frenetic >

It's the last COS 326 class!

David Walker

COS 326 N\
Princeton University \ |
/



COS 326 Final Exam

Logistics:
— Friday Jan 26
—1:30pm
— McCosh 46

Note: If you are doing study abroad, make sure that you
email Chris Moretti so we can arrange the exam abroad.
(Many of you have.)



COS 326 Final Exam

Contents:

— The entire semester
* the lectures
 the assignments

— There will be more emphasis on the 2"d half

— | will probably ask a question that is similar to
something on the midterm

* SO make sure you know that stuff



Major Topics From 2"d Half

Modules
— signatures, structures, functors

Reasoning about modules

— representation invariants

— abstraction functions

— proofs of module equivalence
Laziness, memoization

Abstractions for parallel FP
— futures, sequences, map, reduce
— parallel functional algorithms, work, span



Precept this Week

* A couple of questions from the 2015 exam



frenetic >

The Frenetic Project:
Adventures in Functional Networking

David Walker
COS 326 —

Princeton University



Course Themes

* Functional vs. imperative programming
— a new way to think about the algorithms you write

* Modularity

* Abstraction

« Parallelism

« Equational reasoning

Useful on a day-to-day basis and in research to transform
the way people think about solving programming problems:

frenetic >




frenetic >

http://frenetic-lang.org

Cornell:
— Faculty: Nate Foster, Dexter Kozen, Gun Sirer

— Students & Post Docs: Carolyn Anderson, Shrutarshi Basu, Mark Reitblatt,
Robert Soule, Alec Story

Princeton:
— Faculty: Jen Rexford, Dave Walker

— Students & Post Docs: Ryan Beckett, Jennifer Gossels, Rob Harrison, Xin
Jin, Naga Katta, Chris Monsanto, Srinivas Narayana, Josh Reich, Cole
Schlesinger

UMass:
— Faculty: Arjun Guha



A Quick Story Circa 2009
@ Princeton

Dave:
Hey Jen, what's networking?

Jen:
Oooh, it's super-awesome.
No lambda calculus required!

[, ¢
G

Nate:
Too bad about the lambda calculus.
But fill us in.



What is Networking?

end-hosts need
to communicate



What is Networking?

Ethernet switches
connect them



What is Networking?

which decide how packets
. should be forwarded

4~

: \
(\®

12



What is Networking?

and actually forward them




A Quick Story Circa 2009
@ Princeton

Nate:
Sounds simple enough. Is that it?

U__:’Q Jen:

There's a little more ...

—_—
\\Ai i / Still no lambda calculus though.

Dave:
Darn.




What is Networking?

add servers ...

connected by routers .
.gh / L /

Py \\ . .
A/ .S n -

\
J



What is Networking?

add servers ...

connected by routers .
(= /
) \ structured and
N L \atlmlzed
L R p
o
) -

16

plug-and-play

different control planes



What is Networking?

add servers ...
connected by routers

w/ similar data planes

17



What is Networking?

we need gateway to
L bridge them .
d- "\ -




What is Networking?

and load balancing

for servers .
s\\ /

L/.\
o
- B
d
S




What is Networking?

there are other ISPs




What is Networking?

requiring

Inter-domain routers .
.




What is Networking?

and a firewall to handle
malicious traffic .
oy gl

o \L_/ L_/g\

TN




What is Networking?

and mobile endpoints




What is Networking?

requiring wireless
basestations
8




What is Networking?
& Q)

N\

(5 — 9

o - - _ B
\"{‘\\L_// }<. . .

and more middleboxes for
billing, lawful intercept, DPI .

\
5 o

N

25




A Quick Story Circa 2009
@ Princeton

Dave:
??? Lambda calculus is easier.

S Jen:
/ :-) Big mess, eh?

... but there is a new way to do things ...




This is a Control Plane Issue

© each color represents a
I different set of control-plane

L_ protocols and algorithms

. - L_/ _

\ 7 e
B . 2 —B@

A-0 27



The Data Planes are Similar




Software Defined Networks

((V) decouple control and data planes
L by providing open standard API




Centralize Control

Controller Application
Controller Plattorm

OpenFlow

30



OpenFlow Data Plane Abstraction

MM\
srcip =1.2.* drop — ~—
dstip = 3.4. 5 *
srcip =****  fwd 2 2 13 B —
dstip = 3.4.5.%
srcip = *.*.*.* controller 3 22
dstip = *.*.* *
Operations: The Payoff:
— Install rule — Simplicity
— Uninstall rule — Generality

— Ask for counter values



Events up:

32

OpenFlow

41‘%

~———

Controller Application

Controller Platform

T

Topology changes
Traffic statistics
Unprocessed arriving packets

Y
Data Plane

Commands down:

Install rule
Uninstall rule
Query statistics
Send packets



The Payoff

Simple, open interface:
— Easy to learn: Even | can do it!

— Enables rapid innovation by academics and industry

— Everything in the data center can be optimized
* The network no longer "gets in the way”

— Commoditize the hardware



Huge Momentum in Industry
w e = T S Ghean

‘1_"’ %‘m (g GOugle Microsoft:  (wrrcmmnon
OPEN NETWORKING Wl YaHoO!
FOUNDATION venzen

|
| | | 9
|| Bought for $1.2 x 10
NICICa (mostly cash)

34



A Quick Story Circa 2009
@ Princeton

“ ‘ E . Jen:
% '\ So ... SDN is a big deal.

Dave:
Cool. Let's get this party started.

35



The PL Perspective:

A new piece of our critical infrastructure is now available
24-7 availability: for programming

: multi-component
« correct-by-construction

applications:

abstractions '
« defect detection \ / . :;noorg ul)asril’;ci)(/)n
* verification P

- e abstraction

« testin . . , ) o
ARSI Controller Application * Information hiding
A new kind of Controller Platform *—__ shared/used by
heterogeneous = multiple entities
distributed * security
s \
simple, clean,
narrow interface:
- - - - * anew assembly
i language
/ * ... needing
domain-specific
resource constraints: abstractions

« optimization problems 36



frenetic >

www.frenetic-lang.org

A DSL for modular network configuration [ICFP 11, POPL 12, NSDI 13, POPL 14, NSDI 15]

37



The Biggest Problem: Modularity

We still need all the functionality of old networks:
The only way to engineer it is through modular design.

38



OpenFlow is Anti-Modular

Controller Application

Repeater Monitoring
Module Module
inport =1 — fwd 2 Query web traffic:
inport =2 — fwd 1 inport = 1, dstport = 80 ?
—n— 00— 0E—a—-
P installed

Bottom Line: It doesn’t work:
* repeater rules are too coarse-grained for desired monitoring
 installing new monitoring rules will clobber the repeater actions




Anti-Modularity: A Closer Look

Repeater

ﬁef switch_join(switch): \

repeater(switch)

def repeater(switch):

pat1 = {in_port:1}
pat2 = {in_port:2}
install(switch,pat1,DEFAULT,None,[output

install(switch,pat2, DEFAULT,None,[output(

33
o J

Web Monitor
nef monitor(switch): \

pat = {in_port:2,tp_src:80}
install(switch, pat, DEFAULT, None, [])
query_stats(switch, pat)

print bytes
sleep(30)

def stats_in(switch, xid, pattern, packets, bytes)j

\q uery_stats(switch, pattern) /

10

Repeater/Monitor

a

def switch_join(switch)
repeater_monitor(switch)

def repeater_monitor(switch):
pat1 = {in_port:1}
pat2 = {in_port:2}
pat2web = {in_port:2, tp_src:80}

query_stats(switch, pat2web)

print bytes
sleep(30)

@_stats(switch, pattern)

~

Install(switch, pat1, DEFAULT, None, [output(2)])
install(switch, pat2web, HIGH, None, [output(1)])
install(switch, pat2, DEFAULT, None, [output(1)])

def stats_in(switch, xid, pattern, packets, bytes):

9

blue = from repeater
red = from web monitor
green = from neither




OpenFlow is Anti-Modular

You can’t (easily and reliably) compose:
— a billing service with a repeater
— a firewall with a switch
— a load balancer with a router
— one broadcast service with another
— policy for one data center client with another

41



Solution: Functional Programming!

Stop thinking imperatively:
« Don'’t program with update/delete commands for concrete rules
And lift the level of abstraction:
« Use pure functions as data structures that describe network

forwarding policy

* Provide primitives to build complex policies from simple ones

« Let a compiler and run-time do rule synthesis & installation
operators for policy

l / composition
Route

T

linguistic
interface

Compiler & Run Time

N\ &

Controller Platform

42



Frenetic Architecture

WERENE Process Generate
application »
SreG R Event Policy

Network wide
. — Pollcy

p
Ll Receive Compile
platform + ,
run time Event Policy
N %
- . ' :\ Messages
Topology - . to Switches
Change / — =
Network Stat / _— W W - - W

Packet In 43



Frenetic Policy Language
[Phase 1]

Rather than managing (un)installation of concrete rules, programmers
specify what a network does using pure functions.

f: located packet — located packet set

controller
acket ,
: |
) count?
bytes?

. L/ packet contents?
implements f

location = (switch, port)

location = bucket b



Frenetic Policy Language
[Phase 1]

Rather than managing (un)installation of concrete rules, programmers
specify what a network does using pure functions.

f: located packet — located packet set

f topo f topo f

network execution



Firewalls: The Simplest Policies

Policy
false

true

srclP=10.0.0.1

q1 A g2,
g1V g2,

Explanation

drops all packets

admits all packets

admits packets with srclP = 10.0.0.1

drops others

admits packets satisfying
q1 A g2,

g1V g2,

~q

Function
funp ->{}

funp->{p}

funp ->
if p.srclP =10.0.0.1 then

{p}

else

{ }

funp->(q1p)U (a2 p)
funp->(q1p) (92 p)
fun p ->

match (g1 p) with

1{}->{p}
| _->{}



Firewalls: The Simplest Policies

Example: Block all packets from source IP 10.0.0.1 and 10.0.0.2
and except those for web servers

Solution: ~(srclP=10.0.0.1 A srclP=10.0.0.2) \/ tcp_src_port = 80

web traffic sent here



Firewalls: The Simplest Policies

Example: Allow traffic coming in to switches A, port 1 and
switch B, port 2 to enter our network. Block others.

Solution: (switch=A A\ inport=1) V/ (switch=B & inport=2)



Moving Packets from Place to Place

Policy Explanation Function

fwd 2 forward all packets out port 2 fun p -> { p[port:= 2] }



Combining Policies

|2
1 3
Policy Explanation
port=1; fwd 2 only consider packets with port = 1
then

forward all such packets out port 2

Function
let filter_port x p = if p.port = x then { p } else { } in where:
let fwd x p = p.port <- xin a <> b = fun packet ->
(filter_port 1) <> (fwd 2) let s = a packet in

Set.Union (Set.mapb s)



Policy

(port=1; fwd 2) +
(port=2; fwd 3)

Multiple Flows

1 < 3
A

Explanation

(if port = 1 then forward out port 2) and also
(if port = 1 then forward out port 2)

Function
(filter_port 1 <> fwd 2) + where:
(filter _port 2 <> fwd 3) (+) a b = fun packet ->

Set.Union
{(a packet),
(b packet)}
51



Policy

let policyA =
(port=1; fwd 2) +
(port=2; fwd 3)

let policyB =
port=2; fwd 3

(switch = A; policyA) +
(switch = B; policyB)

Composing Policies

|2 |2
1 A \3 1 R 3
Explanation

(if port = 1 then forward out port 2) and also
(if port = 1 then forward out port 3)

(if port = 1 then forward out port 3)

(if switch=A then policyA) and also
(if port = 1 then policyB)



More Composition:
Routing & Monitoring

router =
dstip =1.2.* ; fwd 1
+ dstip = 3.4.7 ; fwd 2

monitor =
srcip = 5.6.7.8 ; bucket b1
+ srcip = 5.6.7.9 ; bucket b2

Route on Monitor on
dest prefix source IP

app = monitor + router

53



Server Load Balancing

Goal: Spread client traffic over server replicas
Setup: Advertise public IP address for the service

First: Split traffic on client IP & rewrite the server IP address
Then: Route to the replica . 10.0.0.1

/ . 10.0.0.2

H /
3

cllents load balancer . 10.0.0.3

server replicas

1.2.3.4




Sequential Composition

selector =
srcip = 0* /\ dstip=1.2.3.4;
dstip <- 10.0.0.1
+
srcip = 1* /\ dstip=1.2.3.4;
dstip <- 10.0.0.2

forwarder =

dstip = 10.0.0.1; fwd 1
+

dstip = 10.0.0.0; fwd 2

Select
Replica

Forward to
Replica

Ib = selector ; forwarder

55




Summary So Far

predicates: network policies:
q ::= f=pattern p:=a (action)
| true | g (filter)
| false | p1 + p2 (parallel comp.)
| q1 \ g2 | p1; p2 (sequential comp.)
| g1V g2
| ~g
simple actions:
a:= fwdn
| f<-v
| bucket b

abbreviations:
if g then p1 else p2 == (q; p1) + (~q; p2)

id ==true
drop == false
fwd p == port <-p



Equational Theory

A sign of a well-conceived language == a simple equational theory

P+Q == Q+P (+ commutative)
P+Q)+R == P+(Q+R) (+ associative)
P+drop == P (+ drop unit)
(P;Q);R == P;(Q;R) (; associative)
id;,P == P (; id left unit)
P;id == P (; id right unit)
drop ; P == drop (; drop left zero)
P;drop == drop (; drop right zero)

(ifgthen Pelse Q); R == ifgthen (P; R)else (Q;R) (if commutes ;)



A Simple Use Case

(Modular Reasoning)

firewall =
if srcip = 1.1.1.1 then
drop
else
id

router = ...

app = firewall ; router

app == firewall ; router

== (if srcip = 1.1.1.1 then drop else id) ; router

== if srcip = 1.1.1.1 then |(drop ; router) else |[(id ; router)

== if srcip = 1.1.1.1 then drop else (id ; router)

== if srcip = 1.1.1.1 then drop else router

58



But what if we want to reason about
entire networks?

@ 1 2 >L; @
¢ H2

<

N

pol ? pol

H1

polA = ...

polB = ...

pol = switch=A; polA +
switch=B; polB

Are all SSH packets dropped at some point along their path?
Do all non-SSH packets sent from H1 arrive at H2?

Are the optimized policies equivalent to the unoptimized one?



Encoding Topologies

ﬁD 1(T2 1(?2

D , - -
H < | P4 t < I>
PO PO

t =
(sw=ANApt=2;sw<-B;pt<-1)
+
(sw=B/Apt=1;sw<-A; pt <-2)

net = pol; t; pol




Encoding Topologies

- AOEEEEENEO:
S e R

net = (pol; t)*; pol

Kleene iteration: _
p*=id+p+pp+.. ]




Encoding Networks

T .

=0 — . @
H1 H2
poI = .. net is a function that moves packets:

t = A1 ==>DB2
net = (poI t)*; pol B2 ==> A1

/ / and also moves packets:

edge = sw=A & pt=1 Al ==>A2
|| sw=B & pt=2 A2 ==> A1
B1 ==>B2

net = edge; (ac; t)*; ac; edge B2 ==> B1




Summary So Far

Policies Predicates
p,q,r:= a,b,c:=

a /I filter according to a drop // drop all packets
| f<-v // update field f to v | id /[ accept all packets
|p;q // do p then q |f=v /I field f matches v
|lp+q  //dopand qin parallel | ~a /I negation
| p* // do p zero or more times |a&b /[ conjunction

lall b // disjunction

Network Encoding in; (policy; topology)*; policy; out




Kleene

Summary So F

Boolean
Algebra

Algebra
Predicates
P, qQ, = p a, b, c:=
a ITOter according to a Flrop
|f<-v /] uddate field fto v | id
lp;Qq // do p then q |f=v
lp+q // do p and q in parallel | ~a
| p* // do p zero or more times o |@&Db
8 lallb

/[ drop all packets
I/ accept all packets
/[ field f matches v
// negation

/[ conjunction

// disjunction

Netwo\\

Boolean Algebra + Kleene Algebra
= Kleene Algebra with Tests




Equational Theory

net1 = net2

For programmers:
— a system for reasoning about programs as they are written

For compiler writers:
— a means to prove their transformations correct

For verifiers:
— sound and complete with a PSPACE decision procedure



Equational Theory

Boolean Algebra: a&b =b&a a&~a = drop all~a = id

Kleene Algebra: (a; b); c = a; (b; c) a;,(b+c) = (a;b)+(a; c)
p* = id +p; p*

Packet Algebra: f<-n;f=n = f<-n f=n;f<-n = f=n

f<-n;f<-m = f<-m

iff#g: f=n;g<-m = g<-m;f=n f<-n;g<-m = g<-m;f<-n

fm#n: f=n;f=m = drop

f=0+..+f=n = id (finite set of possible values in f)




Using the Theory
ﬁD 1 @ 2 1 (? 2 ﬁD

D o - D
Y f— \ f s—. \
H1 H2
Are all SSH packets dropped?

forward = (dst = H1; pt <- 1)

+ (dst = H2; pt <- 2)

typ = SSH; net = drop

ac = ~(typ = SSH); forward
t=.. Do all non-SSH packets sent from H1 arrive at H2?

0 = o ~typ = SSH; sw

net = edge; (ac; t)*; ac; edge ~typ = SSH; sw pt <- 2




Using the Theory

-

D o

H1

Ez 1E2 @
H2

forward = (dst = H1; pt <- 1)
+ (dst = H2; pt <- 2)

ac = ~(typ = SSH); forward
t=..
edge = ...

net = edge; (ac; t)*; ac; edge

Are all SSH packets dropped?

typ = SSH; net = drop

Do all non-SSH packets destined for H2,
sent from H1 arrive at H2?

~typ = SSH; dst = H2; sw=A; pt=1; net

~typ = SSH; dst = H2; sw=A; pt=1; sw <- B; pt <- 2




1 2

-

H3

Programmer 1 connects H1 and H2:

polA1 =sw =A; (
pt=1;pt<-2 +
pt=2;pt<-1)

polB1=sw=B;(...)

pol1 = polA1 + polB1

net1 = (po

Traffic Isolation _FH

Y—\d

3 ﬁl—__l
<‘5’
H4

Programmer 2 connects H3 and H4:

polA2 = sw = B; (
pt=3;pt<-2 +
pt=1;pt<-3)

polB2 =sw=A;(...)

pol2 = polA2 + polB2

net3 = ((pol1 + pol2); t)*

/[ traffic from H2 goes to H1 and H4!




"™ _ Traffic Isolation

H1 1 2 1 2
B
3 | 3

A network slice is a light-weight abstraction designed for traffic isolation:

\\ {in } policy { out }

— yS —

traffic outside the slice
satisfying in enters the slice

traffic inside the slice obeys the policy

traffic inside the slice

satis

slices are just a little
syntactic sugar
on top of NetKAT




A
1

™ _ Traffic Isolation _FH

| 3

A network slice is a light-weight abstraction designed for traffic isolation:

edgel =sw=AApt=1Vsw=BApt=2

slice1 = {edge1} pol1 {edge1}

edge2=sw=AApt=3Vsw=BApt=3

slice2 = {edge2} pol2 {edge2}

—_— —

Theorem: (slicel; t)* + (slice2;t)* = ((slice1 + slice2); t)*

—

packet copied and sent through
slice1 and slice2 networks separately

packet runs through network
that combines slice1 and slice2




™ _ Traffic Isolation _FH

£ 7=
H1 1 2 1 2 H2
A B
= ; B |
=0 o
H3 H4

A network slice is a light-weight abstraction designed for traffic isolation:

edgel =sw=AApt=1Vsw=BApt=2

slice1 = {edge1} pol1 {edge1}

edge2=sw=AApt=3Vsw=BApt=3

slice2 = {edge2} pol2 {edge2}

Theorem: edge1; (slice1; t)* = edge1; ((slice1 + slice2); t)*

——

i

consider those packets at the
edge1 of the slice

can’t tell the difference between
slice1 alone and slice1 + slice2




NetKAT can be implemented with OpenFlow

forward =
(dst = H1; pt <-1)
+ (dst = H2; pt <- 2)

ac =

~(typ = SSH); forward

compile

—

Flow Table for Switch 1:

typ = SSH drop
dst=H1 fwd 1
dst=H2 fwd 2

Flow Table for Switch 2:

typ = SSH drop
dst=H1 fwd 1
dst=H2 fwd 2

Theorem: Any NetKAT policy p that does not modify the switch field can be

compiled in to an equivalent policy in “OpenFlow Normal Form.”

73



Moving Forward

Multiple implementations:

— In OCaml:
« Nate Foster, Arjun Guha, Mark Reitblatt, and others!
* https://github.com/frenetic-lang/frenetic

See www.frenetic-lang.org



Moving Forward

Propane [siccomm 2016, best paper]
— a language for configuring BGP routers

— similar abstractions to NetKAT: different
compilation strategies

Synthesizing Protocols [in progress]
— abstractions for load-sensitive routing
— synthesis of load-sensitive distributed protocols



Resource
Management

Assembly Languages

Move values to/
from register

Programming Languages

Declare/use
variables

Modularity

Unregulated
calling
conventions

Calling conventions
managed
automatically

Consistency

Inconsistent
memory model

Consistent (?)
memory model

Portability

Hardware
dependent

Hardware
independent




Assembly Languages | Programming Languages

NOX Java/ML Frenetic

Resource Move values to/ | (Un)Install policy Declare/use

. . Declare network polic
Management from register rule-by-rule variables POICY

Unregulated | Unregulated use  Calling conventions
Modularity calling of network flow managed
conventions space automatically

Flow space managed
automatically

Inconsistent Inconsistent Consistent (?) Consistent global

Consistenc i -
Y memory model | global policies memory model policies

Hardware Hardware Hardware

Portability dependent dependent independent

Hardware Independent




Summary

FUNCTIONAL NETWORK
PROGRAMMERS: 326

OTHER NETWORK
PROGRAMMERS: 0




