Parallelism 3:
Parallel Collections

COS 326
David Walker
Princeton University

slides copyright 2017 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Credits

* Material on Parallel Complexity from the last couple of
lectures:

— Blelloch, Harper, Licata (CMU, Wesleyan)

* Material on parallel prefix sum:
— Dan Grossman, UW
— http://homes.cs.washington.edu/~djg/teachingMaterials/spac

Last Time

Futures: A simple abstraction for parallel programming

module type FUTURE =
sig
type ‘a future

val future : (‘a->‘b) -> ‘Ya -> ‘b future
val force : ‘a future -> ‘a
end

Key idea: supports equational reasoning
— force (future f x) == f x
— when fis a pure function

— reasoning about parallelism via futures is as easy as reasoning
about sequential programs

[Last Time

The complexity of parallel programs
— Work: Cost of executing a program with just 1 processor
— Span: Cost of executing a program with infinite processors

We can visualize computations:
— Work: add up the blocks
— Span: length of the longest path

How you allocate computations to
processors (ie, scheduling) matters,

but greedy schedulers do a pretty good

job and are used in practice.

[Analyzing Program Complexity

Recall the combinator both fx gy

— executesfxand gy in parallel

— visually

— used in divide-and-conquer parallel programming

[Analyzing Program Complexity

Recall the combinator both fx gy

— executesfxand gy in parallel

— visually

— used in divide-and-conquer parallel programming

Analyzing complexity:
— Work: Just like analyzing a sequential program
— bothfxgy
— cost = cost(f x) + cost(gy) + 1
— mirrors summing the cost of all blocks in the diagram

[Analyzing Program Complexity

Recall the combinator both fx gy

— executesfxand gy in parallel

— visually

— used in divide-and-conquer parallel programming

Analyzing complexity:

— Work: Just like analyzing a sequential program
— bothfxgy
— cost = cost(f x) + cost(gy) + 1
— mirrors summing the cost of all blocks in the diagram

— Span: Also similar to analyzing a sequential program
— with one key difference
— bothfxgy
— cost = max (cost(f x), cost(gy)) +1
— mirrors finding the length of the longest path through the diagram

COMPLEXITY OF
PARALLEL PROGRAMS

Divide-and-Conquer Parallel Algorithms

e Split your inputin 2 or more subproblems
* Solve the subproblems recursively in parallel
 Combine the results to solve the overall problem

split

recur in parallel

merge

Parallel Map

let rec map £ 1 =

match 1 with
[> 1]

| hl::tl1l ->
let (h2,t2) =

both f hd
(map f) tail

in
h2::t2

Parallel Map

let rec map £ 1 =

match 1 with
[> 1]

| hl::t1 ->
let (h2,t2) =

both £ hd
(map f) tail

in
h2::t2

Assume function f takes constant C span,
Assume input list of size n,
work_map(n) = B + (C + work_map(n-1))
= (B+C)*n

Parallel Map

let rec map £ 1 =

match 1 with
(I => 1]

| hl::t1 ->
let (h2,t2) =

both f hd
(map f£) tail

in
h2::t2

Assume function f takes constant C span,
Assume input list of size n,

span_map(n) = B+ max (C, span_map(n-1))

~= B+ span_map(n-1)
= B*n

(if B*n >> C)

Parallel Map

let rec map £ 1 =

match 1 with
(I => 1]

| hl::t1 ->
let (h2,t2) =

both f hd
(map f£) tail

in
h2::t2

work_map(n) = (B+C)*n

span_map(n) = B*n

parallelism(n) = work_map(n)/span_map(n)
= (B+C)*n/B*n
~=C

Parallel Map

we can speed
the algorithm
up by a small
fixed constant,
but that won't
help us process

big lists O\

let rec map £ 1 =

match 1 with
(I => 1]

| hl::t1 ->
let (h2,t2) =

both f hd
(map f£) tail

in
h2::t2

N work_map(n) = (B+C)*n

span_map(n) = B*n
parallelism(n) = work_map(n)/span_map(n)

(B+C)*n/B*n
=C

~

Parallel Map

let rec map £ 1 =

match 1 with
(I => 1]

| hl::t1 ->
let (h2,t2) =

both f hd
(map f£) tail

in
h2::t2

work_map(n) = (B+C)*n
span_map(n) = B*n

parallelism(n) = work_map(n)/span_map(n)

= (B'l'C)(*n/B*n/
~=C

we can only
make use of
a (small)
constant
number of
machines

[Parallel Map

let rec map £ 1 =
match 1 with
[=> []
| hl::t1 ->
let (h2,t2) =
both f hd

Problem: splitting and merging lists take linear time — can't get good speedups
Problem: cutting a list in half takes at least time proportional to n/2
Problem: stitching 2 lists together of size n/2 takes n/2 time

Conclusion: lists are a bad data structure to choose for divide-and conquer parallel
programming

Complexity

Consider balanced trees:

splitting is
pretty easy

in constant
A time

merging is harder, but can be done in poly-log time

Parallel TreeMap

type tree = Empty | Node of tree * int * tree

let rec treemap £ 1 =
match t with
Empty -> Empty
| Node (left, 1, right) ->

let 7 = future £ 1 1in
let left2, right2 =
both (treemap f) left
(treemap f) right
in
Node (left2, force j, right2)

[Parallel TreeMap

let rec treemap £ 1 =
match t with
Empty -> Empty
| Node (left, 1, right) ->

let J = future £ 1 1n
let left2, right2 =
both (treemap f) left
(treemap f) right
in
Node (left2, force j, right2)

type tree = Empty | Node of tree * int * tree

Assume balanced tree of size n, executing f costs C:
work(n) = work(f i) + work(n/2) + work(n/2)) + B

[Parallel TreeMap

let rec treemap £ 1 =
match t with
Empty -> Empty
| Node (left, 1, right) ->

let J = future £ 1 1n
let left2, right2 =
both (treemap f) left
(treemap f) right
in
Node (left2, force j, right2)

type tree = Empty | Node of tree * int * tree

Assume balanced tree of size n, executing f costs C:
work(n) = work(f i) + work(n/2) + work(n/2)) + B

= C+ 2*work(n/2) + B

=(C+B) * n

Parallel TreeMap

let rec treemap £ 1 =
match t with
Empty -> Empty
| Node (left, 1, right) ->

let J = future £ 1 1n
let left2, right2 =
both (treemap f) left

in

(treemap f) right

Node (left2, force 3, right?2)

type tree = Empty | Node of tree * int * tree

Assume balanced tree of size n, executing f costs C:

work(n) = work(f i) + work(n/2) + work(n/2)) + B
= C+ 2*work(n/2) + B
= (C+B) * n

roughly the same
work as listmap

[Parallel TreeMap

let rec treemap £ 1 =
match t with
Empty -> Empty
| Node (left, 1, right) ->

let J = future £ 1 1n
let left2, right2 =
both (treemap f) left
(treemap f) right
in
Node (left2, force j, right2)

type tree = Empty | Node of tree * int * tree

Assume balanced tree of size n, executing f costs C:
span(n) = max (span(f i), max(span(n/2), span(n/2)) + B

[Parallel TreeMap

type tree = Empty | Node of tree * int * tree

let rec treemap £ 1 =
match t with
Empty -> Empty
| Node (left, 1, right) ->

let J = future £ 1 1n
let left2, right2 =
both (treemap f) left
(treemap f) right
in
Node (left2, force j, right2)

Assume balanced tree of size n, executing f costs C:
span(n) = max (span(f i), max(span(n/2), span(n/2)) + B
= max(C, max(span(n/2), span(n/2))) + B

[Parallel TreeMap

type tree = Empty | Node of tree * int * tree

let rec treemap £ 1 =
match t with
Empty -> Empty
| Node (left, 1, right) ->

let J = future £ 1 1n
let left2, right2 =
both (treemap f) left
(treemap f) right
in
Node (left2, force j, right2)

Assume balanced tree of size n, executing f costs C:

span(n) = max (span(f i), max(span(n/2), span(n/2)) + B
= max(C, max(span(n/2), span(n/2))) + B
=span(n/2) + B

[Parallel TreeMap

type tree = Empty | Node of tree * int * tree

let rec treemap £ 1 =
match t with
Empty -> Empty
| Node (left, 1, right) ->

let J = future £ 1 1n
let left2, right2 =
both (treemap f) left
(treemap f) right
in
Node (left2, force j, right2)

Assume balanced tree of size n, executing f costs C:
span(n) = max (span(f i), max(span(n/2), span(n/2)) + B
= max(C, max(span(n/2), span(n/2))) + B
=span(n/2) + B
=B logn

Parallel TreeMap

let rec treemap £ 1 =
match t with
Empty -> Empty
| Node (left, 1, right) ->

let J = future £ 1 1n
let left2, right2 =
both (treemap f) left
(treemap f) right
in

Node (left2, force 3, right?2)

type tree = Empty | Node of tree * int * tree

Assume balanced tree of size n, executing f costs C:
span(n) = max (span(f i), max(span(n/2), span(n/2)) + B
= max(C, max(span(n/2), span(n/2))) + B
=span(n/2) + B
=B logn

asymptotically
better than for
lists

Lists vs Trees

Lists: Trees:

work(n) = (B+C)*n work(n) = (B+C)*n

span(n) = B*n span(n) = Blogn

parallelism(n) = work(n)/span(n) parallelism(n) = work(n)/span(n)
~=C ~=Cn/logn

Trees or arrays, which can be split into even-sized pieces in
constant time speed parallel divide-and-conquer algorithms

PARALLEL COLLECTIONS

What if you had a really big job to do?

Eg: Create an index of every web page on the planet.
— Google does that regularly!
— There are billions of them!

Eg: search facebook for a friend or twitter for a tweet

To get big jobs done, we typically need to harness 1000s of
computers at a time, but:
— how do we distribute work across all those computers?

— you definitely can't use shared memory parallelism because the
computers don't share memory!

— when you use 1 computer, you just hope it doesn't fail. If it does,
you go to the store, buy a new one and restart the job.

— when you use 1000s of computers at a time, failures become the
norm. what to do when 1 of 1000 computers fail. Start over?

Big Jobs ---> Better Abstractions

Need high-level interfaces to shield application programmers
from the complex details. Complex implementations solve the
problems of distribution, fault tolerance and performance.

Common abstraction: Parallel collections

Example collections: sets, tables, dictionaries, sequences
Example bulk operations: create, map, reduce, join, filter

PARALLEL SEQUENCES

Parallel Sequences

Parallel sequences

<el,e?2,e3,..,en>

Operations:
— creation (called tabulate)
— indexing an element in constant span
— map

— scan -- like afold: <u, u+el,u+el +e2,..> log nspan!

Languages:
— Nesl [Blelloch]
— Data-parallel Haskell
— Lots of cool stuff in Scala too

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq

tabulate £ n == <f 0, £ .., £ (n-1)>

1,
work = 0O (n) span O(1)

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq
tabulate £f n == <£ 0, £ 1, ..., £ (n-1)>
work = O (n) span = 0O(1)

nth : 'a seq -> int -> 'a

nth <e0, el, ..., e(n-1)> 1 == el
work = O (1) span = 0O(1)

Parallel Sequences: Selected Operations

tabulate : (int -> 'a) -> int -> 'a seq
tabulate £t n == <f 0, £ 1, ., £ (n-1)>
work = 0O (n) span = 0O(1)

nth : 'a seq -> int -> 'a

nth <e0, el, ..., e(n-1)> 1 == el

work = O (1) span = 0O(1)

length : 'a seg -> int

length <e0, el, ..., e(n-1)> ==

work = O (1) span = 0O(1)

Example

Write a function that creates the sequence <0, ..., n-1>
with Span = O(1) and Work = O(n).

(* create n == <0, 1, ..., n-1> *)
let create n =

Operations:

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Example

Write a function that creates the sequence <0, ..., n-1>
with Span = O(1) and Work = O(n).

(* create n == <0, 1,
let create n =
tabulate (fun 1 -> 1) n

., n—-1> *)

Operations:

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Example

Write a function such that given a sequence <vO0, ..., vn-1>,

maps f over each element of the sequence with Span = O(1) and
Work = O(n), returning the new sequence (if f is constant work)

(* map £ <vO,
let map £ s =

., vn-1> == <f vO, ..., £ vn-1> *)

Operations:

Work Span
tabulate f n n 1
nth 1 s 1 1
length s 1 1

Example

Write a function such that given a sequence <vO0, ..., vn-1>,

maps f over each element of the sequence with Span = O(1) and
Work = O(n), returning the new sequence (if f is constant work)

(* map £ <vO,
let map £ s =
tabulate (fun 1 -> nth s 1) (length s)

., vh-1> == <f vO, ., £ vn-1> *)

Operations:

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Example

Write a function such that given a sequence <vl, ..., vn-1>,
reverses the sequence. with Span = O(1) and Work = O(n)

(* reverse <v0, ..., vn-1> == <vn-1,
let reverse s =

., v0> *)

Operations:

Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Example

Write a function such that given a sequence <vl, ..., vn-1>,
reverses the sequence. with Span = O(1) and Work = O(n)

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =
let n = length s in

tabulate (fun i1 -> nth s (n-i-1)) n
Operations:
Work Span
tabulate f n n 1
nth 1 s 1 1
length s 1 1

A Parallel Sequence API

type 'a seq Work Span
tabulate : (int -> 'a) -> int -> 'a seq O(N) O(1)
length : 'a seqg -> int O(1) O(1)
nth : 'a seq -> int -> 'a O(1) O(1)
append : 'a seq -> 'a seq -> 'a seq O(N+M) O(1)
split : 'a seq -> 1int -> 'a seq * 'a seq O(N) 0O(1)

For efficient implementations, see Blelloch's NESL project:
http://www.cs.cmu.edu/~scandal/nesl.html

[A Parallel Sequence API

type 'a seq Work Span
tabulate : (int -> 'a) -> int -> 'a seq O(N) O(1)
length : 'a seqg -> 1int O(1) O(1)
nth : 'a seq -> int -> 'a O(1) O(1)
append : 'a seq -> 'a seqg -> 'a seq O(N+M) O(1)
split : 'a seq -> int -> 'a seq * 'a seq (Q(N) 0(1)

For efficient implementations, see Blelloch's NESL project:
http://www.cs.cmu.edu/~scandal/nesl.html

[Fold and Reduce

We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

sum: 0

.

7 4 3 9 8

[Fold and Reduce

We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

sum: 0 7

AV

7 4 3 9 8

[Fold and Reduce

We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

sum: 0 7 11 14 23 31

[Fold and Reduce

We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

sum: 0 7 11 14 23 31

let sum all (l:int list) = reduce (+) 0 1

[Fold and Reduce]

We have seen many sequential algorithms can be programmed
succinctly using fold or reduce. Eg: sum all elements:

- W
7 4 3 9 8
let sum all (l:int list) = reduce (+) 0 1

Key to parallelization: Notice that because sum is an associative
operator, we do not have to add the elements strictly left-to-right:

(((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) +v2) + ((v3 + v4) + vb)

/ ~

add on processor 1 add on processor 2

Side Note: Associativity vs Commutativity

Associativity admits parallelism

(((((init + v1) + v2) + v3) + v4) + v5) == ((init + v1) +v2) + ((v3 + v4) + vb)

/ ~

add on processor 1 add on processor 2

Commutativity allows us to reorder the elements:

vli+v2==v2+vl

But we don't have to reorder elements to obtain a significant speedup;
we just have to reorder the execution of the operations.

Parallel Sum

Parallel Sum

Parallel Sum

Parallel Sum

7 N
7~ N 7 N
7~ N SN SN SN

Parallel Sum

9 7 17 3

N TN TN 7N

Parallel Sum

36

/ N
"

16 20

/ 77N

N TN TN 7N

4

Splitting Sequences

type 'a treeview =

Empty
| One of 'a

| Pair of 'a seqg *

let show tree

(s:'a seq)

match length s with
0 -> Empty

| 1 -> One
| n -> Pair

(nth s 0)
(split s

'a seq

'a treeview

(n/2))

Parallel Sum

let rec psum (s : 1nt seq) : int =
match treeview s with
Empty -> 0
| One v -> v
| Pair (sl, s2) ->
let (nl, n2) = both psum sl

psum sZ2 1in
nl + n2

Parallel Reduce

2 7/ 4 8 1
SN
2 7 4 3 1
SN SN
2 7 4 3 9 8 2 1
/ o \
4

2

op\
7

N SN S

1

If op is associative and the base case has the properties:
op X base ==

op base X ==

then the parallel reduce is equivalent to the sequential left-to-right fold.

Parallel Reduce

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
match treeview s with
Empty —-> base
| One v -> f base v
| Pair (sl, s2) —->
let (nl, n2) = both (reduce f base) sl
(reduce f base) s2 in
f nl n2

Parallel Reduce

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
match treeview s with
Empty —-> base
| One v -> f base v

| Pair (sl, s2) —->
let (nl, n2) = both (reduce f base) sl
(reduce f base) s2 in
f nl n2

let sum s = reduce (+) 0O s

A little more general

.

let rec mapreduce (inject: 'a -> 'b)
(combine:'b -> 'b -> 'b)
(base: "b)
(s:'a seq) =
match treeview s with
Empty —-> base
| One v -> inject v
| Pair (sl, s2) ->
let (rl, r2) = both mapreduce sl
mapreduce sZ2 1in

combine rl r2

A little more general

let rec mapreduce
(in:'a -> 'b) (comb:'b -> 'b -> 'b) (b:'b) (s:'a seq) =
let mr = mapreduce in comb b in
match treeview s with

Empty -> b
| One v -> 1in v
| Pair (sl, s2) ->
let (rl, r2) = both mr sl

mr s2 1n
comb rl r2

let count s = mapreduce (fun x -> 1) (+) 0 s

A little more general

.

let rec mapreduce
(in:'a -> 'b) (comb:'b -> 'b -> 'b) (b:'b) (s:'a seq) =

let mr = mapreduce 1n comb b 1n
match treeview s with
Empty -> Db
| One v -> 1in v
| Pair (sl, s2) ->
let (rl, r2) = both mr sl

mr s2 1n
comb rl r2

let count s = mapreduce (fun x -> 1) (+) 0 s

let average s =
let (count, total) =
mapreduce (fun x -> (1,x))
(fun (cl,tl) (c2,t2) -> (cl+c2, tl + t2))
(0,0) s 1in
0

if count = then 0 else total / count

Parallel Reduce with Sequential Cut-off

When data is small, the overhead of parallelization isn't worth it.
You should revert to the sequential version.

type 'a treeview =
Small of 'a seq | Big of 'a treeview * 'a treeview

let show tree (s:'a seq) : 'a treeview =
1f length s < sequential cutoff then
Small s
else

Big (split s (n/2))

let rec reduce f b s =
| match treeview s with
Small s -> sequential reduce f b s
| Big (sl, s2) ->
let (nl, n2) = both (reduce f Db)
(reduce £ Db)
in
f nl n?

sl
s2

BALANCED PARENTHESES

The Balanced Parentheses Problem

Consider the problem of determining whether a sequence of
parentheses is balanced or not. For example:

— balanced: ()()(())
— not balanced: (
— not balanced:)
— not balanced: ()))

We will try formulating a divide-and-conquer parallel algorithm
to solve this problem efficiently:

type paren = L | R (* L(eft) or R(i1ght) paren *)

let balanced (ps : paren seq) : bool = ...

First, a sequential approach

fold from left to right, keep track of
of unmatched left parens

(())) (

First, a sequential approach

fold from left to right, keep track of
of unmatched left parens

(())) (

1

First, a sequential approach

fold from left to right, keep track of
of unmatched left parens

(())) (

1 2

First, a sequential approach

fold from left to right, keep track of
of unmatched left parens

(())) (

1 2 1

First, a sequential approach

fold from left to right, keep track of
of unmatched left parens

(())) (

1 2 1 0

First, a sequential approach

fold from left to right, keep track of
of unmatched left parens

>

(())) () (

1 2 1 0 -111

too many right parens
indicates no match

First, a sequential approach

if you reach the end of
the end of the sequence,
you should have no
unmatched left parens

Easily Coded Using a Fold

fold:

b fbvl f(fbvl)v2

vl v2

let rec fold £ b s =

let rec aux n

accum =

1f n >= length s then

accum
else
aux (n+1)
in
aux 0 b

(f (nth s n) accum)

Easily Coded Using a Fold

(* check to see 1f we have too many unmatched R parens

so far number of unmatched parens so far
or None i1f we have seen too many R parens
*)
let check (p:paren) (so far:int option) int option =
match (p, so far) with
(, None) -> None

| (L, Some c) -> Some (c+1)

| (R, Some 0) -> None (* violation detected *)
| (R, Some c) -> Some (c-1)

Easily Coded Using a Fold

let fold f base s =
let check so far s =

let balanced (s: paren seq) : bool =
match fold check (Some 0) s with
Some 0 —-> true
| (None | Some n) —-> false

Parallel Version

Key insights

— if you find () in a sequence, you can delete it without changing
the balance

Parallel Version

Key insights

— if you find () in a sequence, you can delete it without changing
the balance

— if you have deleted all of the pairs (), you are left with:

* M) (ke ((

Parallel Version

Key insights

— if you find () in a sequence, you can delete it without changing
the balance

— if you have deleted all of the pairs (), you are left with:

* M) (ke ((

For divide-and-conquer, splitting a sequence of parens is easy

Parallel Version

Key insights

— if you find () in a sequence, you can delete it without changing
the balance

— if you have deleted all of the pairs (), you are left with:

* M) (ke ((

For divide-and-conquer, splitting a sequence of parens is easy
Combining two sequences where we have deleted all ():

=) e) (e ke (G D) cox D)) (G y e (U

Parallel Version

Key insights

— if you find () in a sequence, you can delete it without changing
the balance

— if you have deleted all of the pairs (), you are left with:

* M) (ke ((

For divide-and-conquer, splitting a sequence of parens is easy
Combining two sequences where we have deleted all ():

=) e) (e ke (G D) cox D)) (G y e (U

—ifx>kthen))) o j o))) o x—k) (((oey o (U

Parallel Version

Key insights
— if you find () in a sequence, you can delete it without changing
the balance

— if you have deleted all of the pairs (), you are left with:

* M) (ke ((

For divide-and-conquer, splitting a sequence of parens is easy
Combining two sequences where we have deleted all ():

=) e) (e ke (G D) cox D)) (G y e (U

—ifx>kthen))) o j)) o x—k) (o y o (0

— ifx<kthen)))...j...))) (((.-c k=>cco ((C (CC..y - (C(

Parallel Matcher

(* delete all () and return the (j, k) corresponding to:

DD I P B B R G S

<)

let rec matcher s =

match show tree s with
Empty —-> (0, 0))) (R P
| One L -> (0, 1) B N) ox) (.. y .. (((
| One R -> (1, 0)
| Pair (left, right) -> ////V
let (3, k), (x, y) = both matcher left
matcher right in

1f x > k then

(J + (x = k), y)
else

(3, (k- x) + V)

Parallel Matcher

(* delete all and return the k)

() (J/

))) ..]
*)
let rec matcher s =
match show tree s with
Empty -> (0, 0)
| One L -> (0, 1)
| One R -> (1, 0)

| Pair (left, right)
let (3, k), (x, V)

->

1f x > k then

(J + (x = k), y)
else
(J, (k — x) + vy)

corresponding to:

(((

Work: O(N)
Span: O(log N)

both matcher left
matcher right

in

Parallel Balance]

(* x)

let matcher s =

(* true 1f s 1s a sequence of balanced parens ¥*)
let balanced s =
match matcher s with
| (0, 0) -> true
| (i,7) -> false

Work: O(N)

Span: O(log N)

Using a Parallel Fold

let rec mapreduce(inject: 'a -> 'Db)
(combine:'b -> 'b -> 'Db)
(base: '"b)
(

s:'a seq) =

let inject paren =
match paren with

L -> (0, 1)

| R -> (1, 0)

let combine (3,k) (x,y) =
if x > k then (3 + (x — k), vy)
else (J, (k — x) + vy)

let balanced s =
match mapreduce inject combine (0,0)
| (0, 0) -> true
| (i,7) -> false

s with

Using a Parallel Fold

let rec mapreduce (inject: 'a -> 'b)
(combine:'b -> 'b -> 'Db)
(base: 'b)
(

s:'a seq) =

\<W

For correctness,
check the associativity
of combine

let inject paren =
match paren with

L -> (0, 1)

| R —> (1, 0)

also check:
combine base (i,j) == (i, j)

let combine (j,k) (x,y) =
if x > k then (3 + (x — k), vy)
else (J, (k — x) + vy)

let balanced s =
match mapreduce inject combine (0,0) s with
| (0, 0) -> true
| (1,J) -> false

PARALLEL SCAN AND PREFIX SUM

|

The prefix-sum problem

Sum of Sequence:

input

output

input

6 16 10 16 14
76
Prefix-Sum of Sequence:
4 16 10 16 14 2 8
10 26 36 52 66 68 76

output

The prefix-sum problem

val prefix_sum :int seq -> int seq

input 6 4 16 10 16 14 2 3

output 6 10 26 36 52 66 68 76

The simple sequential algorithm: accumulate the sum from left to right

— Sequential algorithm: Work: O(n), Span: O(n)
— Goal: a parallel algorithm with Work: O(n), Span: O(log n)

Parallel prefix-sum

The trick: Use two passes
— Each pass has O(n) work and O(1og n) span
— So in total there is O(n) work and O(1og n) span

First pass builds a tree of sums bottom-up

— the “up” pass

Second pass traverses the tree top-down to compute prefixes
— the “down” pass computes the "from-left-of-me" sum

Historical note:
— Original algorithm due to R. Ladner and M. Fischer, 1977

91

input

output

range 0,8
sum 76
fromleft
range 0,4 range 4,8
sum 36 sum 40
fromleft fromleft
range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft fromleft fromleft fromleft
r 0,1 r 1,2 r 2,3 r 3,4 r 4,5 r 5,6 r 6,7 r 7,8
S 6 S 4 S 16 S 10 S 16 S 14 s 2 S 8
f f f f f f f f
6 4 16 10 16 14 2 8

input

output

range 0,8
sum 76
fromleft 0
range 0,4 range 4,8
sum 36 sum 40
fromleft O fromleft 36
range 0,2 range 2,4 range 4,6 range 6,8
sum 10 sum 26 sum 30 sum 10
fromleft O fromleft 10 fromleft 36 fromleft 66
r 0,1 r 1,2 r 2,3 r 3,4 r 4,5 r 5,6 r 6,7 r 7,8
S 6 4 S 16 S 10 S 16 S 14 S 2 S 8
f O 6 f 10 f 26 f 36 ||f 52 f 66 f 68
6 4 16 10 16 14 2 8
6 10 26 36 52 66 68 76

[The algorithm, pass 1

1. Up: Build a binary tree where
— Root has sum of the range [x,y)

— Ifanode has sum of [Lo,hi)and hi>1lo,
 Left child has sum of [1lo,middle)
 Right child has sum of [middle, hi)
* Aleafhassumof[i,i+l), i.e, nth input i

This is an easy parallel divide-and-conquer algorithm: “combine”
results by actually building a binary tree with all the range-sums

— Tree built bottom-up in parallel

Analysis: O(n) work, O(1og n) span

[The algorithm, pass 2

2. Down: Pass down a value fromLeft
— Root given a fromLeft of 0
— Node takes its fromLeft value and

 Passes its left child the same fromLeft
 Passes its right child its fromLeft plus its left child’s sum
— asstoredinpartl

— At the leaf for sequence position 1,
* nth output i1 == fromlLeft + nth input 1

This is an easy parallel divide-and-conquer algorithm: traverse the
tree built in step 1 and produce no result

— Leaves create output
— Invariant: £fromLeft is sum of elements left of the node’s range

Analysis: O(n) work, O(1og n) span

Sequential cut-off

For performance, we need a sequential cut-off:

* Up:
— just a sum, have leaf node hold the sum of a range

* Down:
— do a sequential scan

[Parallel prefix, generalized

Just as map and reduce are the simplest examples of a common
pattern, prefix-sum illustrates a pattern that arises in many, many
problems

* Minimum, maximum of all elements to the left of i

* Isthere an element to the left of i satisfying some property?

* Count of elements to the left of i satisfying some property
— This last one is perfect for an efficient parallel filter ...
— Perfect for building on top of the “parallel prefix trick”

Parallel Scan

scan (o) <x1, ..., xn>

<x1, x1ox2, ..., x1o0...0xn>

like a fold, except return
the folded prefix at each step

pre_scan (o) base <x1, ..., xn>

<base, base o x1, ..., baseoxlo...oxn-1>

\/

sequence with o applied to all items
to the left of index in input

More Algorithms

To add multiprecision numbers.

To evaluate polynomials

To solve recurrences.

To implement radix sort

To delete marked elements from an array
To dynamically allocate processors

To perform lexical analysis. For example, to parse a program
into tokens.

To search for regular expressions. For example, to implement
the UNIX grep program.

To implement some tree operations. For example, to find the
depth of every vertex in a tree

To label components in two dimensional images.
See Guy Blelloch “Prefix Sums and Their Applications”

Summary

Folds and reduces are easily coded as parallel divide-and-
conquer algorithms with O(n) work and O(log n) span

Scans are trickier and use a 2-pass algorithm that builds a tree.

The map-reduce-fold paradigm, inspired by functional
programming, is a big winner when it comes to big data
processing.

Hadoop is an industry standard but higher-level data processing
languages have been built on top.

