
F#	

COS	326	
David	Walker	

Princeton	University	
	Slide	credits:		Material	drawn	from:	

hBps://fsharpforfunandprofit.com/posts/computaHon-expressions-intro/	
hBps://fsharpforfunandprofit.com/posts/concurrency-async-and-parallel/	
hBps://en.wikibooks.org/wiki/F_Sharp_Programming/Async_Workflows	

OCaml	-->	F#	

Don	Syme	
F#	

Xavier	Leroy	
OCaml	

F#	Design	Goals	
•  Implement	a	great	funcHonal	language	

–  They	chose	core	OCaml	

•  That	interoperates	with	all	of	the	MicrosoV	soVware	
–  ie:	allow	seemless	use	of	any	C#	.Net	libraries	
–  this	involved	integraHng	.Net	objects	into	OCaml	
–  this	involved	some	compromises	

•  To	avoid	too	much	complexity,	throw	away	some	things	
–  Simple	module	system	

•  And	steal	a	few	good	ideas	from	other	funcHonal	languages	
–  eg:		monads	from	Haskell	

PS:		Scala	is	similar	
•  Implement	a	great	funcHonal	language	

•  That	interoperates	with	all	of	the	MicrosoV	Java	soVware	
–  ie:	allow	seemless	use	of	any	C#	.Net			Java	libraries	
–  this	involved	integraHng	.Net	Java	objects	into	a	funcHonal	
language	

–  this	involved	some	compromises	

•  To	avoid	too	much	complexity	

•  And	steal	a	few	good	ideas	from	other	funcHonal	languages	
–  eg:		monads	from	Haskell,	type	classes,	...	

•  And	then	throw	in	more	stuff!			hBps://www.scala-lang.org/	
	

Some	References	
•  A	great	blog	on	F#	programming	idioms:	

–  hBps://fsharpforfunandprofit.com/	
–  lots	of	lessons	apply	to	any	funcHonal	programming	language	

•  A	wikibook		
–  hBps://en.wikibooks.org/wiki/F_Sharp_Programming	
–  lots	of	details	and	examples	
–  can	help	with	minor	variaHons	in	syntax	from	OCaml	

F#	INSTALL	

Step	1	(Mac/Linux):		Get	Mono	

www.mono-project.com	 also	via	homebrew	

Step	2	(Mac/Linux):		Download	Visual	Studio	

www.visualstudio.com/vs/visual-studio-mac	

F#	HELLO	WORLD	

CreaHng	a	New	SoluHon	in	VS	

1.	File	Menu:		"New	SoluHon"	
2.	Choose	a	template	for	your	new	project:	

CreaHng	a	New	SoluHon	in	VS	

3.	Choose	a	name:	

CreaHng	a	New	SoluHon	in	VS	

4.	Your	first	file	and	boiler	plate	is	generated:	

DEMO	

PARALLEL	&	CONCURRENT	
PROGRAMMING	IN	F#	

Recall	Futures	

module type FUTURE =
sig
 type ‘a future
 val future : (‘a->‘b) -> ‘a -> ‘b future
 val force : ‘a future -> ‘a
end

let future f x =

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in

 let y = g() in

 Thread.join t ;

 match !r with
 | Some v ->

 | None -> failwith “impossible”

Recall	Futures	

module type FUTURE =
sig
 type ‘a future
 val future : (‘a->‘b) -> ‘a -> ‘b future
 val force : ‘a future -> ‘a
end

let future f x =

 let r = ref None

 let t = Thread.create (fun _ -> r := Some(f ())) in

 let y = g() in

 Thread.join t ;

 match !r with
 | Some v ->

 | None -> failwith “impossible”

Naive:	
•  creates	a	new	thread	every	Hme,	rather	than	

use	a	thread	pool	
•  does	not	handle	excepHons	
•  does	not	allow	for	cancellaHon	of	futures	
•  no	support	for	event-driven	programming	
•  and	besides,	no	real	parallel	execuHon	

F#	has	a	library	for	asyncronous	computaHons	that	
will	handle	many	of	these	issues	and	more	...	
	
Plus	an	elegant	syntax	to	boot!	

F#	Async	
Values	with	type	Async<T>	are	suspended	computaHons	
•  that	may	be	run	in	the	background,	like	futures	
•  or	composed	and	executed	in	sequence,	while	avoiding	

blocking	
•  or	executed	in	parallel	

F#	Async	
Values	with	type	Async<T>	are	suspended	computaHons	
•  that	may	be	run	in	the	background,	like	futures	
•  or	composed	and	executed	in	sequence,	while	avoiding	

blocking	
•  or	executed	in	parallel	

A	funcHon	that	returns	a	suspended	computaHon:	

let	asyncAdd	x	y	=		
				async	{		
						return	x	+	y		
				}	

F#	Async	
Values	with	type	Async<T>	are	suspended	computaHons	
•  that	may	be	run	in	the	background,	like	futures	
•  or	composed	and	executed	in	sequence,	while	avoiding	

blocking	
•  or	executed	in	parallel	

A	funcHon	that	returns	a	suspended	computaHon:	

let	asyncAdd	x	y	=		
				async	{		
						return	x	+	y		
				}	

let's	the	compiler	know	we	are	beginning	the	construcHon	
of	a	suspended	(async)	computaHon	with	type	Async<T>	

the	code	in	
here	has	a		
special	syntax.	
It	is	called	a		
computa(on	
expression		

F#	Async	
Values	with	type	Async<T>	are	suspended	computaHons	
•  that	may	be	run	in	the	background,	like	futures	
•  or	composed	and	executed	in	sequence,	while	avoiding	

blocking	
•  or	executed	in	parallel	

A	funcHon	that	returns	a	suspended	computaHon:	

let	asyncAdd	x	y	=		
				async	{		
						return	x	+	y		
				}	

"return"	is	not	the	same	as	the	"return"	keyword	in	C/Java	
think	of	it	as	a	funcHon	with	type	T	->	Async<T>	

the	simplest	
kind	of	async	
is	one	that	
does	nothing	
but	return	
a	value	

F#	Async	
Chaining	asynchronous	computaHons:	

let	asyncAdd	(x:int)	(y:int)	:	Async<int>	=		
				async	{		
						return	x	+	y		
				}	
	
let	compositeAsync	()	=	
		async	{	
					let!	z	=	asyncAdd	1	2	
					let!	w	=	asyncAdd	z	1	
				prinnn	"answer:	%i"	(z	+	w)	
				return	()	
		}	
	
let	main	()	=	
							compositeAsync()	
		|>	Async.RunSynchronously	

let!	waits	for	the	
result	of	asyncAdd	
before	conHnuing;	
bind	an	integer	
to	z	
	
allows	other	
threads	to		
conHnue	in	the	
meanHme;	doesn't	
take	up	resources	

Async	Typing	
let!	extracts	the	final	value	from	an	async	computaHon:	
	
	
	
	
	
	

let!	x	=	e1	
...	

x	has	type	T	
in	the	following	code	

e1	has	type	Async<T>	

Async	Typing	
let!	extracts	the	final	value	from	an	async	computaHon:	
	
	
	
	
	
Compare	with	typing	let:	
	

let!	x	=	e1	
...	

x	has	type	T	
in	the	following	code	

let	x	=	e1	
...	

e1	has	type	Async<T>	

e1	has	type	Async<T>	x	has	type	Async<T>	
in	the	following	code	

Parallelism	

Async.Parallel	:	seq<Async<T>>	->	Async<T	[]>	

converts	a	sequence	of	Async	computaHons		
into	

an	Async	of	an	array	of	results	

v1	 v2	 v3	 v3	v1	 v2	

Parallelism	

Async.Parallel	:	seq<Async<T>>	->	Async<T	[]>	

converts	a	sequence	of	Async	computaHons		
into	

an	Async	of	an	array	of	results	

v1	 v2	 v3	 v3	v1	 v2	

in	F#,	many	
concrete	
types	can	
be	viewed	
as	a	sequence:	
lists,		
arrays,	
...	
F#	uses	
objects	
more		
pervasively	
than	OCaml	

A	More	InteresHng	Example	

//	Fetch	the	contents	of	a	web	page	asynchronously	
let	fetchUrlAsync	url	=									
				async	{																														
								let	req	=	WebRequest.Create(Uri(url))		
								let!	resp	=	req.AsyncGetResponse()					
								let	stream	=	resp.GetResponseStream()		
								let	reader	=	new	IO.StreamReader(stream)		
								let	html	=	reader.ReadToEnd()		
								prinnn	"finished	downloading	%s"	url		
								}	
	

A	More	InteresHng	Example	

//	Fetch	the	contents	of	a	web	page	asynchronously	
let	fetchUrlAsync	url	=									
				async	{																														
								let	req	=	WebRequest.Create(Uri(url))		
								let!	resp	=	req.AsyncGetResponse()					
								let	stream	=	resp.GetResponseStream()		
								let	reader	=	new	IO.StreamReader(stream)		
								let	html	=	reader.ReadToEnd()		
								prinnn	"finished	downloading	%s"	url		
								}	
	

NoHce	that	
AsyncGetResponse	
returns	an	Async.	
	
let!	causes	this	
Async	to	be	executed	
while	the	rest	of	the	
computaHon	is	
suspended,	wasHng	
no	CPU	resources	
unHl	the	response	
is	returned.			

A	More	InteresHng	Example	

//	Fetch	the	contents	of	a	web	page	asynchronously	
let	fetchUrlAsync	url	=									
				async	{																														
								let	req	=	WebRequest.Create(Uri(url))		
								let!	resp	=	req.AsyncGetResponse()					
								let	stream	=	resp.GetResponseStream()		
								let	reader	=	new	IO.StreamReader(stream)		
								let	html	=	reader.ReadToEnd()		
								prinnn	"finished	downloading	%s"	url		
								}	
	

NoHce	that	
AsyncGetResponse	
returns	an	Async.	
	
let!	causes	this	
Async	to	be	executed	
while	the	rest	of	the	
computaHon	is	
suspended,	wasHng	
no	CPU	resources	
unHl	the	response	
is	returned.			

Without	the	special	let!	syntax,	
we	would	have	to	program	with	
conHnuaHons,	which	would	be	ugly.	
We	will	come	back	to	this.	

A	More	InteresHng	Example	

//	Fetch	the	contents	of	a	web	page	asynchronously	
let	fetchUrlAsync	(url:string)	:	Async<string>	=		...	
	
let	sites	=	["hBp://www.bing.com";	
													"hBp://www.google.com";	
													"hBp://www.microsoV.com";	
													"hBp://www.amazon.com";	
													"hBp://www.yahoo.com"]		
	
let	runParallel	()	=	
									sites		
				|>	List.map	fetchUrlAsync						//	make	a	list	of	async	tasks	
				|>	Async.Parallel																						//	set	up	the	tasks	to	run	in	parallel	
				|>	Async.RunSynchronously		//	start	them	off	
				|>	ignore		

Background	Work	
SequenHal	operaHon:	

Parallel	operaHon:	

finished	downloading	hBp://www.bing.com	
finished	downloading	hBp://www.google.com	
finished	downloading	hBp://www.microsoV.com	
finished	downloading	hBp://www.amazon.com	
finished	downloading	hBp://www.yahoo.com	
528.371000	

finished	downloading	hBp://www.microsoV.com	
finished	downloading	hBp://www.google.com	
finished	downloading	hBp://www.bing.com	
finished	downloading	hBp://www.yahoo.com	
finished	downloading	hBp://www.amazon.com	
1365.457700	

COMPUTATION	EXPRESSIONS	

What	is	this?	

A	special	syntax	for	a	commonly	appearing	paradigm	
–  In	F#:		A	computa(on	expression	
–  In	Haskell:		A	monad	
	

The	concurrency	monad	is	but	one	kind	of	monad.	
There	are	many	others.	

async	{	
	
			...	
	
			}	

let!	x	=	v	
e	

Monads	

A	monad	are	just	abstract	data	types	with	a	parHcular	interface:	

type	M<T>	
	
return	:	T	->	M<T>	
	
bind	:	M<T>	->	(T	->	M<T>)	->	M<T>	

monad	interface	

Monads	

A	monad	are	just	abstract	data	types	with	a	parHcular	interface:	

type	M<T>	
	
return	:	T	->	M<T>	
	
bind	:	M<T>	->	(T	->	M<T>)	->	M<T>	

async	{	
	
				...	
	
			}	

"start	using	
the	async	
monad	now	
with	its	special	
syntax"	

monad	interface	

Monads	

A	monad	are	just	abstract	data	types	with	a	parHcular	interface:	

type	M<T>	
	
return	:	T	->	M<T>	
	
bind	:	M<T>	->	(T	->	M<T>)	->	M<T>	

let!	x	=	e1	
e2	

bind	e1	(fun	x	->	e2)	

monad	interface	

the	neat	bit	about	a	monad	is	that	
bind	does	some	interesHng	
"behind	the	scenes"	work	for	you.	
It's	a	"programmable	semi-colon"	

translated	to	

Monads	

A	monad	are	just	abstract	data	types	with	a	parHcular	interface:	

let!	x	=	v	
e	 bind	v	(fun	x	->	e)	translated	to	

let!	x1	=	f1	a	
let!	x2	=	f2	b	
let!	x3	=	f3	c	
let!	x4	=	f4	d		
e	

bind	(f1	a)	(fun	x1	->	
				bind	(f2	b)	(fun	x2	->	
								bind	(f3	c)	(fun	x3	->	
												bind	(f4	d)	(fun	x4	->	e)	

translated	to	

pre{er	

Monads	

A	monad	are	just	abstract	data	types	with	a	parHcular	interface:	

let!	x	=	v	
e	 bind	v	(fun	x	->	e)	translated	to	

let!	x1	=	f1	a	
let!	x2	=	f2	b	
let!	x3	=	f3	c	
let!	x4	=	f4	d		
e	

bind	(f1	a)	(fun	x1	->	
				bind	(f2	b)	(fun	x2	->	
								bind	(f3	c)	(fun	x3	->	
												bind	(f4	d)	(fun	x4	->	e)	

translated	to	

(note:	F#	has	quite	a	few	more	bits	of	syntax:	do!,	use!,	...	
that	may	be	present	in	computaHon	expressions,	making	them	
a	liBle	more	than	just	pure	monads,	and	even	nicer	someHmes)	

pre{er	

A	Logger	

let log p = printfn "expression is %A" p

let loggedWorkflow =
 let x = 42
 log x
 let y = 43
 log y
 let z = x + y
 log z
 z	

A	Logger	

let log p = printfn "expression is %A" p

let loggedWorkflow =
 let x = 42
 log x
 let y = 43
 log y
 let z = x + y
 log z
 z	

expression	is	42	
expression	is	43	
expression	is	85	

output	

A	Logger	

let log p = printfn "expression is %A" p

let loggedWorkflow =
 let x = 42
 log x
 let y = 43
 log y
 let z = x + y
 log z
 z	

expression	is	42	
expression	is	43	
expression	is	85	

output	

lots	of		
repeated	
code	

A	Logger	

type	LoggingBuilder()	=	
				let	log	p	=	prinnn	"expression	is	%A"	p	
	
				member	this.Bind(x,	f)	=		
								log	x	
								f	x	
	
				member	this.Return(x)	=		
								x	

expression	is	42	
expression	is	43	
expression	is	85	

output	

f#	object	 Bind	method	

Return	method	

A	Logger	
type	LoggingBuilder()	=		
				let	log	p	=	prinnn	"expression	is	%A"	p	
				member	this.Bind(x,	f)	=	log	x;	f	x	
				member	this.Return(x)	=	x	
	
let	logger	=	new	LoggingBuilder()	
	
let	loggedWorkflow	=	
		logger	{	
				let!	x	=	42	
				let!	y	=	43	
				let!	z	=	x	+	y	
				z	
				}	

expression	is	42	
expression	is	43	
expression	is	85	

output	

A	Logger	
type	LoggingBuilder()	=		
				let	log	p	=	prinnn	"expression	is	%A"	p	
				member	this.Bind(x,	f)	=	log	x;	f	x	
				member	this.Return(x)	=	x	
	
let	logger	=	new	LoggingBuilder()	
	
let	loggedWorkflow	=	
		logger	{	
				let!	x	=	42	
				let!	y	=	43	
				let!	z	=	x	+	y	
				z	
				}	

expression	is	42	
expression	is	43	
expression	is	85	

output	

let	x	=	42	
log	x	
let	y	=	43	
log	y	
let	z	=	x	+	y	
log	z	
z	

Another	Example	

Imagine	you	are	designing	a	front	end	for	a	database	that	takes	
update	requests.	

–  A	user	submits	some	data	(userid,	name,	email)	
–  Check	for	validity	of	name,	email	
–  Update	user	record	in	database	
–  If	email	has	changed,	send	verificaHon	email	
–  Display	end	result	to	user	

In	Pictures	

Receive	Request	

Validate	Request	

Read	user	record	

Update	user	record	

Send	verificaHon	email	

Show	Result	

But	this	is	
the	

“happy	path”	
only.		What	

about	failures?	

In	Pictures	

Receive	Request	

Validate	Request	

Read	user	record	

Update	user	record	

Send	verificaHon	email	

Show	Result	

ValidaHon	Error!	

Not	found!	

Database	error!	

SMTP	error!	

One	soluHon	

Receive	Request	

Validate	Request	

Read	user	record	

Update	user	record	

Send	verificaHon	email	

Show	Result	

Raise	validaHon	excepHon	

Raise	not	found	excepHon	

Raise	database	excepHon	

Raise	network	excepHon	

The	trouble	with	excepHons	

People	forget	to	catch	them!	
–  applicaHons	fail	
–  sadness	ensues	
–  See	A	type-based	analysis	of	uncaught	excep(ons		

•  by	Pessaux	and	Leroy.	
•  Uncaught	excepHons:	a	big	problem	in	OCaml	(and	Java!)	
•  (not	a	big	problem	in	C.		Why	not?		L)	

	
In	a	more	funcHonal	approach,	the	full	behavior	of	a	program	is	
determined	exclusively	by	the	value	it	returns,	not	by	its	“effect”		

FuncHonal	Error	Processing	

Validate	Request	input	
valid	output	
or	
error	output	

Explicitly	return	“good”	result	
or	error.		If	we	use	OCaml	
data	types	to	represent	the	
two	possibiliHes	we	will	force		
the	client	code	to	process	the		
error	(or	get	a	warning	from	
the	OCaml	type	checker).	

FuncHonal	Error	Processing	

Validate	Request	input	
valid	output	
or	
error	output	

NoHce	input	and	output	aren’t	the	same	type.	
On	the	surface,	this	makes	it	look	awkward	to	
compose	a	series	of	such	steps,	but:			
	
Good	abstrac(ons	are	composi(onal	ones.	
	
Let’s	design	a	generic	library	for	error	processing	
that	is	highly	reuseable	and	composi(onal.	

...	

...	

...	

FuncHonal	Error	Processing	

Validate	Request	input	
valid	output	
or	
error	output	

The	Challenge:		ComposiHon	

Validate	Request	input	
valid	output	
or	
error	output	

Read	Request	 ...	

type	'a	result	=			
							Success	of		‘a		
				|	Failure	of	string	

Validate	Request	 Read	Request				Success	of	‘a	
|	Failure	of	string	

A	generic	result	type:	

A	processing	pipeline:	

Generic	Error	Processing	

ValidaHon	FuncHons	

type	Result<'a>	=	Success	of	'a	|	Failure	of	string	
type	Request	=	{name:string;	email:string}	
	
let	validate1	(input:Request)	:	input	Result	=	
		if	input.name	=	""	then	Failure	"Name	must	not	be	blank"	
		else	Success	input	
	
let	validate2	(input:Request)	:	input	Result	=	
		if	input.name.Length	>	50	then	Failure	"Name	must	not	be	>	50	char"	
		else	Success	input	
	
let	validate3	(input:Request)	:	input	Result	=	
		if	input.email	=	""	then	Failure	"Email	must	not	be	blank"	
		else	Success	input	

ValidaHon	FuncHons	

type	Result<'a>	=	Success	of	'a	|	Failure	of	string	
type	Request	=	{name:string;	email:string}	
	
val	validate1	:	Request	->	Request	Result	
val	validate2	:	Request	->	Request	Result		
val	validate3	:	Request	->	Request	Result	
	
let	validaHonWorkflow	input	=	
		match	validate	input	with	
				|	Failure	s	->	Failure	s	
				|	Success	i2	->	
										match	validate2	i2	with	
												|	Failure	s	->	Failure	s	
												|	Success	i3	->	
																	match	validate3	i3	with	
																				|	Failure	s	->	Failure	s	
																				|	Success	i4	->	Success	i4	

ValidaHon	FuncHons	

type	Result<'a>	=	Success	of	'a	|	Failure	of	string	
type	Request	=	{name:string;	email:string}	
	
val	validate1	:	Request	->	Request	Result	
val	validate2	:	Request	->	Request	Result		
val	validate3	:	Request	->	Request	Result	
	
let	validaHonWorkflow	input	=	
		match	validate	input	with	
				|	Failure	s	->	Failure	s	
				|	Success	i2	->	
										match	validate2	i2	with	
												|	Failure	s	->	Failure	s	
												|	Success	i3	->	
																	match	validate3	i3	with	
																				|	Failure	s	->	Failure	s	
																				|	Success	i4	->	Success	i4	

horrible	boilerplate	
code	
	
so	much	repeHHon	
	
easy	to	make	
mistakes	
	
ugly	to	read.	
	
You	can't	pay	
people	
enough	money	
to	read	this	code	
carefully!		

ValidaHon	FuncHons	

type	Result<'a>	=	Success	of	'a	|	Failure	of	string	
type	Request	=	{name:string;	email:string}	
	
val	validate1	:	Request	->	Request	Result	
val	validate2	:	Request	->	Request	Result		
val	validate3	:	Request	->	Request	Result	
	
let	validaHonWorkflow	input	=	
		match	validate	input	with	
				|	Failure	s	->	Failure	s	
				|	Success	i2	->	
										match	validate2	i2	with	
												|	Failure	s	->	Failure	s	
												|	Success	i3	->	
																	match	validate3	i3	with	
																				|	Failure	s	->	Failure	s	
																				|	Success	i4	->	Success	i4	

type	FailureBuilder()	=	
	
				member	this.Bind(x,	f)	=		
								match	x	with	
								|	Failure	s	->	Failure	s	
								|	Success	a	->	f	a	
	
				member	this.Return(x)	=		
								Success	x	
				
let	failure	=	new	FailureBuilder()	

ValidaHon	FuncHons	

type	Result<'a>	=	Success	of	'a	|	Failure	of	string	
type	Request	=	{name:string;	email:string}	
	
val	validate1	:	Request	->	Request	Result	
val	validate2	:	Request	->	Request	Result		
val	validate3	:	Request	->	Request	Result	
	
let	validaHonWorkflow	input	=	
		match	validate1	input	with	
				|	Failure	s	->	Failure	s	
				|	Success	i2	->	
										match	validate2	i2	with	
												|	Failure	s	->	Failure	s	
												|	Success	i3	->	
																	match	validate3	i3	with	
																				|	Failure	s	->	Failure	s	
																				|	Success	i4	->	Success	i4	

type	FailureBuilder()	=	
	
				member	this.Bind(x,	f)	=		
								match	x	with	
								|	Failure	s	->	Failure	s	
								|	Success	a	->	f	a	
	
				member	this.Return(x)	=		
								Success	x	
				
let	failure	=	new	FailureBuilder()	

let	validaHonWorkflow	input	=	
		let!	i2	=	validate1	input	
		let!	i3	=	validate2	input	
		let!	i4	=	validate3	input	
		return	i4	

Finally,	Async	Calls	Again	

open	System.Net	
let	req1	=	HBpWebRequest.Create("hBp://fsharp.org")	
let	req2	=	HBpWebRequest.Create("hBp://google.com")	
let	req3	=	HBpWebRequest.Create("hBp://bing.com")	
	
req1.BeginGetResponse((fun	r1	->		
				let	resp1	=	req1.EndGetResponse(r1)	
				prinnn	"Downloaded	%O"	resp1.ResponseUri	
	
				req2.BeginGetResponse((fun	r2	->		
								let	resp2	=	req2.EndGetResponse(r2)	
								prinnn	"Downloaded	%O"	resp2.ResponseUri	
	
								req3.BeginGetResponse((fun	r3	->		
												let	resp3	=	req3.EndGetResponse(r3)	
												prinnn	"Downloaded	%O"	resp3.ResponseUri	
	
),null)	|>	ignore	
),null)	|>	ignore	
),null)	|>	ignore	

Finally,	Async	Calls	Again	

open	System.Net	
let	req1	=	HBpWebRequest.Create("hBp://fsharp.org")	
let	req2	=	HBpWebRequest.Create("hBp://google.com")	
let	req3	=	HBpWebRequest.Create("hBp://bing.com")	
	
req1.BeginGetResponse((fun	r1	->		
				let	resp1	=	req1.EndGetResponse(r1)	
				prinnn	"Downloaded	%O"	resp1.ResponseUri	
	
				req2.BeginGetResponse((fun	r2	->		
								let	resp2	=	req2.EndGetResponse(r2)	
								prinnn	"Downloaded	%O"	resp2.ResponseUri	
	
								req3.BeginGetResponse((fun	r3	->		
												let	resp3	=	req3.EndGetResponse(r3)	
												prinnn	"Downloaded	%O"	resp3.ResponseUri	
	
),null)	|>	ignore	
),null)	|>	ignore	
),null)	|>	ignore	

Horrible	boilerplate.	
	
Lots	of	conHnuaHons	(ie	callbacks)		
inside	conHnuaHons!	

Finally,	Async	Calls	Again	

open	System.Net	
let	req1	=	HBpWebRequest.Create("hBp://fsharp.org")	
let	req2	=	HBpWebRequest.Create("hBp://google.com")	
let	req3	=	HBpWebRequest.Create("hBp://bing.com")	
	
req1.BeginGetResponse((fun	r1	->		
				let	resp1	=	req1.EndGetResponse(r1)	
				prinnn	"Downloaded	%O"	resp1.ResponseUri	
	
				req2.BeginGetResponse((fun	r2	->		
								let	resp2	=	req2.EndGetResponse(r2)	
								prinnn	"Downloaded	%O"	resp2.ResponseUri	
	
								req3.BeginGetResponse((fun	r3	->		
												let	resp3	=	req3.EndGetResponse(r3)	
												prinnn	"Downloaded	%O"	resp3.ResponseUri	
	
),null)	|>	ignore	
),null)	|>	ignore	
),null)	|>	ignore	

open	System.Net	
let	req1	=	HBpWebRequest.Create("hBp://fsharp.org")	
let	req2	=	HBpWebRequest.Create("hBp://google.com")	
let	req3	=	HBpWebRequest.Create("hBp://bing.com")	
	
async	{	
				let!	resp1	=	req1.AsyncGetResponse()			
				prinnn	"Downloaded	%O"	resp1.ResponseUri	
	
				let!	resp2	=	req2.AsyncGetResponse()			
				prinnn	"Downloaded	%O"	resp2.ResponseUri	
	
				let!	resp3	=	req3.AsyncGetResponse()			
				prinnn	"Downloaded	%O"	resp3.ResponseUri	
	
				}	|>	Async.RunSynchronously	

Monads,	Technically	

A	monad	is	a	(set	of	values,	bind,	return)	that	saHsfies	these	equaHonal	laws:	

	

	
In	Haskell,	the	compiler	could	actually	use	such	laws	to	opHmize	a	program	(in	
theory	...	not	sure	if	it	does	this	in	pracHce).	
	
But	programmers	expect	these	kinds	of	laws	to	be	true	and	may	rearrange	their	
programs	with	them	in	mind	

bind	(return	a,	f)		==		f	a	

bind(m,	return)		==		m	

bind(m,	(fun	x	->	bind(k	x,		h))		==		bind	(bind(m,	k),	h)	

Monads,	Technically	
	
Monads	are	parHcularly	important	in	Haskell	because:	
•  funcHons	with	type	a	->	b	do	not	have	effects!*	
•  they	are	pure!*	
•  they	don't	print,	or	use	mutable	references!*	
•  the	type	system	enforces	this	property*	
	
Haskell	does	have	effecnul	computaHons	
•  they	have	type	IO	b	

–  where	IO	b	is	the	"IO	monad"	
–  when	you	run	this	kind	of	computaHon	at	the	top	level,	effects	happen	

•  lots	of	Haskell	funcHons	have	type	a	->	M	b	
–  they	are	"pure"	funcHons,	that	produce	a	computaHon	

•  lots	of	Hmes	in	this	class,	we	have	said	"this	equaHonal	law	only	applies	when	
we	are	working	with	pure	funcHons"	
–  Haskell	actually	enforces	the	caveat	with	its	type	system!*	

Monads,	Technically	
	
Monads	are	parHcularly	important	in	Haskell	because:	
•  funcHons	with	type	a	->	b	do	not	have	effects!*	
•  they	are	pure!*	
•  they	don't	print,	or	use	mutable	references!*	
•  the	type	system	enforces	this	property*	
	
Haskell	does	have	effecnul	computaHons	
•  they	have	type	IO	b	

–  where	IO	b	is	the	"IO	monad"	
–  when	you	run	this	kind	of	computaHon	at	the	top	level,	effects	happen	

•  lots	of	Haskell	funcHons	have	type	a	->	M	b	
–  they	are	"pure"	funcHons,	that	produce	a	computaHon	

•  lots	of	Hmes	in	this	class,	we	have	said	"this	equaHonal	law	only	applies	when	
we	are	working	with	pure	funcHons"	
–  Haskell	actually	enforces	the	caveat	with	its	type	system!*	

*	There	is	a	funcHon	called	PerformUnsafeIO	...	you	can	guess	what	it	does	:-)	
			But	people	avoid	using	it	most	of	the	Hme.	

More	ComputaHon	Expressions(!)	
	
Construct 	 	 	De-sugared	Form	
let	pat	=	expr	in	cexpr 	 	let	pat	=	expr	in	cexpr	
let!	pat	=	expr	in	cexpr 	 	b.Bind(expr,	(fun	pat	->	cexpr))	
return	expr 	 	 	b.Return(expr)	
return!	expr	 	 	b.ReturnFrom(expr)	
yield	expr 	 	 	b.Yield(expr)	
yield!	expr 	 	 	b.YieldFrom(expr)	
use	pat	=	expr	in	cexpr 	 	b.Using(expr,	(fun	pat	->	cexpr))	
use!	pat	=	expr	in	cexpr 	 	b.Bind(expr,	(fun	x	->	b.Using(x,	fun	pat	->	cexpr))	
do!	expr	in	cexpr 	 	b.Bind(expr,	(fun	()	->	cexpr))	
for	pat	in	expr	do	cexpr 	 	b.For(expr,	(fun	pat	->	cexpr))	
while	expr	do	cexpr 	 	b.While((fun	()	->	expr),	b.Delay(fun	()	->	cexpr))	
if	expr	then	cexpr1	else	cexpr2 	if	expr	then	cexpr1	else	cexpr2	
if	expr	then	cexpr 	 	if	expr	then	cexpr	else	b.Zero()	
try	cexpr	with	patn	->	cexprn 	b.TryWith(expr,	fun	v	->	match	v	with	(patn:ext)	->	cexprn	|	_	raise	exn)	
try	cexpr	finally	expr 	 	b.TryFinally(cexpr,	(fun	()	->	expr))	
	
cexpr1	
cexpr2 	 	 	b.Combine(cexpr1,	b.Delay(fun	()	->	cexpr2))	
	

One	More	Example	

let	map1	=	[("1","One");	("2","Two")]																										|>	Map.ofList	
let	map2	=	[("A","Alice");	("B","Bob")]																									|>	Map.ofList	
let	map3	=	[("CA","California");	("NY","New	York")]	|>	Map.ofList	
	
let	mulHLookup	key	=	
				match	map1.TryFind	key	with	
				|	Some	result1	->	Some	result1			//	success	
				|	None	->																																									//	failure	
								 	match	map2.TryFind	key	with	
								 	|	Some	result2	->	Some	result2	//	success	
								 	|	None	->																																							//	failure	
												 	 	match	map3.TryFind	key	with	
												 	 	|	Some	result3	->	Some	result3		//	success	
												 	 	|	None	->	None																													//	failure	

One	More	Example	

let	map1	=	[("1","One");	("2","Two")]																										|>	Map.ofList	
let	map2	=	[("A","Alice");	("B","Bob")]																									|>	Map.ofList	
let	map3	=	[("CA","California");	("NY","New	York")]	|>	Map.ofList	
	
let	mulHLookup	key	=	
				match	map1.TryFind	key	with	
				|	Some	result1	->	Some	result1			//	success	
				|	None	->																																									//	failure	
								 	match	map2.TryFind	key	with	
								 	|	Some	result2	->	Some	result2	//	success	
								 	|	None	->																																							//	failure	
												 	 	match	map3.TryFind	key	with	
												 	 	|	Some	result3	->	Some	result3		//	success	
												 	 	|	None	->	None																													//	failure	

let	mulHLookup	key	=		
		orElse				{	
				return!	map1.TryFind	key	
				return!	map2.TryFind	key	
				return!	map3.TryFind	key	
				}	

type	OrElseBuilder()	=	
				member	this.ReturnFrom(x)	=	x	
				member	this.Combine	(a,b)	=		
								match	a	with	
								|	Some	_	->	a		//	a	succeeds	--	use	it	
								|	None	->	b				//	a	fails	--	use	b	instead	
				member	this.Delay(f)	=	f()	
	
let	orElse	=	new	OrElseBuilder()	

More	Monads	&	ComputaHon	Expressions	
Monads	for:	

–  parsing	elegantly	
–  transacHonal	soVware	memory	(a	concurrency	paradigm)	
–  error	handling	
–  imperaHve	state	(mutable	data)	
–  database	programming	
–  ...	

More	computaHon	expressions	
–  hBps://fsharpforfunandprofit.com/posts/computaHon-

expressions-intro/	

(Picture	from	Wadler)	
An	academic	paper:		Comprehending	Monads.		Phil	Wadler.	
hBps://ncatlab.org/nlab/files/WadlerMonads.pdf	

OOPSLA	2006	

Phil	Wadler	at	a	conference	on	object-oriented	programming	(OOPSLA)	
advocaHng	for	func(onal	programming	

Assignment	#7	
•  Parallel	algorithms	in	F#	

–  Async.Parallel	

•  GO	TO	PRECEPT	THIS	WEEK!		I	THINK	IT	WILL	HELP!	
–  if	you	get	stuck	installing	F#	over	holiday	break	and	did	not	go	
to	precept,	we	will	have	liBle	pity	for	you.	

•  I	RARELY	USE	ALLCAPS	ON	MY	SLIDES	

•  CONSIDER	THIS	A	HINT	

•  Before	precept,	install	F#	on	your	laptop	

