
1

Causal Consistency

COS 418: Distributed Systems
Lecture 16

Michael Freedman
2

Linearizability Eventual

Consistency models

Sequential

Causal

• Lamport clocks: C(a) < C(z) Conclusion: None

• Vector clocks: V(a) < V(z) Conclusion: a → … → z

• Distributed bulletin board application

– Each post gets sent to all other users

– Consistency goal: No user to see reply before the
corresponding original message post

– Conclusion: Deliver message only after all messages that
causally precede it have been delivered

3

Recall use of logical clocks Causal Consistency

1. Writes that are potentially
causally related must be seen
by all machines in same order.

2. Concurrent writes may be
seen in a different order on
different machines.

• Concurrent: Ops not causally related

2

Causal Consistency

P1

a
b

d

P2 P3

Physical time ↓

e

f

g

c

1. Writes that are potentially
causally related must be seen
by all machines in same order.

2. Concurrent writes may be
seen in a different order on
different machines.

• Concurrent: Ops not causally related

Causal Consistency

P1

a
b

d

P2 P3

e

f

g

c

Operations

a, b

b, f

c, f

e, f

e, g

a, c

a, e

Concurrent?

N

Y

Y

Y

N

Y

N
Physical time ↓

Causal Consistency

P1

a
b

d

P2 P3

e

f

g

c

Operations

a, b

b, f

c, f

e, f

e, g

a, c

a, e

Concurrent?

N

Y

Y

Y

N

Y

N
Physical time ↓

Causal Consistency: Quiz

• Valid under causal consistency

• Why? W(x)b and W(x)c are concurrent
– So all processes don’t (need to) see them in same order

• P3 and P4 read the values ‘a’ and ‘b’ in order as
potentially causally related. No ‘causality’ for ‘c’.

3

Sequential Consistency: Quiz

• Invalid under sequential consistency

• Why? P3 and P4 see b and c in different order

• But fine for causal consistency
– B and C are not causually dependent
– Write after write has no dep’s, write after read does

Causal Consistency

ü
x

A: Violation:		W(x)b is	potentially	dep on	W(x)a

B: Correct. P2 doesn’t read value of a before W

Causal consistency within
replication systems

11

• Linearizability / sequential: Eager replication

• Trades off low-latency for consistency

12

Implications of laziness on consistency

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

add jmp mov shl
Log

Consensus
Module

State
Machine

shl

4

• Causal consistency: Lazy replication

• Trades off consistency for low-latency

• Maintain local ordering when replicating

• Operations may be lost if failure before replication 13

Implications of laziness on consistency

add jmp mov shl
Log

State
Machine

add jmp mov shl
Log

State
Machine

add jmp mov shl
Log

State
Machine

shl

Don't Settle for Eventual: Scalable
Causal Consistency for Wide-Area

Storage with COPS

W. Lloyd, M. Freedman, M. Kaminsky, D. Andersen
SOSP 2011

14

Wide-Area Storage: Serve reqs quickly Inside the Datacenter

Web Tier Storage Tier

A-F

G-L

M-R

S-Z

Web Tier Storage Tier

A-F

G-L

M-R

S-Z

Remote DC

5

• Availability
• Low Latency
• Partition Tolerance
• Scalability

Trade-offs

• Consistency (Stronger)
• Partition Tolerance

vs.

A-Z A-ZA-L

M-Z

A-L

M-Z

A-F

G-L

M-R

S-Z

A-F

G-L

M-R

S-Z

A-C

D-F

G-J

K-L

M-O

P-S

T-V

W-Z

A-C

D-F

G-J

K-L

M-O

P-S

T-V

W-Z

Scalability through partitioning

Remove boss from
friends group

Post to friends:
“Time for a new job!”

Friend reads post

Causality ()
Thread-of-Execution
Gets-From
Transitivity

New Job!

Friends

Boss

Causality By Example

• Bayou ‘94, TACT ‘00, PRACTI ‘06

– Log-exchange based

• Log is single serialization point
– Implicitly captures and enforces causal order

– Limits scalability OR no cross-server causality

Previous Causal Systems

6

Scalability Key Idea

• Dependency metadata explicitly captures causality

• Distributed verifications replace single serialization

– Delay exposing replicated puts until all
dependencies are satisfied in the datacenter

Local Datacenter

All
Data

All
Data

All
Data

Causal
Replication

COPS architecture

Client Library

get

Client Library

Local Datacenter

Reads

Client Library

put

?

?

Replication Q
put

after

K:V

put
+

ordering
metadata

put
after =

Local Datacenter

Writes

7

• Dependencies are explicit metadata on values
• Library tracks and attaches them to put_afters

Dependencies

put(key, val)
put_after(key,val,deps)

versiondeps
.	.	.		
Kversion

(Thread-Of-Execution	Rule)

Client 1

Dependencies

• Dependencies are explicit metadata on values
• Library tracks and attaches them to put_afters

deps
.	.	.		
Kversion
L337
M195

(Gets-From	Rule)

get(K)

get(K)

value,	version,	deps'
value

(Transitivity	Rule)

deps'
L337
M195

Client 2

Dependencies

• Dependencies are explicit metadata on values
• Library tracks and attaches them to put_afters

Replication Q
put
after

put_after(K,V,deps)
K:V,deps

Causal Replication

8

put_after(K,V,deps) dep_check(L337)
K:V,deps

deps
L337
M195

Causal Replication

• dep_check blocks until satisfied
• Once all checks return, all

dependencies visible locally
• Thus, causal consistency satisfied

• ALPS + Causal
– Serve operations locally, replicate in background
– Partition keyspace onto many nodes
– Control replication with dependencies

• Proliferation of dependencies reduces efficiency
– Results in lots of metadata
– Requires lots of verification

• We need to reduce metadata and dep_checks
– Nearest dependencies
– Dependency garbage collection

System So Far

Put

Put

Put

Put

Get
Get

Many Dependencies
Dependencies grow with client lifetimes Transitively capture all ordering constraints

Nearest Dependencies

9

Transitively capture all ordering constraints

The Nearest Are Few

• Only check nearest when replicating

• COPS only tracks nearest

• COPS-GT (”with get transactions”) tracks non-
nearest for read transactions

• Dependency garbage collection tames metadata
in COPS-GT

The Nearest Are Few

Experimental Setup

COPS

Remote	DC

COPS	ServersClients

Local	Datacenter

N N

N

Performance

 0

 20

 40

 60

 80

 100

 1 10 100 1000

M
ax

 T
hr

ou
gh

pu
t (

Ko
ps

/s
ec

)

Average Inter-Op Delay (ms)

COPS
COPS-GT

High per-client write
rates result in 1000s

of dependencies

Low per-client
write rates
expected

People tweeting
1000 times/sec

People tweeting
1 time/sec

All Put Workload – 4 Servers / Datacenter

10

COPS Scaling

 20

 40

 80

 160

 320

LOG
 1 2 4 8 16

COPS
 1 2 4 8 16

COPS-GT

Th
ro

ug
hp

ut
 (K

op
s)

COPS summary
• ALPS: Handle all reads/writes locally

• Causality
– Explicit dependency tracking and verification

with decentralized replication

– Optimizations to reduce metadata and checks

• What about fault-tolerance?
– Each partition uses linearizable replication within DC

Wednesday lecture

Concurrency Control:
Locking and Recovery

39

