
1

Replication State Machines via
Primary-Backup

COS 418: Distributed Systems
Lecture 10

Michael Freedman

• Eventual consistency
– Multi-master: Any node can accept operation
– Asynchronously, nodes synchronize state

• Eventual consistency inappropriate for many applications
– Imagine NFS file system as eventually consistent
– NFS clients can read/write to different masters, see different

versions of files

• Stronger consistency makes applications easier to write
– (More on downsides later)

2

From eventual to strong consistency

• Mechanism: Replicate and
separate servers

• Goal #1: Provide a highly
reliable service (despite failures)

• Goal #2: Servers should
behave just like a single, more
reliable server

Primary-Backup Replication

3

Client C

Primary P

Backup B

Primary-Backup Replication

Client C

Primary P

Backup B

• Nominate one replica primary,
other is backup
– Clients send all operations to

current primary
– Primary orders clients’

operations
• Only one primary at a time

4

Need to keep clients, primary, and backup in sync:
who is primary and who is backup

2

• Idea: A replica is essentially a state machine
– Set of (key, value) pairs is state
– Operations transition between states

• Need an op to be executed on all replicas, or none at all
– i.e., we need distributed all-or-nothing atomicity
– If op is deterministic, replicas will end in same state

• Key assumption: Operations are deterministic

State machine replication

5 6

More reading: ACM Computing Surveys, Vol. 22, No. 4, December 1990 (pdf)

Primary-Backup Replication

Client C

Primary P

Backup B

1. Primary gets operations

2. Primary orders ops into log

3. Replicates log of ops to backup

4. Backup exec’s ops or writes to log

7

put(x,1)

put(x,1)

Primary-Backup Replication

Client C

Primary P

Backup B

1. Primary gets operations

2. Primary exec’s ops

3. Primary orders ops into log

4. Replicates log of ops to backup

5. Backup exec’s ops or writes to log

8

put(x,1)

put(x,1)

ack

Asynchronous Replication

3

Primary-Backup Replication

Client C

Primary P

Backup B

1. Primary gets operations

2. Primary orders ops into log

3. Replicates log of ops to backup

4. Backup exec’s op or writes to log

5. Primary gets ack, execs ops

9

put(x,1)

put(x,1)

ack

ack

Synchronous Replication

Why does this work?
Synchronous Replication

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Primary

Clients
shl

10

Servers

Backup

• Replicated log => replicated state machine
– All servers execute same commands in same order

• Replicated log => replicated state machine
– All servers execute same commands in same order

Why does this work?
Synchronous Replication

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

add jmp mov shl
Log

Logging
Module

State
Machine

Primary

Clients
shl

11

Servers

BackupBackup

• Operations are deterministic

– No events with ordering based on local clock

• Convert timer, network, user into logged events

– Nothing using random inputs

• Execution order of ops is identical

– Most RSMs are single threaded

12

Need determinism? Make it so!

4

13

Example: Make random() deterministic

14

Example: Make random() deterministic
• Primary:

– Initiates PRNG with OS-supplied randomness, gets initial seed
– Sends initial seed to to backup

• Backup
– Initiates PRNG with seed from primary

Case study

The design of a practical system for
fault-tolerant virtual machines

D. Scales, M. Nelson, G. Venkitachalam, VMWare

SIGOPS Operating Systems Review 44(4), Dec. 2010 (pdf)

15

Goals:

1. Replication of the whole virtual machine

2. Completely transparent to apps and clients

3. High availability for any existing software

16

VMware vSphere Fault Tolerance (VM-FT)

5

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

17

Overview

• Two virtual machines (primary,
backup) on different bare metal

• Logging channel runs over network

• Shared disk via fiber channel

• VM inputs
– Incoming network packets
– Disk reads
– Keyboard and mouse events
– Clock timer interrupt events

• VM outputs
– Outgoing network packets
– Disk writes

18

Virtual Machine I/O

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

Primary
VM

Backup
VM

Logging
channel

Shared Disk

2. BASIC FT DESIGN

2.1 Deterministic Replay Implementation

31

19

Overview

• Primary sends inputs to backup

• Backup outputs dropped

• Primary-backup heartbeats
– If primary fails, backup takes over

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)

20

VM-FT: Challenges

6

• Step 1: Hypervisor at primary logs the causes of
non-determinism

1. Log results of input events
• Including current program counter value for each

2. Log results of non-deterministic instructions
• e.g. log result of timestamp counter read

21

Log-based VM replication

• Step 2: Primary hypervisor sends log entries to
backup hypervisor

• Backup hypervisor replays the log entries
– Stops backup VM at next input event or non-

deterministic instruction
• Delivers same input as primary
• Delivers same non-deterministic instruction

result as primary

22

Log-based VM replication

1. Making the backup an exact replica of primary

2. Making the system behave like a single server
– FT Protocol

3. Avoiding two primaries (Split Brain)

23

VM-FT Challenges

• When backup takes over, non-determinism makes
it execute differently than primary would have
– This is okay!

• Output requirement
– When backup takes over, execution is consistent

with outputs the primary has already sent

24

Primary to backup failover

7

25

The problem of inconsistency

Primary

Backup

Input Output

Primary fails

• Primary logs each output operation
• Delays sending output until Backup acknowledges it

• But does not need to delay execution

26

VM-FT protocol

Primary

Backup

Input

Duplicate output

• Primary logs each output operation
• Delays sending output until Backup acknowledges it

• But does not need to delay execution

27

VM-FT protocol

Primary

Backup

Input

Duplicate output

Can restart execution at an output event

“If a tree falls in forest” metaphor:
If event happens and nobody sees it yet,

did it really happen?

1. Making the backup an exact replica of primary

2. Making the system behave like a single server

3. Avoiding two primaries (Split Brain)
– Logging channel may break

28

VM-FT: Challenges

8

• Primary and backup each run UDP heartbeats,
monitor logging traffic from their peer

• Before “going live” (backup) or finding new backup
(primary), execute an atomic test-and-set on a
variable in shared storage

• If the replica finds variable already set, it aborts

29

Detecting and responding to failures

• Challenging application of primary-backup replication

• Design for correctness and consistency of replicated
VM outputs despite failures

• Performance results show generally high
performance, low logging bandwidth overhead

30

VM-FT: Conclusion

Wednesday

How *do* we detect failures?
Take over from master on failures?

“View Change Protocols”
View = Current System Configuration

31

