uses sk to generate new signatures on messages

Public-Key Cryptography

• (PK, sk) = generateKey(keysize)

Encryption API

- ciphertext = encrypt (message, PK)
- message = decrypt (ciphertext, sk)

Digital signatures API

- Signature = sign (message, sk)
- isValid = verify (signature, message, PK)

Cryptography Hash Functions I

- Take message *m* of arbitrary length and produces fixed-size (short) number *H*(*m*)
- One-way function
 - Efficient: Easy to compute H(m)
 - Hiding property: Hard to find an *m*, given *H*(*m*)
 - Assumes "m" has sufficient entropy, not just {"heads", "tails"}
 - Random: Often assumes for output to "look" random

Cryptography Hash Functions II

Collisions exist: | possible inputs | >> | possible outputs |
 ... but hard to find

· Collision resistance:

- Strong resistance: Find any m != m' such that H(m) == H(m')
- Weak resistance: Given m, find m' such that H(m) == H(m')
- For 160-bit hash (SHA-1)
 - Finding any collision is birthday paradox: 2^{160/2} = 2^80
 - Finding specific collision requires 2^160

Goal: Consensus

- Recall Byzantine fault-tolerant protocols to achieve consensus of replicated log
 - Requires: n >= 3f + 1 nodes, at most f faulty
- Problem
 - Communication complexity is n^2
 - Requires strong view of network participants

17

Consensus susceptible to Sybils

- All consensus protocols based on membership...
 - ... assume independent failures ...
 - ... which implies strong notion of identity
- "Sybil attack" (p2p literature ~2002)
 - Idea: one entity can create many "identities" in system
 - Typical defense: 1 IP address = 1 identity
 - Problem: IP addresses aren't difficult / expensive to get, esp. in world of botnets & cloud services

- · Recall hash functions are one-way / collision resistant
 - Given *h*, hard to find *m* such that h = hash(m)
- · But what about finding partial collision?
 - -m whose hash has most significant bit = 0?
 - m whose hash has most significant bit = 00?
 - Assuming output is randomly distributed, complexity grows exponentially with # bits to match

Form of randomized leader election Each time a nonce is found: New leader elected for past epoch (~10 min) Leader elected randomly, probability of selection proportional to leader's % of global hashing power Leader decides which transactions comprise block

Can be much longer if "backlog" of transactions are long

29

Inputs: Ø // Coinbase reward

inputs.	
Outputs:	25.0→PK_Alice
Inputs:	H(prevtxn, 0) // 25 BTC from Alice
Outputs:	25.0→PK_Bob signed(Alice)
Inputs:	H (prevtxn, 0) // 25 BTC From Alice
Outputs:	5.0 \rightarrow PK_Bob, 20.0 \rightarrow PK_Alice2 signed(Alice)
Inputs:	H (prevtxn1, 1), H(prevtxn2, 0) // 10+5 BTC
Outputs:	14.9→PK_Bob SIGNED(Alice)

- Transaction typically has 1+ inputs, 1+ outputs
- Making change: 1st output payee, 2nd output self
- Output can appear in single later input (avoids scan back)

Inputs:	Ø // Coinbase reward
Outputs:	25.0→PK_Alice
Inputs:	H(prevtxn, 0) // 25 BTC from Alice
Outputs:	25.0→PK_Bob SIGNED(Alice)
Inputs:	H (prevtxn, 0) // 25 BTC From Alice
Outputs:	$5.0 \rightarrow PK_Bob, 20.0 \rightarrow PK_Alice$ signed(Alice)
Inputs:	H (prevtxn1, 1), H(prevtxn2, 0) // 10+5 BTC
Outputs:	14.9→PK_Bob SIGNED(Alice)

• 1 Block = 1MB max

Summary

- Coins xfer/split between "addresses" (PK) in txns
- · Blockchain: Global ordered, append-only log of txns
 - Reached through decentralized consensus
 - Each epoch, "random" node selected to batch transactions into block and append block to log
 - Nodes incentivized to perform work and act correctly
 - When "solve" block, get block rewards + txn fees
 - Reward: 12.5 BTC @ ~730 USD/BTC (11-25-16) = \$9125 / 10 min

37

Only "keep" reward if block persists on main chain

Rich ecosystem: Mining pools

health of mining ecosystem

- Mining == gambling:
 - Electricity costs \$, huge payout, low probability of winning
- Development of mining pools to amortize risk
 - Pool computational resources, participants "paid" to mine e.g., rewards "split" as a fraction of work, etc
 - Verification? Demonstrate "easier" proofs of work to admins
 - Prevent theft? Block header (coinbase txn) given by pool

block chain

value of

currency

38

health of

mining

ecosystem

