COS 326
David Walker
Princeton University

Slide credits: Material drawn from:
https://fsharpforfunandprofit.com/posts/computation-expressions-intro/
https://fsharpforfunandprofit.com/posts/concurrency-async-and-parallel/
https://en.wikibooks.org/wiki/F_Sharp_Programming/Async_Workflows

OCaml --> F#

Xavier Leroy Don Syme
OCaml FH#

F# Desigh Goals

Implement a great functional language
— They chose core OCaml

That interoperates with all of the Microsoft software
— ie: allow seemless use of any C# .Net libraries
— this involved integrating .Net objects into OCaml
— this involved some compromises

To avoid too much complexity, throw away some things
— Simple module system

And steal a few good ideas from other functional languages
— eg: monads from Haskell

PS: Scala is similar

Implement a great functional language

That interoperates with all of the Mieresoft Java software
— ie: allow seemless use of any C#-Net Java libraries

— this involved integrating -Net-Java objects into a functional
language
— this involved some compromises

Te-aveid too much complexity

And steal a few good ideas from other functional languages
— eg: monads from Haskell, type classes, ...

And then throw in more stuff! https://www.scala-lang.org/

Some References

A great blog on F# programming idioms:
— https://fsharpforfunandprofit.com/
— lots of lessons apply to any functional programming language

* A wikibook
— https://en.wikibooks.org/wiki/F_Sharp_Programming
— lots of details and examples
— can help with minor variations in syntax from OCaml

F# INSTALL

Step 1 (Mac/Linux): Get Mono

™M Inb\ﬂ Go\< O T [us{ [A [wo' [3 Dis\ [uni (W Fs“‘@;}, FS\ G oce“'{@ As (@ sar (D Ch\ G Coi \@ cs \ O op \ Le(""{ O AS\ J ix G tak

@ www.mono-project.com i ! ﬁ! (o | 0]
| Gmail gJ GCal G Google EXZimbra @ DPW | | TOPLAS W COS [Imports [Guitar £ popl15 [Princeton [courses [5sports §&, GDrive [research » [Othi

l M On 0 # Home & Download & Documentation « News ©) Community Q

Cross platform, open source .NET framework

s (10

Mono is a software platform designed to allow developers to easily create cross platform applications part of the .NET Foundation.

Sponsored by Microsoft, Mono is an open source implementation of Microsoft's .NET Framework based on the ECMA standards for C#
and the Common Language Runtime. A growing family of solutions and an active and enthusiastic contributing community is helping
position Mono to become the leading choice for development of cross platform applications.

Get Mono Read the docs Community
The latest Mono release is waiting for you! We cover everything you need to know, As an open source project, we love
from configuring Mono to how the getting contributions from the community.
internals are implemented. File a bug report, add new code or chat
Our documentation is open source too, so with the developers.

you can help us improve it.
O Contribute to Mono

WWW.mono-project.com also via homebrew

Step 2 (Mac/Linux): Download Visual Studio

M some async links - princedpw. X ' = asynchronous - How does F#' X / =' Visual Studio for Mac | Visuzl X | & how to take a screenshot on & X

¥ | @ Secure | https://www.visualstudio.com/vs/visual-studio-mac/ bl 2 E! (n

M Gmail R GCal G Google EA Zimbra W DPW || TOPLAS W COS [HImports [Guitar [popl15 [5 Princeton [5 courses [sports &, GDrive [research » [Othel

I- Microsoft Technologies Documentation Resources L2 Signin

isual Studio Visual Studio IDE Features v Offerings v Downloads Support v Subscriber Access Free Visual Studio >

hat's New in Visual Studio
or Mac

he IDE loved by millions, now on the Mac.

Download Visual Studio for Mac &

DeS|gned nat|Ve|y @ VisualStudio File Edit View Search Project Bulld Run Version Control Tools Window Help OO« @D T B) Wed346PM Q

» = T MyMealth Chent. 105 » T Debug | PhoneSimuiator »

FO r tl .e M a C W Selution €3 Homeviewsd NewAppointmentyswhode! ¢ s T
v i 04_Demos_NatheXamannApps (maste) & NewAppoRtmrtViewModel » [ACOIptCommand * Commands §
- MyHeamh Chent Core 0 { _patientEvents;) L

www.Vvisualstudio.com/vs/visual-studio-mac

F# HELLO WORLD

Creating a New Solution in VS

1. File Menu: "New Solution”
2. Choose a template for your new project:

New Project

Choose a template for your new project

@ Recently used Recently used templates

Console Project
#N Multiplatform E Other » .Nr—:Tj

App Console Application o)
Library D .NET Core - App

Tests

Android

App Console Project
Library

A F# project for creating a command line
Tests

application
<D .NET Core

App
Library
Tests

M Mac

App

\ Library

@® Other

NET
Miscellaneous

cancel previovs | NG

Creating a New Solution in VS

3. Choose a name:

[NON | New Project

Configure your new Console Project

PREVIEW
[/Users/dpw/Projects
[Solution
[} solution.sln
™ Project
Project Name: “ I [project.fsproj

Solution Name: l ‘

Location: | [Users/dpw/Projects ‘ Browse...

Create a project directory within the solution directory.

Version Control: [| Use git for version control.

V| Create a .gitignore file to ignore inessential files.

Cancel Previous Create

Creating a New Solution

In VS

4. Your first file and boiler plate is generated:

[NON | | 2 0] Debug > || Default & Packages successfully added. ®

[®] Solution =] < > Program.fs

' = Hello No selection

¥ | Hello 1 // Learn more about F# at http://fsharp.org

» [°1 References 3

» [} Packages (2 updates) 4 [<EntryPoint>]
[} Assemblyinfo.fs 5 let main argv =

6 printfn "%A"™ argv
Program.fs
7 6/ return o integer exit code
8

[¢5] packages.config

2 // See the 'F# Tutorial' project for more help.

€ Errors / Tasks

-

B Package Console

X0QIo0] =)

aupnQ juawnood [saadoid [[])

SE-YIRTT (S

DEMO

PARALLEL & CONCURRENT
PROGRAMMING IN F#

Recall Futures

module type FUTURE =

sig

type ‘a future

val future (‘a->‘b) -> ‘a -> ‘b future
val force ‘a future -> ‘a
end
let future £ x =
let r = ref None
let t = Thread.create (fun -> r := Some(f ())) in

let v = g() in
Thread.join t ;

match !'r with
| Some v —->

| None —-> failwith

\ 2

1

mpossible”

Recall Futures

module type FUTURE =
sig

type ‘a future

val future : (‘a—->

val force : ‘a futt
end

let future £ x =
let r = ref Non
let £t = Thread.

Naive:

e creates a new thread every time, rather than
use a thread pool

 does not handle exceptions

* does not allow for cancellation of futures

* no support for event-driven programming

* and besides, no real parallel execution

F# has a library for asyncronous computations that
will handle many of these issues and more ...

Plus an elegant syntax to boot!

let v = g() in

Thread.join t ;

match !r with

| Some v —->

| None -> failwith “impossible”

F# Async

Values with type Async<T> are suspended computations
* that may be run in the background, like futures

 or composed and executed in sequence, while avoiding
blocking

e or executed in parallel

F# Async

Values with type Async<T> are suspended computations
* that may be run in the background, like futures

 or composed and executed in sequence, while avoiding
blocking

e or executed in parallel

A function that returns a suspended computation:

let asyncAdd xy =
async {
returnx +vy

}

F# Async

Values with type Async<T> are suspended computations
* that may be run in the background, like futures

 or composed and executed in sequence, while avoiding
blocking

e or executed in parallel

A function that returns a suspended computation:

let asyncAdd xy =
_» async{ the code in
returnx +vy here has 3
} \ special syntax.
T tiscalled a
let's the compiler know we are beginning the construction computation

of a suspended (async) computation with type Async<T> expression

F# Async

Values with type Async<T> are suspended computations

* that may be run in the background, like futures

 or composed and executed in sequence, while avoiding

blocking

e or executed in parallel

A function that returns a suspended computation:

let asyncAdd xy =
async {

_mreturnx+y \
/ }

"return" is not the same as the "return" keyword in C/Java
think of it as a function with type T -> Async<T>

the simplest
kind of async
is one that
does nothing
but return

a value

Fi Async |

Chaining asynchronous computations:

let asyncAdd (x:int) (y:int) : Async<int> =
async {
return x +vy

}

let! waits for the
result of asyncAdd
before continuing;
bind an integer

let compositeAsync () =
async {

let! z=asyncAdd 1 2

let! w =asyncAdd z 1

printfn "answer: %i" (z + w) toz
return ()
} allows other
threads to
let main () = continue in the

meantime; doesn't

compositeAsync() take up resources

|> Async.RunSynchronously

Async Typing

let! extracts the final value from an async computation:

X has type T /

in the following code

let! x =el \

™ el has type Async<T>

Async Typing

let! extracts the final value from an async computation:

X has type T /

let! x =el \

™ el has type Async<T>

in the following code

Compare with typing let:

/'

letx =el \

el has type Async<T>

X has type Async<T>
in the following code

Parallelism

Async.Parallel : seq<Async<T>> -> Async<T []>

converts a sequence of Async computations
into
an Async of an array of results

233 -

vl |v2 | v3

Parallelism

in F#, many
concrete

types can

be viewed _-
as a sequence:
lists,

arrays,

F# uses

objects

more
pervasively

Async.Parallel : seq<Async<T>> -> Async<T []>

—_

converts a sequence of Async computations
into
an Async of an array of results

than OCaml

233 -

vl |v2 | v3

A More Interesting Example

// Fetch the contents of a web page asynchronously
let fetchUrlAsync url =
async {
let req = WebRequest.Create(Uri(url))
let! resp = req.AsyncGetResponse()
let stream = resp.GetResponseStream()
let reader = new |0.StreamReader(stream)
let html = reader.ReadToEnd()
printfn "finished downloading %s" url

}

A More Interesting Example

// Fetch the contents of a web page asynchronously
let fetchUrlAsync url =

async {
let req = WebRequest.Create(Uri(url))

let! resp = req.AsyncGetResponse()

let stream = resp.GetResponseStream()

let reader = new |0.StreamReader(stream)
let html = reader.ReadToEnd()

printfn "finished downloading %s" url

}

Notice that
AsyncGetResponse
returns an Async.

let! causes this
Async to be executed
while the rest of the
computation is
suspended, wasting
no CPU resources
until the response

is returned.

A More Interesting Example

// Fetch the contents of a web page asynchronously
let fetchUrlAsync url =

async {
let req = WebRequest.Create(Uri(url))

let! resp = req.AsyncGetResponse()

let stream = resp.GetResponseStream()

let reader = new |0.StreamReader(stream)
let html = reader.ReadToEnd()

printfn "finished downloading %s" url

}

Notice that
AsyncGetResponse
returns an Async.

let! causes this
Async to be executed
while the rest of the
computation is
suspended, wasting
no CPU resources
until the response

is returned.

Without the special let! syntax,

we would have to program with
continuations, which would be ugly.
We will come back to this.

A More Interesting Example

// Fetch the contents of a web page asynchronously
let fetchUrlAsync (url:string) : Async<string> = ...

let sites = ["http://www.bing.com";
"http://www.google.com";
"http://www.microsoft.com";
"http://www.amazon.com";
"http://www.yahoo.com"]

let runParallel () =

sites
| > List.map fetchUrlAsync // make a list of async tasks
|> Async.Parallel // set up the tasks to run in parallel

|> Async.RunSynchronously // start them off
|>ignore

Background Work

Sequential operation:

finished downloading http://www.microsoft.com
finished downloading http://www.google.com
finished downloading http://www.bing.com
finished downloading http://www.yahoo.com
finished downloading http://www.amazon.com
1365.457700

Parallel operation:

finished downloading http://www.bing.com
finished downloading http://www.google.com
finished downloading http://www.microsoft.com
finished downloading http://www.amazon.com
finished downloading http://www.yahoo.com
528.371000

COMPUTATION EXPRESSIONS

What is this?

async {

let! x =v

A special syntax for a commonly appearing paradigm
— In F#: A computation expression
— In Haskell: A monad

The concurrency monad is but one kind of monad.
There are many others.

Monads

A monad are just abstract data types with a particular interface:

monad interface

type M<T>
return : T -> M<T>

bind : M<T> -> (T -> M<T>) -> M<T>

Monads

A monad are just abstract data types with a particular interface:

monad interface

type M<T>
return : T -> M<T>

bind : M<T> -> (T -> M<T>) -> M<T>

async {
"start using
Y the async
™~ | monad now
) with its special
syntax"

Monads

A monad are just abstract data types with a particular interface:

monad interface

type M<T>

return : T -> M<T>

bind : M<T> -> (T -> M<T>) -> M<T>

let! x = el
e2

translated to

bind el (fun x -> e2)

the neat bit about a monad is that
bind does some interesting

"behind the scenes" work for you.
It's a "programmable semi-colon”

[Monads

A monad are just abstract data types with a particular interface:

| ¥ =
Ieet. X=V translated to bind v (fun x -> €]
let! x1 =f1a _
bind (f1 a) (fun x1 ->
letl x2 =2 b :
translated to bind (f2 b) (fun x2 ->

let! x3 =3¢ > :

let! x4 = f4 d bind (f3 ¢) (fun x3 ->
/ . bind (f4 d) (fun x4 -> e)

prettier

[Monads

A monad are just abstract data types with a particular interface:

| ¥ =
Ieet. X=V translated to bind v (fun x ->)
| =
e bind (f1 a) (fun x1 ->
letl x2 =2 b :
translated to bind (f2 b) (fun x2 ->

let! x3 =3¢ > :

let! x4 = f4 d bind (f3 ¢) (fun x3 ->
/ e | bind (f4 d) (fun x4 -> e)
prettier

(note: F# has quite a few more bits of syntax: do!, usel, ...
that may be present in computation expressions, making them
a little more than just pure monads, and even nicer sometimes)

A Logger

let log p = printfn "expression is %A" p

let loggedWorkflow -
let x =42
log X
lety-43
logy
letz-x+Yy
log z
Z

A Logger

let log p = printfn "expression is %A" p

let loggedWorkflow -
letx =42

log X

lety=43

logy

letz-x+Yy

log z

Z

output

expression is 42
expression is 43
expression is 85

A Logger

let log p = printfn "expression is %A" p

let loggedWorkflow -
letx =42
log X
lety=43

»logy

/ letz-x+y
lots of

~___—m logz
repeated V4

code

output

expression is 42
expression is 43
expression is 85

A Logger

f# object

type LoggingBuilder() =
let log p = printfn "expression is %A" p

member this.Bind(x, f) =
log X \
f x

member this.Return(x) =

~ Bind method

X \

~ Return method

output

expression is 42
expression is 43

expression is 85

A Logger

type LoggingBuilder() =
let log p = printfn "expression is %A" p
member this.Bind(x, f) = log x; f x
member this.Return(x) = x

let logger = new LoggingBuilder()

let loggedWorkflow =
logger {
let! x =42
let!y =43
let!lz=x+y
4

}

output

expression is 42
expression is 43
expression is 85

A Logger

type LoggingBuilder() =
let log p = printfn "expression is %A" p
member this.Bind(x, f) = log x; f x
member this.Return(x) = x

let logger = new LoggingBuilder()

let loggedWorkflow =

logger {

let! x =42

letl y = 43 let x =42

Iet!z=x+y\ log x

. lety =43

) log y

letz=x+y

output log 2
expression is 42 Z

expression is 43
expression is 85

Another Example

Imagine you are designing a front end for a database that takes
update requests.

— A user submits some data (userid, name, email)
— Check for validity of name, email

— Update user record in database

— If email has changed, send verification email

— Display end result to user

In Pictures]

Receive Request

Valldate Request
g But this is

the
“happy path”
Read user record only. What

about failures?

!

Send verification email

!

Show Result

|
|
|
| ——
|
|

In Pictures

Receive Request

-

!

Validate Request

!

{ Validation Error!

I

Update user record

Not found!

!

Send verification email

!

|
|
R
|
|
|

Show Result

SMTP error!

{ Database error!

- J 4 -—w- @A -w 5 A

One solution

Receive Request }

!

Validate Request

|
|

l
[Read user record
|
|
|

Raise validation exception

Raise not found exception

-

!

Update user record

I

Send verification email

!

Show Result }

Raise database exception }
Raise network exception }

i 2N 2 2. 2

The trouble with exceptions

People forget to catch them!
— applications fail
— sadness ensues

— See A type-based analysis of uncaught exceptions
* by Pessaux and Leroy.
* Uncaught exceptions: a big problem in OCaml (and Java!)
* (not a big problem in C. Why not? ®)

In a more functional approach, the full behavior of a program is
determined exclusively by the value it returns, not by its “effect”

Functional Error Processing

valid output

input —{ Validate Request }—> or

error output

Explicitly return “good” result
or error. If we use OCaml
data types to represent the
two possibilities we will force
the client code to process the
error (or get a warning from
the OCaml type checker).

Functional Error Processing]

valid output
input —{ Validate Request]—> or

error output

] Notice input and output aren’t the same type.
On the surface, this makes it look awkward to

compose a series of such steps, but:

Good abstractions are compositional ones.

Let’s design a generic library for error processing

that is highly reuseable and compositional.

[Functional Error Processing

valid output
input —{ Validate Request }—> or

error output

The Challenge: Composition

valid output

input —{ Validate Request }—> or —{ Read Request]—>

error output

Generic Error Processing]

type 'a result =
Success of ‘a
| Failure of string

A generic result type:

A processing pipeline:

—{ Validate Request]—> Su.ccess of a. —>[Read Request]—>
| Failure of string

Validation Functions

type Result<'a> = Success of 'a | Failure of string
type Request = {name:string; email:string}

let validatel (input:Request) : input Result =
if input.name ="" then Failure "Name must not be blank"
else Success input

let validate2 (input:Request) : input Result =
if input.name.Length > 50 then Failure "Name must not be > 50 char"
else Success input

let validate3 (input:Request) : input Result =
if input.email = "" then Failure "Email must not be blank"
else Success input

Validation Functions

type Result<'a> = Success of 'a | Failure of string
type Request = {name:string; email:string}

val validatel : Request -> Request Result
val validate2 : Request -> Request Result
val validate3 : Request -> Request Result

let validationWorkflow input =
match validate input with
| Failure s -> Failure s
| Success i2 ->
match validate2 i2 with
| Failure s -> Failure s
| Success i3 ->
match validate3 i3 with
| Failure s -> Failure s
| Success i4 -> Success i4

Validation Functions

type Result<'a> = Success of 'a | Failure of string
type Request = {name:string; email:string}

val validatel : Request -> Request Result
val validate2 : Request -> Request Result
val validate3 : Request -> Request Result

let validationWorkflow input =
match validate input with
| Failure s -> Failure s
| Success i2 ->
match validate2 i2 with
| Failure s -> Failure s
| Success i3 ->
match validate3 i3 with
| Failure s -> Failure s
| Success i4 -> Success i4

horrible boilerplate
code

so much repetition

easy to make
mistakes

ugly to read.

You can't pay
people

enough money
to read this code
carefully!

Validation Functions

type Result<'a> = Success of 'a | Failure of str
type Request = {name:string; email:string}

val validatel : Request -> Request Result
val validate2 : Request -> Request Result
val validate3 : Request -> Request Result

let validationWorkflow input =
match validate input with
| Failure s -> Failure s
| Success i2 ->

match validate2 i2 with

type FailureBuilder() =

member this.Bind(x, f) =
match x with
| Failure s -> Failure s
| Successa->fa

member this.Return(x) =
Success X

let failure = new FailureBuilder()

| Failure s -> Failure s
| Success i3 ->
match validate3 i3 with
| Failure s -> Failure s
| Success i4 -> Success i4

Validation Functions

type Result<'a> = Success of 'a | Failure of str
type Request = {name:string; email:string}

val validatel : Request -> Request Result
val validate2 : Request -> Request Result
val validate3 : Request -> Request Result

let validationWorkflow input =
match validatel input with
| Failure s -> Failure s
| Success i2 ->

match validate2 i2 with

type FailureBuilder() =

member this.Bind(x, f) =
match x with
| Failure s -> Failure s
| Successa->fa

member this.Return(x) =
Success X

let failure = new FailureBuilder()

| Failure s -> Failure s
| Success i3 ->
match validate3 i3 with
| Failure s -> Failure s
| Success i4 -> Success i4

let validationWorkflow input =
let! i2 = validatel input
let! i3 = validate2 input
let! i4 = validate3 input
return i4

[Finally, Async Calls Again

open System.Net

let reql = HttpWebRequest.Create("http://fsharp.org")
let req2 = HttpWebRequest.Create("http://google.com")
let req3 = HttpWebRequest.Create("http://bing.com")

reql.BeginGetResponse((fun rl ->
let respl = reql.EndGetResponse(rl)
printfn "Downloaded %0" respl.ResponseUri

req2.BeginGetResponse((fun r2 ->
let resp2 = req2.EndGetResponse(r2)
printfn "Downloaded %0" resp2.ResponseUri

req3.BeginGetResponse((fun r3 ->
let resp3 = req3.EndGetResponse(r3)
printfn "Downloaded %0" resp3.ResponseUri

),null) |>ignore
),null) |>ignore
),null) |>ignore

[Finally, Async Calls Again

open System.Net

let reql = HttpWebRequest.Create("http://fsharp.org")
let req2 = HttpWebRequest.Create("http://google.com")
let req3 = HttpWebRequest.Create("http://bing.com")

reql.BeginGetResponse((fun rl ->
let respl = reql.EndGetResponse(rl)
printfn "Downloaded %0" respl.ResponseUri

req2.BeginGetResponse((fun r2 ->
let resp2 = req2.EndGetResponse(r2)
printfn "Downloaded %0" resp2.ResponseUri

req3.BeginGetResponse((fun r3 ->
let resp3 = req3.EndGetResponse(r3)
printfn "Downloaded %0" resp3.ResponseUri

),null) |>ignore
),null) |>ignore
),null) |>ignore

Horrible boilerplate.

Lots of continuations (ie callbacks)
inside continuations!

Finally, Async Calls Again

open System.Net

let reql = HttpWebRequest.Create("http://fsharp.org")
let req2 = HttpWebRequest.Create("http://google.com")
let req3 = HttpWebRequest.Create("http://bing.com")

reql.BeginGetResponse((fun rl ->

let respl = reql.EndGetResponse(rl)

printfn "Downloaded %0" respl.ResponseUri open System.Net

let reql = HttpWebRequest.Create("http://fsharp.org")

req2.BeginGetResponse((fun r2 -> let req2 = HttpWebRequest.Create("http://google.com")
let resp2 = req2.EndGetResponse(r2) let req3 = HttpWebRequest.Create("http://bing.com")
printfn "Downloaded %0" resp2.ResponseUri
async {
req3.BeginGetResponse((fun r3 -> let! respl = reql.AsyncGetResponse()
let resp3 = req3.EndGetResponse(r3) printfn "Downloaded %0" resp1.ResponseUri

printfn "Downloaded %0" resp3.ResponseUri

let! resp2 = reg2.AsyncGetResponse()

),null) |>ignore printfn "Downloaded %0" resp2.ResponseUri

),null) |>ignore

),null) |>ignore let! resp3 = req3.AsyncGetResponse()
printfn "Downloaded %0" resp3.ResponseUri

} |> Async.RunSynchronously

[Monads, Technically

A monad is a (set of values, bind, return) that satisfies these equational laws:

4 N\

bind (return a, f) == fa

4 N\

bind(m, return) ==

bind(m, (fun x -> bind(k x, h)) == bind (bind(m, k), h)

In Haskell, the compiler could actually use such laws to optimize a program (in
theory ... not sure if it does this in practice).

But programmers expect these kinds of laws to be true and may rearrange their
programs with them in mind

Monads, Technically

Monads are particularly important in Haskell because:
* functions with type a -> b do not have effects!*

* they are pure!*

* they don't print, or use mutable references!*

* the type system enforces this property*

Haskell does have effectful computations
 they havetypelOb

— where IO b is the "IO monad"

— when you run this kind of computation at the top level, effects happen
* |ots of Haskell functions have typea->Mb

— they are "pure" functions, that produce a computation

* J|ots of times in this class, we have said "this equational law only applies when
we are working with pure functions"

— Haskell actually enforces the caveat with its type system!*

Monads, Technically

Monads are particularly important in Haskell because:
* functions with type a -> b do not have effects!*

* they are pure!*

* they don't print, or use mutable references!*

* the type system enforces this property*

Haskell does have effectful computations
 they havetypelOb

— where IO b is the "IO monad"

— when you run this kind of computation at the top level, effects happen
* |ots of Haskell functions have typea->Mb

— they are "pure" functions, that produce a computation

* J|ots of times in this class, we have said "this equational law only applies when
we are working with pure functions"

— Haskell actually enforces the caveat with its type system!*

* There is a function called PerformUnsafelO ... you can guess what it does :-)
But people avoid using it most of the time.

More Computation Expressions(!)

Construct De-sugared Form

let pat = expr in cexpr let pat = expr in cexpr

let! pat = expr in cexpr b.Bind(expr, (fun pat -> cexpr))

return expr b.Return(expr)

return! expr b.ReturnFrom(expr)

yield expr b.Yield(expr)

yield! expr b.YieldFrom(expr)

use pat = expr in cexpr b.Using(expr, (fun pat -> cexpr))

use! pat = expr in cexpr b.Bind(expr, (fun x -> b.Using(x, fun pat -> cexpr))
do! expr in cexpr b.Bind(expr, (fun () -> cexpr))

for pat in expr do cexpr b.For(expr, (fun pat -> cexpr))

while expr do cexpr b.While((fun () -> expr), b.Delay(fun () -> cexpr))
if expr then cexprl else cexpr2 if expr then cexprl else cexpr2

if expr then cexpr if expr then cexpr else b.Zero()

try cexpr with patn -> cexprn b.TryWith(expr, fun v -> match v with (patn:ext) -> cexprn | _ raise exn)
try cexpr finally expr b.TryFinally(cexpr, (fun () -> expr))

cexprl

cexpr2 b.Combine(cexprl, b.Delay(fun () -> cexpr2))

One More Example

let mapl=[("1","One"); ("2","Two")] | > Map.ofList
let map2 =[("A","Alice"); ("B","Bob")] | > Map.ofList
let map3 = [("CA","California"); ("NY","New York")] |> Map.ofList

let multiLookup key =
match mapl.TryFind key with
| Some resultl -> Some resultl // success
| None -> // failure
match map2.TryFind key with
| Some result2 -> Some result2 // success
| None -> // failure
match map3.TryFind key with
| Some result3 -> Some result3 // success
| None -> None // failure

One More Example

let multiLookup key =

. orElse {
let mapl =[("1","One"); ("2","Two")] return! map1.TryFind key
let map2 = [("A","Alice"); ("B","Bob")] return! map2.TryFind key

let map3 = [("CA","California"); ("NY","New Y¢ raturn! map3.TryFind key

let multiLookup key =

}

match mapl.TryFind key with
| Some resultl -> Some resultl // success

| None ->
match map2.TryFin
| Some result2 -> S
| None ->
match ma
| Some re
| None ->

type OrElseBuilder() =
member this.ReturnFrom(x) = x
member this.Combine (a,b) =
match a with
| Some _->a //asucceeds -- use it
| None ->b //afails -- use b instead
member this.Delay(f) = f()

let orElse = new OrElseBuilder()

More Monads & Computation Expressions

Monads for:
— parsing elegantly
— transactional software memory (a concurrency paradigm)
— error handling
— imperative state (mutable data)
— database programming

More computation expressions

— https://fsharpforfunandprofit.com/posts/computation-
expressions-intro/

Amount of known monad tutorials
45
A1)
35
Al
oR
“1
1§
10
!‘-.:I
]

1234567 8901234567890 1

(Picture from Wadler)
An academic paper: Comprehending Monads. Phil Wadler.
https://ncatlab.org/nlab/files/WadlerMonads.pdf

OOPSLA 2006

Phil Wadler at a conference on object-oriented programming (OOPSLA)
advocating for functional programming

Assignment #7

Parallel algorithms in F#
— Async.Parallel

GO TO PRECEPT THIS WEEK! | THINK IT WILL HELP!

— if you get stuck installing F# over holiday break and did not go
to precept, we will have little pity for you.

| RARELY USE ALLCAPS ON MY SLIDES

CONSIDER THIS A HINT

Before precept, install F# on your laptop

