Distributed Systems

COS 418: Distributed Systems
Lecture 1, 2017

Mike Freedman

Backrub (Google) 1997

Google 2012

w—
[

“The Cloud” is not amorphous

Facebook

b

“Pods provide 7.68Tbps to backplane”

“100,000s of physical servers
=N 10s MW energy consumption

w»ﬁ | Facebook Prinevjl!e:
11 1$250M physical infro, $1B IT infr

g ||

The goal of “distributed systems”

 Service with higher-level abstractions/interface

- e.g., file system, database, key-value store,
programming model, RESTful web service, ...

» Hide complexity
— Scalable (scale-out)
— Reliable (fault-tolerant)

— Well-defined semantics (consistent)
— Security

» Do “heavy lifting” so app developer doesn’t need to

Research results matter: NoSQL

Distributs

David Kar|

Avmusct

We descrbe ity |

Dynamo: Amazon’s Highly Available Key-value Store
Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall

and Werner Vogels
Amazon.com

ABSTRACT
Reliability at massive scale is one of the biggest challenges we
face at Amazon.com, one of the largest e-commerce operations in

consequ impacts customer trust. T c
platform, which provides servic eb sites worldwide,
is implemented on top of an infrastructure of tens r

servers and network components located in many datacenters
around the world. At this scale, small and large components fail
continuously and the way persistent state is managed in the face
of these failures drives the reliability and scalability of the
software systems.

i pper proscs he design and implencntaton of Dy, 3
mghly available key-value storage system that

¢ services use 1o provide an bways-on” cxpericnce. To
achieve this level of availability, Dynamo sacrifices consistency
under certain failure scenarios. It makes extensive use of object
versioning and application-assisted conflict resolution in a manner
that provides a novel interface for developers to use.

Categories or Subject Descrlplnrs

s poviiceed 0

[()penlln(:,mm.] Relisbily: D.42 (Operating ;mem]

General Terms
Algorithms, Management, Measuremen, Pecformance, Design,
Relisbility.

One of the lessons our organization has leamed from operating
Amazon’s platform is that the relisbility and scalsbility of &
system is dependent on how its application state is managed

Amazon uses a highly decentalized loosely coupled, service ;;11‘;:;’;‘,
oriented architeture consstng of hundreds of serviees. In this b o
environment there is 3 paricular need for storage technologies e

that are always available. For example, customers should be able
10 view and add items to their shopping cart evea if disks are
fniing, octvork oucs we fappig, or dea ceners e bei
desroyd by tomados. Therlore, e sevies rsponsile o
managiog shoppng cas reques it t e aays e 1020
read from its data store, and that its data nccds to be availsble
across multiple data ceates

Dealing with failuresin an infrastructure comprised of millions of
components is our siandard mod of operation; here arc always a
small but significant number of server and network components
it e fling . oy gcn e As i Ao’ sfve

0 be consiructed in @ manner that treats falure
Randing 35 lm nocmal caso without impacting svalebily ot
performanc

To meet the reliability and scaling needs, Amazon has developed
‘a number of storage technologics, of which the Amazon Simple
Storage Service (also available outside of Amazon and known as
Amazon $3), is probably the best known. This pa

high_reliability_requirements and need tight control_over the

Research results matter: Paxos

The Chubby lock service for loosely-coupled distributed systems

Mike Burrows, Google Inc.

Abstract

We describe our experiences with the Chubby lock ser-
vice, which is intended 1o provide coarse-grained lock-
ing as well as reliable (though low-volume) storage for
a loosely-coupled distributed system. Chubby provides
an interface much like a distributed file system with ad-
visory locks, but the design emphasis is on availability
and reliability, as opposed to high performance. Many
instances of the service have been used for over a year,
with several of them each handling a few tens of thou-
sands of clients concurrently. The paper describes the
initial design and expected use, compares it with actual

example, the Google File System [7) uses a Chubby lock
10 appoint a GFS master server, and Bigtable (3] uses
Chubby in several ways: o elect a master, to allow the
master to discover the servers it controls, and to permit
clients to find the master. In addition, both GFS and
Bigtable use Chubby as a well-known and available loca-
tion o store a small amount of meta-data; in effect they
use Chubby as the root of their distributed data struc-
tures. Some services use locks to partition work (at a
coarse grain) between several servers.

Before Chubby was deployed, most distributed sys-
tems at Google used ad hoc methods for primary elec-

Research results matter: MapReduce

MapReduce is a programming model and an associ-

ated implementation for processing and generating large

data sets. Users specify a map function that processes a
of

Jeffrey Dean and Sanjay Ghemawat
Jf1®@googie.com, sanjay @ googie com

Google, Inc

Abstract given day, etc. Most such computations are conceptu

ally straightforward. However,the input data is usually
large and the computations have 1o be distributed across
hundreds or thousands of machines in order 1o fiish in
a reasonable amount of time. The issues

in the paper.

Programs writien in this functional style are automati-
cally parallclized and exccuted on a large cluster of com-
modity machines. The run.
details of partitioning the input data, scheduling the pro-
gram’s execution across a set of machines, handling ma-
chine failures, and managing the required inter-machine
communication. This allows programmers without any
experience with parallel and distributed systems to cas-
ily utilize the resources of a large distributed system.
Our implementation of MapReduce runs on a large
cluster of commodi

pair 0 g y
pairs, and a reduce function that merges all intermediate
values associated with the

failures conspire 1o obs

these issues.

As a eaction 0 this complexity, we umgncd a new

implified Data Processing on Large Clusters

allelize the computation, distribute the data, and handle

the original simple compu
same intermediate key. Many ygyion with large amounts of complex code to deal with
real world tasks are expressible i this model, as shown

of how to par-

s distributed stream

toms we weeewying 1 pecorm b ides e messy de-

computing platform

fthe tails of

and load balancing in @ library. Our emcion s i
spired by the map and reduce primitives present in Lisp
and many other functional languages. We realized that
most of our computations involved applying a map op-
eation to each logical “record"” in our input in order to
compute a set of intermediate keyAvalue pairs, and then
applying 2 reduce operation to all the values that shared
machines and is highly scalable: the same key, in order o combinc the derived data ap-

distribution

5 SToRM

a typical MapReduce computation processes many ter- Propriately. Our use of a functional model with user 15
cified n .

0

Course Organization

Learning the material: People

* Lecture
— Professors Mike Freedman, Kyle Jamieson
— Slides available on course website
— Office hours immediately after lecture

* Precept:
— TAs Charlie Murphy, Andrew Or

* Main Q&A forum: www.piazza.com

— Graded on class participation: so ask & answer!
— No anonymous posts or questions
— Can send private messages to instructors

Learning the Material: Lectures!

» Attend lecture / precepts and take notes!
— Lecture slides posted day/night before
— Recommendation: Print slides & take notes
— Not everything covered in class is on slides
— You are responsible for everything covered in class

* Precepts are mandatory (attendance taken)

* No required textbooks

— Links to Go Programming textbook and two other
distributed systems textbooks on website

18

Grading

Policies: Write Your Own Code

+ Five assignments (10% each)
— 90% 24 hours late, 80% 2 days late, 50% >5 days late
— THREE free late days (we'll figure which one is best)

— Only failing grades I've given are for students who don’t
(try to) do assignments

* Two exams (45% total)
— Midterm exam before spring break (20%)
— Final exam during exam period (25%)

* Class participation (5%)
— In lecture, precept, and Piazza

Programming is an individual creative process. At first,
discussions with friends is fine. When writing code,
however, the program must be your own work.

Do not copy another person’s programs, comments, README
description, or any part of submitted assignment. This
includes character-by-character transliteration but also
derivative works. Cannot use another’s code, etc. even
while “citing” them.

Writing code for use by another or using another’s code is
academic fraud in context of coursework.

Do not publish your code e.g., on github, during/after course!

20

Policies: Write Your Own Code

21

Assignment 1 (in three parts)

Warnings

This is a 400-level course,
with expectations to match.

* Learn how to program in Go
— Basic Go assignment (due Sept 21)
— “Sequential” Map Reduce (due Sept 28)
— Distributed Map Reduce (due Oct 5)

22

Warning #1:
Assignments are a LOT of work

» Assignment 1 is purposely easy to teach Go. Don'’t be fooled.

+ Last year we gave 3-4 weeks for later assignments;
many students started 3-4 days before deadline. Disaster.
* Distributed systems are hard
— These aren’t simple “CRUD” interfaces
— Need to understand problem and protocol, carefully design
— Can take 5x more time to debug than “initially program”

» Assignment #4 builds on your Assignment #3 solution, i.e., you
can’t do #4 until your own #3 is working! (That's the real world!)

24

Warning #2:
Software engineering, not just programming

» C0OS126, 217, 226 told you how to design & structure
your programs. This class doesn’t.

* Real software engineering projects don't either.

You need to learn to do it.

If your system isn’t designed well, can be significantly
harder to get right.

Your friend: test-driven development
— We'll supply tests, bonus points for adding new ones

25

Warning #3:
Don’t expect 24x7 answers =

Google
« Try to figure out yourself

+ Piazza not designed for debugging
— Utilize right venue: Go to lab, office hours; sit near friends
— Send detailed Q’s / bug reports, not “no idea what's wrong”

* Instructors are not on pager duty 24 x 7
— Don’t expect response before next business day

— Questions Friday night @ 11pm should not expect fast
responses. Be happy with something before Monday.

* Implications
— Students should answer each other (+ it's worth credit)
— Start your assignments early!

26

Naming and layering

(Data-parallel programming at scale)

Naming and system components

Caller Callee

* How to design interface between components?

* Many interactions involve naming things

— Naming objects that caller asks callee to manipulate
— Naming caller and callee together

28

Potential Name Syntax

* Human readable?
— If users interact with the names

Fixed length?
— If equipment processes at high speed

» Large name space?
— If many nodes need unique names

 Hierarchical names?
— If the system is very large and/or federated

Self-certifying?

— If preventing “spoofing” is important

29

Properties of Naming

Enabling sharing in applications
— Multiple components or users can name a shared object.
— Without names, client-server interface pass entire object by value

* Retrieval
— Accessing same object later on, just by remembering name

* Indirection mechanism
— Component A knows about name N
— Interposition: can change what N refers to without changing A
* Hiding
— Hides impl. details, don’t know where google.com located
— For security purposes, might only access resource if know name
(e.g., dropbox or Google docs URL —> knowledge gives access)

30

Names all around...

* Registers: LD RO, 0x1234

* |P addresses: 128.112.132.86

* Host names: www.cs.princeton.edu

» Path names: /courses/archive/spring17/cos518/syllabus.html vs. “syllabus.html”
« “.” (to parent directory)

* URLSs: http:/Awww.cs.princeton.edu/courses/archive/spring17/cos518/

* Email addresses

* Function names: Is

* Phone numbers: 609-258-9169 vs. x8-9179

+ SSNs

31

High-level view of naming

* Set of possible names

— Syntax and semantics?
+ Set of possible values that names map to

» Lookup algorithm that translates name to value
— What is context used to resolve (if any)?

— Who supplies context?

32

Different Kinds of Names

* Host names: www.cs.princeton.edu
— Mnemonic, variable-length, appreciated by humans
— Hierarchical, based on organizations

* IP addresses: 128.112.7.156
— Numerical 32-bit address appreciated by routers
— Hierarchical, based on organizations and topology

* MAC addresses : 00-15-C5-49-04-A9
— Numerical 48-bit address appreciated by adapters
— Non-hierarchical, unrelated to network topology

33

Hierarchical Assignment Processes

Layering

* Host names: www.cs.princeton.edu
— Domain: registrar for each top-level domain (eg, .edu)
— Host name: local administrator assigns to each host

* IP addresses: 128.112.7.156
— Prefixes: ICANN, regional Internet registries, and ISPs
— Hosts: static configuration, or dynamic using DHCP

* MAC addresses: 00-15-C5-49-04-A9
— Blocks: assigned to vendors by the IEEE
— Adapters: assigned by the vendor from its block

34

Layering: abstractions, abstractions, abstractions ...

* Partition the system
— Each layer solely relies on services from layer below
— Each layer solely exports services to layer above

* Interface between layers defines interaction
— Hides implementation details
— Layers can change without disturbing other layers

Five Layers Summary

* Lower three layers implemented everywhere
* Top two layers implemented only at hosts

* Logically, layers interacts with peer’s corresponding layer

Application Application
Transport Transport
Network Network Network
Datalink Datalink Datalink
Physical Physical Physical
Host A Router Host B

Physical Communication

¢ Communication goes down to physical network
* Then from network peer to peer

* Then up to relevant layer

Applicatign A‘plication
Transpor| 'lransport
Networ| Netwaork Network
Datalinkl Datalink Datalink
Physical\ Physical Physical
Host A Router Host B

Drawbacks of Layering

* Layer N may duplicate layer N-1 functionality
— E.g., error recovery to retransmit lost data

* Layers may need same information
— E.g., timestamps, maximum transmission unit size

* Layering can hurt performance
— E.g., hiding details about what is really going on

* Some layers are not always cleanly separated
— Inter-layer dependencies for performance reasons
— Some dependencies in standards (header checksums)

* Headers start to get really big
— Sometimes header bytes >> actual content

Placing Network Functionality

* Hugely influential paper: “End-to-End Arguments in
System Design” by Saltzer, Reed, and Clark (1984)

* “Sacred Text” of the Internet
— Endless disputes about what it means
— Everyone cites it as supporting their position

10

Monday:

Network communication and RPC

1"

