Conflict resolution in eventual
consistency

Eventual consistency

COS 418: Distributed Systems
Lecture 9

Michael Freedman

» Eventual consistency: If no new updates to the
object, eventually all accesses will return the last
updated value

+ Common: git, iPhone sync, Dropbox, Amazon Dynamo

* Why do people like eventual consistency?
— Fast read/write of local copy of data

— Disconnected operation

Concurrent writes can conflict

» Encountered in many different settings:
— Peer-to-peer (Bayou)
— Multi-master clusters (Dynamo)

« Potential solutions

— “Last writer wins”

» Thomas Write Rule for DBs with timestamp-based
concurrency control: Ignore outdated writes

— Application-specific merge/update: Bayou, Dynamo

Towards generality?

General approach:
Encode ops as incremental update

+ Consider banking (double-entry bookkeeping):
— Initial: Alice = $50, Bob = $20
— Alice pays Bob $10

« Option 1: set Alice to $40, set Bob to $30
* Option 2: decrement Alice -$10, incremental Bob +$10
— #2 better, but can’t always ensure Alice >= $0

» Works because common mathematical ops are
— Commutative: AoB == B-A
— Invertible: AoAl ==

Consider shared word processing

* How do |l insert a new word?
— Send entire doc to server? Not efficient

— Send update operation!

H Edit View Insert Format Tools Table Add-ons Help All changes saved in Drive Comments | T

Lol ~ ~ T 100% - Normaltext Arial 105 B Z UA- M /- 2

2 3

What is Lorem Ipsum?

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been
the industry's standard dummy text ever since the, when an unknown printer took a galley of type
and scrambled it to make a type specimen book. It has survived not only five centuries, but also the
leap into electronic typesetting, remaining essentially unchanged. It was popularised in the 1960s
with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with
desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Where does it come from?

Consider shared word processing

* How do | insert a new word?
— Send entire doc to server? Not efficient
— Send update operation! insert (string, position) = insert(“1500s”, 166)

— Warning: Insert (rather than replace) shifted position of all following text

File Edit View Insert Format Tools Table Add-ons Help Al changes saved in Drive Comments R
i ~ ~ T o0% Normal text Arial 105 B 7 U_A- Mo /- &

What is Lorem Ipsum?

Lorem Ipsum is simply dummy text of the printing and typesetting industry. Lorem Ipsum has been
the industry's standard dummy text ever since the 15008, when an unknown printer took a galley of
type and scrambled it to make a type specimen book. It has survived not only five centuries, but also
the leap into electronic typesetting, remaining essentially unchanged. It was popularised in the
1960s with the release of Letraset sheets containing Lorem Ipsum passages, and more recently with
desktop publishing software like Aldus PageMaker including versions of Lorem Ipsum.

Where does it come from? 7

Operations must be commutative

$4

Withdraw
$10

Deposit Insert Delete
\ $15 (“1500s”, 166/ \ (1,0)
$55 B C

/Nithdraw Delete \ /
$10 (1,0)

[delete 1 char as pos 0]

$30

Deposit

A
$15
D

0
$45

Operations must be commutative

$40
Withdraw Deposit Insert Delete
$10 / \ $15 (“1500s”, 166/ \(1 0)
$30 $55

Deposit Withdraw Delete Insert
$15 $10 (1,0) (“1500s”, 1
$45

[delete 1 char as pos 0]

PROBLEM!

Operations must be commutative

Withdraw Deposit Insert Delete
$10 $15 (“1500s”, 166) (1,0)

$30 $55 (9

Deposi\ /Nlthdraw Delete \ / Insert
$15 $10 (1,0) (“1500s”, 165)

[delete 1 char as pos 0]

Operations must be commutative

A
Withdraw Deposit Insert Delete
$10 / \ $15 (“1500s”, 166/ \ (1,0)
$30 $55

SN VANV
\VAVE

Operational Transformation

Pioneered in GROVE (GRoup Outline Viewing Edit)
C. Ellis and S. Gibbs, 1989

Now found in Apache Wave & Google Docs

Operational Transformation (OT)

« State of systemis S, ops a and b performed by concurrently on state S

« Different servers can apply concurrent ops in different sequential order
— Server 1:
+ Receives a, applies ato state S: S© a
+ Receives b (which is dependenton S, not S© a)
» Transforms b across all ops applied since S (namely a): b = OT(b,{a})
+ Applies b’ to state: S© a © b’

— Server2
+ Receives b, applies b to state: S© b
* Receives a, performs transformation a’ = OT(a,{b}),
* Applies a’to state: S@ b © a’

« Servers 1 and 2 have identical final states: S@a® b’ ==S©@p© g’

Operational Transformation (OT)

(Used in Google Docs, EtherPad, etc.)

e

Alice Bob
State: ABCDE State: ABCDE
Ops: | ins ins Ops: | ins ins
“ABC” | “DE” “ABC” | “DE”

Operational Transformation (OT)

(Used in Google Docs, EtherPad, etc.)

7 [server |«

del 2 del 4
Alice Bob
State: ACDE State: ABCE
.| ins ins .| ins ins
Ops: [ine | InS | dei 2 Ops: | 02, | e | del4

Operational Transformation (OT)

(Used in Google Docs, EtherPad, etc.)

s

Alice Bob
State: ACD State: ACE
.| ins ins . | ins ins

Ops: | e | g | del 2] del 4 Ops: [0%. | g | de14] del 2

Operational Transformation (OT)

(Used in Google Docs, EtherPad, etc.)

e A

Alice Bob
State: ACE State: ACE
.| ins ins . | ins ins

Ops: [her | «pe» | de! 2] del 3 Ops: | \eer | «pe» | de! 4] del 2

More rigorous approach:

Conflict-free replicated data type

Marc Shapiro, Nuno Preguiga, Carlos Baquero, Marek Zawirski
2011

Definition of EC vs Strong EC

State-based approach

* Eventual delivery: An update delivered at some correct
replica is eventually delivered to all correct replicas

+ Termination: All method executions terminate
» Convergence: Correct replicas that have delivered the
same updates eventually reach equivalent state

» Doesn't preclude roll backs and reconciling

« Strong Convergence: Correct replicas that have
delivered the same updates have equivalent state

An object is a tuple (S,s°, q,u,m)

payload set // \ \\ merge

initial update
state query

* Local queries, local updates

« Send full state: on receive, merge
» Update is said ‘delivered’ at some replica when it is
included in its casual history
* Causal History: C = [cy, ..., ¢,]
k

+ where ¢; goes through a sequence of states: c?, ...,c¥ ...
20

State-based replication

-~ si.u(a)

s /@\\
/
\

@)

\\ //

/

|

|

\
\

Local at source s;.u(a), s,.u(b), ...

Precondition, compute
Update local payload

Causal History:
- onquery: ¢k = ¢kt

- onupdate: cf = ¢}~ U {uF(a)}

21

State-based replication

v

v

s I si.u(a)
/) \Y
/ \ °
| \ s2.u(b)
©]
| |
\ /I
\
\\ //

Local at source s;.u(a), s,.u(b), ...

Precondition, compute
Update local payload

Causal History:
- onquery: cf = ¢kt

- on update: ¢ = ¢}~ U (uf(a)}

22

State-based replication

~~ si.u(a)

0o [)
s2.u(b) \iw‘

v

Local at source s;.u(a), s,.u(b), ... -

Precondition, compute

Update local payload
Convergence

Episodically: send s; payload

On delivery: merge payloads

| \

I I —o

| | s2.m(s1)
| 2.m(s

Causal History:
- onquery: cf = ¢kt
- onupdate: ¢f = cf71 U (uf(a)}

- onmerge: cf =ckFtuck

23

State-based replication

NN si.u(a)
/ —0

o
s2.u(b) \i‘

v

/

| \
@] —
—

\

\ /

\ /

~ 7

Local at source s;.u(a), s,.u(b), ...

Precondition, compute

Update local payload
Convergence

Episodically: send s; payload

On delivery: merge payloads

Causal History:

v

- onquery: cf = ¢kt
- on update: cf = cf71 U {uk(a)}

- onmerge: ¢k =cftucl

24

State-based replication

s //‘\ si.u(a) s1.m(s2)
—0 [} 0—>

// \\‘ s2.u(b) \iﬂ A/’
| @ —o o o o >
l\ I, s2.m(sy) \i‘

Local at source sy.u(a), s,.u(b), ... - Causal History:
Precondition, compute - onquery: cf =cf!

Update local payload - onupdate: ¢f = cf71 U (uf(a)}

Convergence - onmerge: ck =cftuck
Episodically: send s; payload

On delivery: merge payloads
25

State-based replication

s //\\ °s;.u(a) o s,g(sz)
D, = =
| \ s2u(b) \i A
| @ I —o o o) o >
\\ I‘ s2.m(s1) \i“

\ /
\\//

Desired property:
- After receiving all updates (irrespective of order),
each replica will have same state

26

Example: Union Set

* u:add new element to local replica
* Q: return entire set

* merge: union between remote set and local replica

, 3. {6} {5}U{3}={3,5} {3,5}U{5,7}={3,5, 7}
; \ >
\
J v {5 {5)U (3,5) =3, 5)
1 (:::) ' @ >
' ; '{s, SHU(5,7}=1{3,5,7)
! I {5

BU{T={5T7} {5,7}U{3,5}={3,5 7}

Example

» Partial order < on sets
» u: U (setunion)

* Then, we have:
—commutative: AUB= BUA
—idempotent: AUA= A
— associative: AUB)UC =AU (BUC)

Example

* Partial order < on set of integers
« U:max()

e Then, we have:
— commutative: max(x, y) = max(y, x)
—idempotent: max(x, x) = x

— associative: max(max(x, y), z) = max(x, max(y, z))

Example: Grow-Only Counter

payload integer[n] P

initial [0,0,...,0]
update increment()

let g = myId()

P[g] P[g] + 1
query value() : integer v

let v = Zz P[i]
compare (X, Y) : boolean b
let b = (Vie [0, n - 1] : X.P[i] < Y.P[i])
merge (X, Y) : payload Z
let Vi€ [0, n - 1] : Z.P[i] = max(X.P[i], Y.P[i])

Example: Positive-Negative Counter

payload integer[n] P, integer[n] N
initial [0,0,...,0], [0,0,...,0]
update increment()
let g = myId()
P[g] := P[g] + 1
update decrement()
let g = myId()
N[g] := N[g] + 1
query value() : integer v

let v = }:i P[i] - E:i N[i]
compare (X, Y) : boolean b

let b = (Vie [0, n - 1] : X.P[i] < Y.P[i] A Vie
[0, n — 1] : X.N[i] < Y.N[i])
merge (X, Y) : payload z

let Vi€ [0, n - 1] : Z.P[1i]

let Vi€ [0, n - 1] : Z.N[i]

max(X.P[i], Y.P[i])
max(X.N[i], Y.N[i])

Semi-lattice

+ Partial order < set S with a least upper bound (LUB),
denoted U
—m= x U yisalLUB of{x,y}under < iff

vm, x<m A y<m
> xs<sm Aysm A msm

* |t follows that U is:
— commutative: x U y=y U X
— idempotent: x U x= x

—associative: (x U y) U z=x U(y U z)

Monotonic Semi-lattice Object

+ A state-based object with partial order < and the
following properties, is a monotonic semi-lattice:

1. Set S of values forms a semi-lattice ordered by <

2. Merging state s with remote state s’ computes the
LUB of the two states, i.e.,s*m (s')=sus'

3. State is monotonically non-decreasing across
updates, i.e.,s<s-u

Convergent Replicated Data Type (CvRDT)

* Theorem: Assuming eventual delivery and
termination, any state-based object that satisfies
the monotonic semi-lattice property is SEC

* Why?
— Don’t care about order:
* Merge is both commutative and associative
— Don’t care about delivering more than once

* Merge is idempotent

Commutative Replicated Data Type (CmRDT)

» Update-based CRDTs:

— Sends update operations, not state like CvRDT

» Operations are commutative, but not idempotent

— System must ensure all ops are delivered to other
replicas, without duplication, but in any order

— Often used in more complex settings for
concurrent editing

35

Industry Use of CRDTs:

Databases: Redis, Riak, Facebook Apollo

Other: League of Legends Chat
Soundcloud user stream
TomTom device sync

New Module on Monday:

Replicated State Machines

10

