Parallelism 3: Parallel Collections

COS 326
David Walker
Princeton University
• Material on Parallel Complexity from the last couple of lectures:
 – Blelloch, Harper, Licata (CMU, Wesleyan)

• Material on parallel prefix sum:
 – Dan Grossman, UW
Futures: A simple abstraction for parallel programming

```
module type FUTURE =
  sig
    type 'a future

    val future : ('a->'b) -> 'a -> 'b future

    val force : 'a future -> 'a
  end
```

Key idea: supports equational reasoning

- `force (future f x) == f x`
- when `f` is a pure function
- reasoning about parallelism via futures is as easy as reasoning about sequential programs
The complexity of parallel programs

- **Work**: Cost of executing a program with just 1 processor
- **Span**: Cost of executing a program with infinite processors

We can visualize computations:

- **Work**: add up the blocks
- **Span**: length of the longest path

How you allocate computations to processors (ie, *scheduling*) matters, but greedy schedulers do a pretty good job and are used in practice.
Recall the combinator \textbf{both } f \ x \ g \ y

- executes \(f \ x \) and \(g \ y \) in parallel
- visually
- used in divide-and-conquer parallel programming
Recall the combinator *both f x g y*
- executes \(f \times g\) in parallel
- visually
- used in divide-and-conquer parallel programming

Analyzing complexity:
- **Work**: Just like analyzing a sequential program
 - *both f x g y*
 - \(\text{cost} = \text{cost}(f \times x) + \text{cost}(g \times y) + 1\)
 - mirrors summing the cost of all blocks in the diagram
Analyzing Program Complexity

Recall the combinator **both f x g y**
- executes f x and g y in parallel
- visually
- used in divide-and-conquer parallel programming

Analyzing complexity:
- **Work**: Just like analyzing a sequential program
 - both f x g y
 - cost = cost(f x) + cost(g y) + 1
 - mirrors summing the cost of all blocks in the diagram
- **Span**: Also similar to analyzing a sequential program
 - with one key difference
 - both f x g y
 - cost = max (cost(f x), cost(g y)) + 1
 - mirrors finding the length of the longest path through the diagram
COMPLEXITY OF PARALLEL PROGRAMS
Divide-and-Conquer Parallel Algorithms

- Split your input in 2 or more subproblems
- Solve the subproblems recursively in parallel
- Combine the results to solve the overall problem
let rec map f l =
 match l with
 [] -> []
| h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2
let rec map f l =
 match l with
 [] -> []
| h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2

Assume function f takes constant C span,
Assume input list of size n,
$work_map(n) = B + (C + work_map(n-1))$
= $(B+C)*n$
let rec map f l =
 match l with
 | [] -> []
 | h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2

Assume function f takes constant C span,
Assume input list of size n,
span_map(n) = B + max (C, span_map(n-1))
 ~= B + span_map(n-1) (if B*n >> C)
 = B*n
let rec map f l =
 match l with
 | [] -> []
 | h1::t1 ->
 let (h2, t2) = both f hd
 (map f) tail
 in
 h2::t2

work_map(n) = (B+C)*n
span_map(n) = B*n
parallelism(n) = work_map(n)/span_map(n)
 = (B+C)*n/B*n
 =~ C
Parallel Map

let rec map f l =
match l with
[] -> []
| h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2

work_map(n) = (B+C)*n
span_map(n) = B*n
parallelism(n) = work_map(n)/span_map(n)
 = (B+C)*n/B*n
 ~ = C

we can speed the algorithm up by a small fixed constant, but that won't help us process big lists
let rec map f l =
 match l with
 | [] -> []
 | h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2

work_map(n) = (B+C)*n
span_map(n) = B*n
parallelism(n) = work_map(n)/span_map(n)
 = (B+C)*n/B*n
 \approx C

we can only make use of a (small) constant number of machines
let rec map f l =
 match l with
 [] -> []
 | h1::t1 ->
 let (h2,t2) = both f hd
 in
 h2::t2

Problem: splitting and merging lists take linear time – can't get good speedups

Problem: cutting a list in half takes at least time proportional to n/2

Problem: stitching 2 lists together of size n/2 takes n/2 time

Conclusion: lists are a bad data structure to choose for divide-and-conquer parallel programming
Consider balanced trees:

splitting is pretty easy in constant time

merging is harder, but can be done in poly-log time
type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->
 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)
type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
| Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume balanced tree of size n, executing f costs C:
work(n) = work(f i) + work(n/2) + work(n/2)) + B
type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
| Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume balanced tree of size n, executing f costs C:
work(n) = work(f i) + work(n/2) + work(n/2)) + B
 = C + 2*work(n/2) + B
 = (C+B) * n
type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->
 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume balanced tree of size n, executing f costs C:
work(n) = work(f i) + work(n/2) + work(n/2)) + B
 = C + 2*work(n/2) + B
 = (C+B) * n

roughly the same work as listmap
type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume balanced tree of size n, executing f costs C:
span(n) = max (span(f i), max(span(n/2), span(n/2))) + B
type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
| Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume balanced tree of size n, executing f costs C:
\[\text{span}(n) = \max(\text{span}(f \ i), \max(\text{span}(n/2), \text{span}(n/2))) + B \]
\[= \max(C, \max(\text{span}(n/2), \text{span}(n/2))) + B \]
Parallel TreeMap

```
type tree = Empty | Node of tree * int * tree

let rec treemap f l =
  match t with
  Empty  -> Empty
| Node(left, i, right) ->

  let j = future f i in
  let left2, right2 =
    both (treemap f) left
    (treemap f) right
  in
  Node (left2, force j, right2)
```

Assume balanced tree of size n, executing f costs C:

\[
\text{span}(n) = \max (\text{span}(f i), \max(\text{span}(n/2), \text{span}(n/2))) + B
\]

\[
= \max(C, \max(\text{span}(n/2), \text{span}(n/2))) + B
\]

\[
= \text{span}(n/2) + B
\]
type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->
 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume balanced tree of size n, executing f costs C:
span(n) = max (span(f i), max(span(n/2), span(n/2))) + B
 = max(C, max(span(n/2), span(n/2))) + B
 = span(n/2) + B
 = B log n
Parallel TreeMap

define type tree = Empty | Node of tree * int * tree

let rec treemap f l = match t with
 Empty -> Empty
 | Node(left, i, right) ->
 let j = future f i in
 let left2, right2 = both (treemap f) left (treemap f) right in
 Node(left2, force j, right2)

Assume balanced tree of size n, executing f costs C:
\[
\text{span}(n) = \max (\text{span}(f \ i), \max(\text{span}(n/2), \text{span}(n/2))) + B
\]
\[
= \max(C, \max(\text{span}(n/2), \text{span}(n/2))) + B
\]
\[
= \text{span}(n/2) + B
\]
\[
= B \log n
\]

asymptotically better than for lists
Trees or arrays, which can be split into even-sized pieces in constant time speed parallel divide-and-conquer algorithms.
PARALLEL COLLECTIONS
What if you had a really big job to do?

Eg: Create an index of every web page on the planet.
 – Google does that regularly!
 – There are billions of them!

Eg: search facebook for a friend or twitter for a tweet

To get big jobs done, we typically need to harness 1000s of computers at a time, but:
 – how do we distribute work across all those computers?
 – you definitely can't use shared memory parallelism because the computers don't share memory!
 – when you use 1 computer, you just hope it doesn't fail. If it does, you go to the store, buy a new one and restart the job.
 – when you use 1000s of computers at a time, failures become the norm. what to do when 1 of 1000 computers fail. Start over?
Need high-level interfaces to shield application programmers from the complex details. Complex implementations solve the problems of distribution, fault tolerance and performance.

Common abstraction: Parallel collections

Example collections: sets, tables, dictionaries, sequences
Example bulk operations: create, map, reduce, join, filter
PARALLEL SEQUENCES
Parallel Sequences

Parallel sequences

\(< e_1, e_2, e_3, \ldots, e_n >\)

Operations:
- creation (called tabulate)
- indexing an element in constant span
- map
- scan -- like a fold: \(<u, u + e_1, u + e_1 + e_2, \ldots>\) log n span!

Languages:
- Nesl [Blelloch]
- Data-parallel Haskell
- Lots of cool stuff in Scala too
Parallel Sequences: Selected Operations

\[
\text{tabulate} : (\text{int} \rightarrow 'a) \rightarrow \text{int} \rightarrow 'a \ \text{seq} \\
\text{tabulate } f \ n = <f \ 0, f \ 1, \ldots, f \ (n-1)> \\
\text{work} = O(n) \quad \text{span} = O(1)
\]
Parallel Sequences: Selected Operations

\[
\text{tabulate} : (\text{int} \rightarrow 'a) \rightarrow \text{int} \rightarrow 'a \text{ seq}
\]

\[
\text{tabulate } f \ n \ = \ <f \ 0, f \ 1, \ldots, f \ (n-1)>
\]

\[
\text{work} = O(n) \quad \text{span} = O(1)
\]

\[
\text{nth} : 'a \text{ seq} \rightarrow \text{int} \rightarrow 'a
\]

\[
\text{nth} <e_0, e_1, \ldots, e(n-1)> \ i \ = \ e_i
\]

\[
\text{work} = O(1) \quad \text{span} = O(1)
\]
Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

\[
\text{tabulate } f \ n \ = \ <f \ 0, \ f \ 1, \ \ldots, \ f \ (n-1)>
\]

work = \(O(n)\) \quad \text{span} = \(O(1)\)

nth : 'a seq -> int -> 'a

\[
\text{nth } <e_0, \ e_1, \ \ldots, \ e_{(n-1)}> \ i \ = \ e_i
\]

work = \(O(1)\) \quad \text{span} = \(O(1)\)

length : 'a seq -> int

\[
\text{length } <e_0, \ e_1, \ \ldots, \ e_{(n-1)}> \ = \ n
\]

work = \(O(1)\) \quad \text{span} = \(O(1)\)
Write a function that creates the sequence \(<0, ..., n-1> \) with Span = \(O(1) \) and Work = \(O(n) \).

\[
(* \text{ create n} = <0, 1, ..., n-1> *)
\]

let create n =

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

Write a function that creates the sequence \(<0, ..., n-1>\) with Span = \(O(1)\) and Work = \(O(n)\).

(* create n == \(<0, 1, ..., n-1>\) *)
let create n =
 tabulate (fun i -> i) n

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

Write a function such that given a sequence \(<v_0, \ldots, v_{n-1}> \), maps \(f \) over each element of the sequence with Span = \(O(1) \) and Work = \(O(n) \), returning the new sequence (if \(f \) is constant work).

\[
(* \text{ map } f <v_0, \ldots, v_{n-1}> == <f \ v_0, \ldots, f \ v_{n-1}> *) \\
\text{let map } f \ s =
\]

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate (f \ n)</td>
<td>(n)</td>
<td>(1)</td>
</tr>
<tr>
<td>(\text{nth } i \ s)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
<tr>
<td>length (s)</td>
<td>(1)</td>
<td>(1)</td>
</tr>
</tbody>
</table>
Write a function such that given a sequence \(<v_0, \ldots, v_{n-1}>\), maps \(f\) over each element of the sequence with \(\text{Span} = O(1)\) and \(\text{Work} = O(n)\), returning the new sequence (if \(f\) is constant work)

\[
(* \text{map } f \ <v_0, \ldots, v_{n-1}> = <f \ v_0, \ldots, f \ v_{n-1}> *)
\]

let map \(f\) \(s\) =
 tabulate (fun \(i\) -> nth \(s\) \(i\)) (length \(s\))

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate (f) (n)</td>
<td>(n)</td>
<td>1</td>
</tr>
<tr>
<td>nth (i) (s)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length (s)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Write a function such that given a sequence \(<v_1, \ldots, v_{n-1}>,\) reverses the sequence. with Span = \(O(1)\) and Work = \(O(n)\)

\[
(*) \text{ reverse } <v_0, \ldots, v_{n-1}> == <v_{n-1}, \ldots, v_0> (*)
\]

let reverse s =

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Example

Write a function such that given a sequence \(<v_1, ..., v_{n-1}>\), reverses the sequence. with \text{Span} = O(1) \text{ and Work} = O(n)

\[
(* \text{ reverse } <v_0, ..., v_{n-1}> == <v_{n-1}, ..., v_0> *)
\]

let reverse s =
 let n = length s in
 tabulate (fun i -> nth s (n-i-1)) n

Operations:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate f n</td>
<td>n</td>
<td>1</td>
</tr>
<tr>
<td>nth i s</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>length s</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
A Parallel Sequence API

<table>
<thead>
<tr>
<th>Function</th>
<th>Type</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate</td>
<td>(int -> 'a) -> int -> 'a seq</td>
<td>O(N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>length</td>
<td>'a seq -> int</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>nth</td>
<td>'a seq -> int -> 'a</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>append</td>
<td>'a seq -> 'a seq -> 'a seq</td>
<td>O(N+M)</td>
<td>O(1)</td>
</tr>
<tr>
<td>split</td>
<td>'a seq -> int -> 'a seq * 'a seq</td>
<td>O(N)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

For efficient implementations, see Blelloch's NESL project: http://www.cs.cmu.edu/~scandal/nesl.html
A Parallel Sequence API

type 'a seq

<table>
<thead>
<tr>
<th>Function</th>
<th>Work</th>
<th>Span</th>
</tr>
</thead>
<tbody>
<tr>
<td>tabulate</td>
<td>O(N)</td>
<td>O(1)</td>
</tr>
<tr>
<td>length</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>nth</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>append</td>
<td>O(N+M)</td>
<td>O(1)</td>
</tr>
<tr>
<td>split</td>
<td>O(N)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

For efficient implementations, see Blelloch's NESL project:
http://www.cs.cmu.edu/~scandal/nesl.html
We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

```
7  4  3  9  8
```

sum: 0
We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

sum: 0 7
Fold and Reduce

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

```
sum: 0 7 11 14 23 31
```

```
7 4 3 9 8
```
We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

```
let sum_all (l:int list) = reduce (+) 0 l
```

<table>
<thead>
<tr>
<th>7</th>
<th>4</th>
<th>3</th>
<th>9</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

sum: 0 7 11 14 23 31
Fold and Reduce

We have seen many sequential algorithms can be programmed succinctly using fold or reduce. Eg: sum all elements:

```
let sum_all (l:int list) = reduce (+) 0 l
```

Key to parallelization: Notice that because sum is an associative operator, we do not have to add the elements strictly left-to-right:

```
((((((init + v1) + v2) + v3) + v4) + v5) == (((init + v1) + v2) + ((v3 + v4) + v6)
```

```
add on processor 1
```

```
add on processor 2
```
Side Note: Associativity vs Commutativity

Associateivity admits parallelism

\[
(((\text{init} + v_1) + v_2) + v_3) + v_4) + v_5) = (\text{init} + v_1) + v_2 + (v_3 + v_4) + v_6
\]

add on processor 1
add on processor 2

Commutativity allows us to reorder the elements:

\[
v_1 + v_2 = v_2 + v_1
\]

But we don't have to reorder elements to obtain a significant speedup; we just have to reorder the execution of the operations.
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parallel Sum

2 7 4 3 9 8 2 1

2 7 4 3

9 8 2 1
Parallel Sum

<table>
<thead>
<tr>
<th>2</th>
<th>7</th>
<th>4</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>8</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Parallel Sum

2 7
4 3
9 8
2 1

2 7
4 3
9 8
2 1

2 7
4 3
9 8
2 1

2 7
4 3
9 8
2 1
Parallel Sum

2 + 7 + 4 + 3 + 9 + 8 + 2 + 1

9 + 7 + 17 + 3
Parallel Sum

36

+

16 +

9 + 7

2 + 7 + 4 + 3

9 + 8 + 2 + 1
type 'a treeview =
 Empty
| One of 'a
| Pair of 'a seq * 'a seq

let show_tree (s:'a seq) : 'a treeview =
 match length s with
 0 -> Empty
| 1 -> One (nth s 0)
| n -> Pair (split s (n/2))
let rec psum (s : int seq) : int =
 match treeview s with
 | Empty -> 0
 | One v -> v
 | Pair (s1, s2) ->
 let (n1, n2) = both psum s1 psum s2 in
 n1 + n2
If op is associative and the base case has the properties:

- \(\text{op base } X == X \)
- \(\text{op } X \text{ base } == X \)

then the parallel reduce is equivalent to the sequential left-to-right fold.
let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
 match treeview s with
 Empty -> base
 | One v -> f base v
 | Pair (s1, s2) ->
 let (n1, n2) = both (reduce f base) s1
 (reduce f base) s2 in
 f n1 n2
let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
 match treeview s with
 | Empty -> base
 | One v -> f base v
 | Pair (s1, s2) ->
 let (n1, n2) = both (reduce f base) s1
 (reduce f base) s2 in
 f n1 n2

let sum s = reduce (+) 0 s
A little more general

```ocaml
let rec mapreduce (inject: 'a -> 'b)
  (combine:'b -> 'b -> 'b)
  (base:'b)
  (s:'a seq) =

  match treeview s with
  | Empty -> base
  | One v -> inject v
  | Pair (s1, s2) ->
    let (r1, r2) = both mapreduce s1
                 mapreduce s2 in

    combine r1 r2
```
A little more general

let rec mapreduce
 (in:'a -> 'b)(comb:'b -> 'b -> 'b)(b:'b)(s:'a seq) =
 let mr = mapreduce in comb b in
 match treeview s with
 Empty -> b
| One v -> in v
| Pair (s1, s2) ->
 let (r1, r2) = both mr s1
 mr s2 in
 comb r1 r2

let count s = mapreduce (fun x -> 1) (+) 0 s
let rec mapreduce
 (in:'a -> 'b)(comb:'b -> 'b -> 'b)(b:'b)(s:'a seq) =
let mr = mapreduce in comb b in
match treeview s with
 Empty -> b
| One v -> in v
| Pair (s1, s2) ->
 let (r1, r2) = both mr s1
 mr s2 in
comb r1 r2

let count s = mapreduce (fun x -> 1) (+) 0 s

let average s =
 let (count, total) =
 mapreduce (fun x -> (1,x))
 (fun (c1,t1) (c2,t2) -> (c1+c2, t1 + t2))
 (0,0) s in
if count = 0 then 0 else total / count
When data is small, the overhead of parallelization isn't worth it. You should revert to the sequential version.

```ocaml
type 'a treeview =
  Small of 'a seq | Big of 'a treeview * 'a treeview

let show_tree (s:'a seq) : 'a treeview =
  if length s < sequential_cutoff then
    Small s
  else
    Big (split s (n/2))

let rec reduce f b s =
  match treeview s with
  | Small s -> sequential_reduce f b s
  | Big (s1, s2) ->
    let (n1, n2) = both (reduce f b) s1 (reduce f b) s2
    in
    f n1 n2
```
BALANCED PARENTHESSES
The Balanced Parentheses Problem

Consider the problem of determining whether a sequence of parentheses is balanced or not. For example:

- balanced: ()()((()))
- not balanced: (())
- not balanced:)
- not balanced: ()())

We will try formulating a divide-and-conquer parallel algorithm to solve this problem efficiently:

type paren = L | R (* L(eft) or R(ight) paren *)

let balanced (ps : paren seq) : bool = ...
First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

0
First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

0 1
First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

0 1 2
First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

0 1 2 1
First, a sequential approach

fold from left to right, keep track of # of unmatched left parens

0 1 2 1 0
First, a sequential approach

Fold from left to right, keep track of # of unmatched left parens

Too many right parens indicates no match
First, a sequential approach

if you reach the end of the sequence, you should have no unmatched left parens
Easily Coded Using a Fold

let rec fold f b s =
 let rec aux n accum =
 if n >= length s then
 accum
 else
 aux (n+1) (f (nth s n) accum)
 in
 aux 0 b
(* check to see if we have too many unmatched R parens

so_far : number of unmatched parens so far
or None if we have seen too many R parens

*)

let check (p:paren) (so_far:int option) : int option =
match (p, so_far) with
 (_, None) -> None
| (L, Some c) -> Some (c+1)
| (R, Some 0) -> None (* violation detected *)
| (R, Some c) -> Some (c-1)
let fold f base s = ...

let check so_far s = ...

let balanced (s: paren seq) : bool =
 match fold check (Some 0) s with
 Some 0 -> true
 | (None | Some n) -> false
Key insights

– if you find () in a sequence, you can delete it without changing the balance
Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:
 •))) ... j ...))) (((... k ... (((
Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:
 •))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy
Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:
 •))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy
Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((()))) ... x ...))) (((... y ... (((
Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:
 -))) ... j ...))) ((((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy

Combining two sequences where we have deleted all ():

–))) ... j ...))) ((((... k ... ((())) ... x ...))) ((((... y ... (((

– if x > k then))) ... j ...)))))) ... x – k ...))) ((((... y ... (((
Key insights

– if you find () in a sequence, you can delete it without changing the balance

– if you have deleted all of the pairs (), you are left with:

 •))) ... j ...))) (((... k ... (((

For divide-and-conquer, splitting a sequence of parens is easy

Combining two sequences where we have deleted all ():

–))) ... j ...))) (((... k ... ((())) ... x ...))) (((... y ... (((

– if \(x > k \) then))) ... j ...)))))) ... x − k ...))) (((... y ... (((

– if \(x < k \) then))) ... j ...))) (((... k − x ... ((((((... y ... (((
let rec matcher s =
 match show_tree s with
 | Empty -> (0, 0)
 | One L -> (0, 1)
 | One R -> (1, 0)
 | Pair (left, right) ->
 let (j, k), (x, y) = both matcher left
 in
 if x > k then
 (j + (x - k), y)
 else
 (j, (k - x) + y)
let rec matcher s =
match show_tree s with
 Empty -> (0, 0)
| One L -> (0, 1)
| One R -> (1, 0)
| Pair (left, right) ->
 let (j, k), (x, y) = both matcher left
 matcher right in
 if x > k then
 (j + (x - k), y)
 else
 (j, (k - x) + y)
let matcher s = ...

(* true if s is a sequence of balanced parens *)
let balanced s =
 match matcher s with
 | (0, 0) -> true
 | (i,j) -> false

Work: $O(N)$
Span: $O(\log N)$
Using a Parallel Fold

```ocaml
let rec mapreduce (inject: 'a -> 'b) (combine: 'b -> 'b -> 'b) (base: 'b) (s: 'a seq) = ...

let inject paren =  
  match paren with  
    L -> (0, 1)  
  | R -> (1, 0)

let combine (j,k) (x,y) =  
  if x > k then (j + (x - k), y)  
  else (j, (k - x) + y)

let balanced s =  
  match mapreduce inject combine (0,0) s with  
  | (0, 0) -> true  
  | (i,j) -> false
```
let rec mapreduce (inject: 'a -> 'b)
 (combine: 'b -> 'b -> 'b)
 (base: 'b)
 (s: 'a seq) = ...

let inject paren =
 match paren with
 | L -> (0, 1)
 | R -> (1, 0)

let combine (j,k) (x,y) =
 if x > k then (j + (x - k), y)
 else (j, (k - x) + y)

let balanced s =
 match mapreduce inject combine (0,0) s with
 | (0, 0) -> true
 | (i,j) -> false

For correctness, check the associativity of combine
also check:
 combine base (i,j) == (i, j)
PARALLEL SCAN AND PREFIX SUM
The prefix-sum problem

Sum of Sequence:

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>76</td>
<td></td>
</tr>
</tbody>
</table>

Prefix-Sum of Sequence:

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>6</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>66</td>
<td>68</td>
<td>76</td>
</tr>
</tbody>
</table>
The prefix-sum problem

```scala
val prefix_sum : int seq -> int seq
```

<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>6</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>66</td>
<td>68</td>
<td>76</td>
</tr>
</tbody>
</table>

The simple sequential algorithm: accumulate the sum from left to right

- Sequential algorithm: Work: $O(n)$, Span: $O(n)$
- Goal: a parallel algorithm with Work: $O(n)$, Span: $O(\log n)$
Parallel prefix-sum

The trick: *Use two passes*
- Each pass has $O(n)$ work and $O(\log n)$ span
- So in total there is $O(n)$ work and $O(\log n)$ span

First pass *builds a tree of sums bottom-up*
- the “up” pass

Second pass *traverses the tree top-down to compute prefixes*
- the “down” pass computes the "from-left-of-me" sum

Historical note:
- Original algorithm due to R. Ladner and M. Fischer, 1977
<table>
<thead>
<tr>
<th>input</th>
<th>6</th>
<th>4</th>
<th>16</th>
<th>10</th>
<th>16</th>
<th>14</th>
<th>2</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>output</td>
<td>6</td>
<td>10</td>
<td>26</td>
<td>36</td>
<td>52</td>
<td>66</td>
<td>68</td>
<td>76</td>
</tr>
</tbody>
</table>
The algorithm, pass 1

1. Up: Build a binary tree where
 - Root has sum of the range \([x, y]\)
 - If a node has sum of \([lo, hi]\) and \(hi > lo\),
 - Left child has sum of \([lo, middle]\)
 - Right child has sum of \([middle, hi]\)
 - A leaf has sum of \([i, i+1]\), i.e., \(\text{nth input } i\)

This is an easy parallel divide-and-conquer algorithm: “combine” results by actually building a binary tree with all the range-sums
 - Tree built bottom-up in parallel

Analysis: \(O(n)\) work, \(O(\log n)\) span
The algorithm, pass 2

2. Down: Pass down a value \texttt{fromLeft}

 - Root given a \texttt{fromLeft} of 0

 - Node takes its \texttt{fromLeft} value and

 • Passes its left child the same \texttt{fromLeft}

 • Passes its right child its \texttt{fromLeft} plus its left child’s \texttt{sum}

 — as stored in part 1

 - At the leaf for sequence position \(i\),

 • \texttt{nth output } \(i\) \(==\) \texttt{fromLeft} + \texttt{nth input } \(i\)

This is an easy parallel divide-and-conquer algorithm: traverse the tree built in step 1 and produce no result

- Leaves create \texttt{output}

- Invariant: \texttt{fromLeft} is sum of elements left of the node’s range

Analysis: \(O(n)\) work, \(O(\log n)\) span
For performance, we need a sequential cut-off:

- **Up:**
 - just a sum, have leaf node hold the sum of a range

- **Down:**
 - do a sequential scan
Parallel prefix, generalized

Just as map and reduce are the simplest examples of a common pattern, prefix-sum illustrates a pattern that arises in many, many problems

- Minimum, maximum of all elements *to the left of* \(i \)

- Is there an element *to the left of* \(i \) satisfying some property?

- Count of elements *to the left of* \(i \) satisfying some property
 - This last one is perfect for an efficient parallel filter ...
 - Perfect for building on top of the “parallel prefix trick”
Parallel Scan

\[
\text{scan (o) } \langle x_1, \ldots, x_n \rangle
\]

\[
\equiv
\langle x_1, x_1 \circ x_2, \ldots, x_1 \circ \ldots \circ x_n \rangle
\]

sequence with \(\circ \) applied to all items to the left of index in input

like a fold, except return the folded prefix at each step

\[
\text{pre_scan (o) base } \langle x_1, \ldots, x_n \rangle
\]

\[
\equiv
\langle \text{base}, \text{base} \circ x_1, \ldots, \text{base} \circ x_1 \circ \ldots \circ x_{n-1} \rangle
\]
More Algorithms

- To add multiprecision numbers.
- To evaluate polynomials.
- To solve recurrences.
- To implement radix sort.
- To delete marked elements from an array.
- To dynamically allocate processors.
- To perform lexical analysis. For example, to parse a program into tokens.
- To search for regular expressions. For example, to implement the UNIX grep program.
- To implement some tree operations. For example, to find the depth of every vertex in a tree.
- To label components in two dimensional images.

See Guy Blelloch “Prefix Sums and Their Applications”
Summary

Folds and reduces are easily coded as parallel divide-and-conquer algorithms with \(O(n)\) work and \(O(\log n)\) span.

Scans are trickier and use a 2-pass algorithm that builds a tree.

The map-reduce-fold paradigm, inspired by functional programming, is a big winner when it comes to big data processing.

Hadoop is an industry standard but higher-level data processing languages have been built on top.