
1

Distributed Systems

COS 418: Distributed Systems
Lecture 1, 2017

Mike Freedman

2
Backrub (Google) 1997

3

Google 2012

“The Cloud” is not amorphous

4

2

5Microsoft 6

Google

7Facebook 8Facebook

3

9Facebook

100,000s of physical servers
10s MW energy consumption

Facebook Prineville:
$250M physical infro, $1B IT infra

11

Everything changes at scale

“Pods provide 7.68Tbps to backplane”

• Service with higher-level abstractions/interface
– e.g., file system, database, key-value store,

programming model, RESTful web service, …

• Hide complexity
– Scalable (scale-out)
– Reliable (fault-tolerant)
– Well-defined semantics (consistent)
– Security

• Do “heavy lifting” so app developer doesn’t need to
12

The goal of “distributed systems”

4

13

Research results matter: NoSQL

14

Research results matter: Paxos

15

Research results matter: MapReduce

Course Organization

16

5

• Lecture
– Professors Mike Freedman, Kyle Jamieson
– Slides available on course website
– Office hours immediately after lecture

• Precept:
– TAs Charlie Murphy, Andrew Or

• Main Q&A forum: www.piazza.com
– Graded on class participation: so ask & answer!
– No anonymous posts or questions
– Can send private messages to instructors

17

Learning the material: People Learning the Material: Lectures!

• Attend lecture / precepts and take notes!
– Lecture slides posted day/night before
– Recommendation: Print slides & take notes
– Not everything covered in class is on slides
– You are responsible for everything covered in class

• Precepts are mandatory (attendance taken)
• No required textbooks

– Links to Go Programming textbook and two other
distributed systems textbooks on website

18

Grading

• Five assignments (10% each)
– 90% 24 hours late, 80% 2 days late, 50% >5 days late
– THREE free late days (we’ll figure which one is best)
– Only failing grades I’ve given are for students who don’t

(try to) do assignments

• Two exams (45% total)
– Midterm exam before spring break (20%)
– Final exam during exam period (25%)

• Class participation (5%)
– In lecture, precept, and Piazza

19

Policies: Write Your Own Code
Programming is an individual creative process. At first,

discussions with friends is fine. When writing code,
however, the program must be your own work.

Do not copy another person’s programs, comments, README
description, or any part of submitted assignment. This
includes character-by-character transliteration but also
derivative works. Cannot use another’s code, etc. even
while “citing” them.

Writing code for use by another or using another’s code is
academic fraud in context of coursework.

Do not publish your code e.g., on github, during/after course!
20

6

Policies: Write Your Own Code
Programming is an individual creative process. At first,

discussions with friends is fine. When writing code,
however, the program must be your own work.

Do not copy another person’s programs, comments, README
description, or any part of submitted assignment. This
includes character-by-character transliteration but also
derivative works. Cannot use another’s code, etc. even
while “citing” them.

Writing code for use by another or using another’s code is
academic fraud in context of coursework.

Do not publish your code e.g., on github, during/after course!
21

Assignment 1 (in three parts)

• Learn how to program in Go

– Basic Go assignment (due Sept 21)

– “Sequential” Map Reduce (due Sept 28)

– Distributed Map Reduce (due Oct 5)

22

Warnings

This is a 400-level course,
with expectations to match.

23

• Assignment 1 is purposely easy to teach Go. Don’t be fooled.

• Last year we gave 3-4 weeks for later assignments;
many students started 3-4 days before deadline. Disaster.

• Distributed systems are hard
– These aren’t simple “CRUD” interfaces
– Need to understand problem and protocol, carefully design
– Can take 5x more time to debug than “initially program”

• Assignment #4 builds on your Assignment #3 solution, i.e., you
can’t do #4 until your own #3 is working! (That’s the real world!)

24

Warning #1:
Assignments are a LOT of work

7

Warning #2:
Software engineering, not just programming

• COS126, 217, 226 told you how to design & structure
your programs. This class doesn’t.

• Real software engineering projects don’t either.

• You need to learn to do it.

• If your system isn’t designed well, can be significantly
harder to get right.

• Your friend: test-driven development
– We’ll supply tests, bonus points for adding new ones

25

• Try to figure out yourself
• Piazza not designed for debugging

– Utilize right venue: Go to lab, office hours; sit near friends
– Send detailed Q’s / bug reports, not “no idea what’s wrong”

• Instructors are not on pager duty 24 x 7
– Don’t expect response before next business day
– Questions Friday night @ 11pm should not expect fast

responses. Be happy with something before Monday.

• Implications
– Students should answer each other (+ it’s worth credit)
– Start your assignments early!

26

Warning #3:
Don’t expect 24x7 answers

Naming and layering

(Data-parallel programming at scale)

27

Naming and system components

• How to design interface between components?

• Many interactions involve naming things
– Naming objects that caller asks callee to manipulate
– Naming caller and callee together

Caller Callee

28

8

Potential Name Syntax
• Human readable?

– If users interact with the names

• Fixed length?
– If equipment processes at high speed

• Large name space?
– If many nodes need unique names

• Hierarchical names?
– If the system is very large and/or federated

• Self-certifying?
– If preventing “spoofing” is important

29

Properties of Naming
• Enabling sharing in applications

– Multiple components or users can name a shared object.
– Without names, client-server interface pass entire object by value

• Retrieval
– Accessing same object later on, just by remembering name

• Indirection mechanism
– Component A knows about name N
– Interposition: can change what N refers to without changing A

• Hiding
– Hides impl. details, don’t know where google.com located
– For security purposes, might only access resource if know name

(e.g., dropbox or Google docs URL –> knowledge gives access)

30

Names all around…
• Registers: LD R0, 0x1234
• IP addresses: 128.112.132.86
• Host names: www.cs.princeton.edu
• Path names: /courses/archive/spring17/cos518/syllabus.html vs. “syllabus.html”

• “..” (to parent directory)
• URLs: http://www.cs.princeton.edu/courses/archive/spring17/cos518/

• Email addresses
• Function names: ls
• Phone numbers: 609-258-9169 vs. x8-9179
• SSNs

31

High-level view of naming

• Set of possible names
– Syntax and semantics?

• Set of possible values that names map to

• Lookup algorithm that translates name to value
– What is context used to resolve (if any)?
– Who supplies context?

32

9

• Host names: www.cs.princeton.edu
– Mnemonic, variable-length, appreciated by humans
– Hierarchical, based on organizations

• IP addresses: 128.112.7.156
– Numerical 32-bit address appreciated by routers
– Hierarchical, based on organizations and topology

• MAC addresses : 00-15-C5-49-04-A9
– Numerical 48-bit address appreciated by adapters
– Non-hierarchical, unrelated to network topology

Different Kinds of Names

33

• Host names: www.cs.princeton.edu
– Domain: registrar for each top-level domain (eg, .edu)
– Host name: local administrator assigns to each host

• IP addresses: 128.112.7.156
– Prefixes: ICANN, regional Internet registries, and ISPs
– Hosts: static configuration, or dynamic using DHCP

• MAC addresses: 00-15-C5-49-04-A9
– Blocks: assigned to vendors by the IEEE
– Adapters: assigned by the vendor from its block

Hierarchical Assignment Processes

34

Layering

35

Layering:		abstractions,	abstractions,	abstractions	…

• Partition	the	system
– Each	layer	solely relies	on	services	from	layer	below	
– Each	layer	solely exports	services	to	layer	above

• Interface	between	layers	defines	interaction
– Hides	implementation	details
– Layers	can	change	without	disturbing	other	layers

10

• Lower	three	layers	implemented	everywhere

• Top	two	layers	implemented	only	at	hosts

• Logically,	layers	interacts	with	peer’s	corresponding	layer

Network
Datalink
Physical

Network
Datalink
Physical

Network
Datalink
Physical

Transport Transport
Application Application

Host A Host BRouter

Five	Layers	Summary

• Communication	goes	down	to	physical	network

• Then	from	network	peer	to	peer

• Then	up	to	relevant	layer

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host BRouter

Physical	Communication

• Layer	N	may	duplicate	layer	N-1	functionality	
– E.g.,	error	recovery	to	retransmit	lost	data

• Layers	may	need	same	information
– E.g.,	timestamps,	maximum	transmission	unit	size

• Layering	can	hurt	performance
– E.g.,	hiding	details	about	what	is	really	going	on

• Some	layers	are	not	always	cleanly	separated
– Inter-layer	dependencies	for	performance	reasons
– Some	dependencies	in	standards	(header	checksums)

• Headers	start	to	get	really	big
– Sometimes	header	bytes	>>	actual	content

Drawbacks of Layering Placing	Network	Functionality

• Hugely	influential	paper: “End-to-End	Arguments	in	
System	Design”	by	Saltzer,	Reed,	and	Clark (1984)

• “Sacred	Text”	of	the	Internet
– Endless	disputes	about	what	it	means
– Everyone	cites	it	as	supporting	their	position

11

Monday:

Network communication and RPC

41

