
Parallelism	3:	
Parallel	Collec/ons	

slides	copyright	2017	David	Walker	
permission	granted	to	reuse	these	slides	for	non-commercial	educa/onal	purposes	

	

COS	326	
David	Walker	

Princeton	University	
	

Credits	

•  Material	on	Parallel	Complexity	from	the	last	couple	of	
lectures:	
–  Blelloch,	Harper,	Licata	(CMU,	Wesleyan)	

•  Material	on	parallel	prefix	sum:	
–  Dan	Grossman,	UW	
–  hPp://homes.cs.washington.edu/~djg/teachingMaterials/spac	

Last	Time	
Futures:		A	simple	abstrac/on	for	parallel	programming	

	
Key	idea:		supports	equa/onal	reasoning	

–  force	(future	f	x)	==	f	x					
–  when	f	is	a	pure	func/on	
–  reasoning	about	parallelism	via	futures	is	as	easy	as	reasoning	
about	sequen/al	programs	

	

module type FUTURE =
sig
 type ‘a future

 val future : (‘a->‘b) -> ‘a -> ‘b future

 val force : ‘a future -> ‘a
end

Last	Time	
The	complexity	of	parallel	programs	

–  Work:		Cost	of	execu/ng	a	program	with	just	1	processor	
–  Span:		Cost	of	execu/ng	a	program	with	infinite	processors	

	
We	can	visualize	computa/ons:	

–  Work:		add	up	the	blocks	
–  Span:		length	of	the	longest	path	

	
How	you	allocate	computa/ons	to		
processors	(ie,	scheduling)	maPers,	
but	greedy	schedulers	do	a	prePy	good	
job	and	are	used	in	prac/ce.	

	

	

	

Analyzing	Program	Complexity	
Recall	the	combinator	both	f	x	g	y	

–  executes	f	x	and	g	y	in	parallel	
–  visually	
–  used	in	divide-and-conquer	parallel	programming	

	
	

	

	

f	 g	

Analyzing	Program	Complexity	
Recall	the	combinator	both	f	x	g	y	

–  executes	f	x	and	g	y	in	parallel	
–  visually	
–  used	in	divide-and-conquer	parallel	programming	
	

Analyzing	complexity:	
–  Work:		Just	like	analyzing	a	sequen/al	program	

–  both	f	x	g	y	
–  cost	=	cost(f	x)	+	cost(g	y)	+	1	
– mirrors	summing	the	cost	of	all	blocks	in	the	diagram	

	
	

	

	

f	 g	

Analyzing	Program	Complexity	
Recall	the	combinator	both	f	x	g	y	

–  executes	f	x	and	g	y	in	parallel	
–  visually	
–  used	in	divide-and-conquer	parallel	programming	

Analyzing	complexity:	
–  Work:		Just	like	analyzing	a	sequen/al	program	

–  both	f	x	g	y	
–  cost	=	cost(f	x)	+	cost(g	y)	+	1	
– mirrors	summing	the	cost	of	all	blocks	in	the	diagram	

–  Span:		Also	similar	to	analyzing	a	sequen/al	program	
– with	one	key	difference	
–  both	f	x	g	y	
–  cost	=	max	(cost(f	x),	cost(g	y))	+	1	
– mirrors	finding	the	length	of	the	longest	path	through	the	diagram	

	
	

	

	

f	 g	

COMPLEXITY	OF	
PARALLEL	PROGRAMS	

Divide-and-Conquer	Parallel	Algorithms	
•  Split	your	input	in	2	or	more	subproblems	
•  Solve	the	subproblems	recursively	in	parallel	
•  Combine	the	results	to	solve	the	overall	problem	

split	

recur	in	parallel	

merge	

Parallel	Map	

let rec map f l =
 match l with
 [] -> []
 | h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2

Parallel	Map	

let rec map f l =
 match l with
 [] -> []
 | h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2

Assume	func/on	f	takes	constant	C	span,	
Assume	input	list	of	size	n,	
work_map(n)	=		B	+	(C	+	work_map(n-1))		
																									=		(B+C)*n	

Parallel	Map	

let rec map f l =
 match l with
 [] -> []
 | h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2

Assume	func/on	f	takes	constant	C	span,	
Assume	input	list	of	size	n,	
span_map(n)	=		B	+	max	(C,	span_map(n-1))		
																									~=		B	+	span_map(n-1)																						(if	B*n	>>	C)	
																									=		B*n	

Parallel	Map	

let rec map f l =
 match l with
 [] -> []
 | h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2

work_map(n)	=	(B+C)*n	
span_map(n)	=		B*n	
parallelism(n)	=	work_map(n)/span_map(n)	
																										=	(B+C)*n/B*n	
																										~=	C	

Parallel	Map	

let rec map f l =
 match l with
 [] -> []
 | h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2

work_map(n)	=	(B+C)*n	
span_map(n)	=		B*n	
parallelism(n)	=	work_map(n)/span_map(n)	
																										=	(B+C)*n/B*n	
																										~=	C	

we	can	speed	
the	algorithm	
up	by	a	small	
fixed	constant,	
but	that	won't	
help	us	process	
big	lists	

Parallel	Map	

let rec map f l =
 match l with
 [] -> []
 | h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2

work_map(n)	=	(B+C)*n	
span_map(n)	=		B*n	
parallelism(n)	=	work_map(n)/span_map(n)	
																										=	(B+C)*n/B*n	
																										~=	C	

we	can	only	
make	use	of	
a	(small)	
constant	
number	of	
machines	

Parallel	Map	

let rec map f l =
 match l with
 [] -> []
 | h1::t1 ->
 let (h2,t2) =
 both f hd
 (map f) tail
 in
 h2::t2

Problem:		splifng	and	merging	lists	take	linear	/me	–	can't	get	good	speedups	
	
Problem:		cufng	a	list	in	half	takes	at	least	/me	propor/onal	to	n/2	
	
Problem:		s/tching	2	lists	together	of	size	n/2	takes	n/2	/me	
	
Conclusion:		lists	are	a	bad	data	structure	to	choose	for	divide-and	conquer	parallel	
programming	

Complexity	

Consider	balanced	trees:	

splifng	is	
prePy	easy	
in	constant	
/me	

merging	is	harder,	but	can	be	done	in	poly-log	/me	

Parallel	TreeMap	

type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Parallel	TreeMap	

type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume	balanced	tree	of	size	n,	execu/ng	f	costs	C:	
work(n)	=	work(f	i)	+	work(n/2)	+	work(n/2))	+		B	
																		
																																

Parallel	TreeMap	

type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume	balanced	tree	of	size	n,	execu/ng	f	costs	C:	
work(n)	=	work(f	i)	+	work(n/2)	+	work(n/2))	+		B	
															=	C	+	2*work(n/2)	+	B	
															=	(C+B)	*	n	
			
																																

Parallel	TreeMap	

type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume	balanced	tree	of	size	n,	execu/ng	f	costs	C:	
work(n)	=	work(f	i)	+	work(n/2)	+	work(n/2))	+		B	
															=	C	+	2*work(n/2)	+	B	
															=	(C+B)	*	n	
			
																																

roughly	the	same	
work	as	listmap	

Parallel	TreeMap	

type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume	balanced	tree	of	size	n,	execu/ng	f	costs	C:	
span(n)	=	max	(span(f	i),	max(span(n/2),	span(n/2))	+		B	
									
																																

Parallel	TreeMap	

type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume	balanced	tree	of	size	n,	execu/ng	f	costs	C:	
span(n)	=	max	(span(f	i),	max(span(n/2),	span(n/2))	+		B	
															=	max(C,	max(span(n/2),	span(n/2)))	+	B	
															
																																

Parallel	TreeMap	

type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume	balanced	tree	of	size	n,	execu/ng	f	costs	C:	
span(n)	=	max	(span(f	i),	max(span(n/2),	span(n/2))	+		B	
															=	max(C,	max(span(n/2),	span(n/2)))	+	B	
															=	span(n/2)	+	B	
														
																																

Parallel	TreeMap	

type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume	balanced	tree	of	size	n,	execu/ng	f	costs	C:	
span(n)	=	max	(span(f	i),	max(span(n/2),	span(n/2))	+		B	
															=	max(C,	max(span(n/2),	span(n/2)))	+	B	
															=	span(n/2)	+	B	
															=	B	log	n	
			
																																

Parallel	TreeMap	

type tree = Empty | Node of tree * int * tree

let rec treemap f l =
 match t with
 Empty -> Empty
 | Node(left, i, right) ->

 let j = future f i in
 let left2, right2 =
 both (treemap f) left
 (treemap f) right
 in
 Node (left2, force j, right2)

Assume	balanced	tree	of	size	n,	execu/ng	f	costs	C:	
span(n)	=	max	(span(f	i),	max(span(n/2),	span(n/2))	+		B	
															=	max(C,	max(span(n/2),	span(n/2)))	+	B	
															=	span(n/2)	+	B	
															=	B	log	n	
			
																																

asympto/cally	
bePer	than	for	
lists	

Lists	vs	Trees	

Trees	or	arrays,	which	can	be	split	into	even-sized	pieces	in	
constant	/me	speed	parallel	divide-and-conquer	algorithms	

Lists:	
work(n)	=	(B+C)*n	
span(n)	=		B*n	
parallelism(n)	=	work(n)/span(n)	
																								~=	C	

Trees:	
work(n)	=	(B+C)*n	
span(n)	=		B	log	n	
parallelism(n)	=	work(n)/span(n)	
																								~=	C	n	/	log	n	

PARALLEL	COLLECTIONS	

What	if	you	had	a	really	big	job	to	do?	
Eg:	Create	an	index	of	every	web	page	on	the	planet.	

–  Google	does	that	regularly!	
–  There	are	billions	of	them!	

	
Eg:	search	facebook	for	a	friend	or	twiPer	for	a	tweet	
	
To	get	big	jobs	done,	we	typically	need	to	harness	1000s	of	
computers	at	a	/me,	but:	

–  how	do	we	distribute	work	across	all	those	computers?	
–  you	definitely	can't	use	shared	memory	parallelism	because	the	
computers	don't	share	memory!	

–  when	you	use	1	computer,	you	just	hope	it	doesn't	fail.		If	it	does,	
you	go	to	the	store,	buy	a	new	one	and	restart	the	job.	

–  when	you	use	1000s	of	computers	at	a	/me,	failures	become	the	
norm.		what	to	do	when	1	of	1000	computers	fail.		Start	over?	

Big	Jobs	--->	BePer	Abstrac/ons	

Need	high-level	interfaces	to	shield	applica/on	programmers	
from	the	complex	details.		Complex	implementa/ons	solve	the	
problems	of	distribu/on,	fault	tolerance	and	performance.	
	
Common	abstrac/on:		Parallel	collec/ons	
	
Example	collec/ons:		sets,	tables,	dic/onaries,	sequences	
Example	bulk	opera/ons:		create,	map,	reduce,	join,	filter	

	
	
	
	
	
	
	

PARALLEL	SEQUENCES	

Parallel	Sequences	
Parallel	sequences	

	
Opera/ons:	

–  crea/on	(called	tabulate)	
–  indexing	an	element	in	constant	span	
–  map	
–  scan	--	like	a	fold:	<u,	u	+	e1,	u	+	e1	+	e2,	...>		log	n	span!	

	
Languages:	

–  Nesl	[Blelloch]	
–  Data-parallel	Haskell	
–  Lots	of	cool	stuff	in	Scala	too	

<	e1	,	e2	,	e3	,	...	,	en	>	

Parallel	Sequences:	Selected	Opera/ons	

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

Parallel	Sequences:	Selected	Opera/ons	

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

nth : 'a seq -> int -> 'a

nth <e0, e1, ..., e(n-1)> i == ei
work = O(1) span = O(1)

Parallel	Sequences:	Selected	Opera/ons	

tabulate : (int -> 'a) -> int -> 'a seq

tabulate f n == <f 0, f 1, ..., f (n-1)>
work = O(n) span = O(1)

nth : 'a seq -> int -> 'a

nth <e0, e1, ..., e(n-1)> i == ei
work = O(1) span = O(1)

length : 'a seq -> int

length <e0, e1, ..., e(n-1)> == n
work = O(1) span = O(1)

Example	

(* create n == <0, 1, ..., n-1> *)
let create n =

Write	a	func/on	that	creates	the	sequence	<0,	...,	n-1>	
with	Span	=	O(1)	and	Work	=	O(n).	
	

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Opera/ons:	

Example	

(* create n == <0, 1, ..., n-1> *)
let create n =
 tabulate (fun i -> i) n

Write	a	func/on	that	creates	the	sequence	<0,	...,	n-1>	
with	Span	=	O(1)	and	Work	=	O(n).	
	

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Opera/ons:	

Example	

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)
let map f s =

Write	a	func/on	such	that	given	a	sequence	<v0,	...,	vn-1>,			
maps	f	over	each	element	of	the	sequence	with	Span	=	O(1)	and		
Work	=	O(n),	returning	the	new	sequence	(if	f	is	constant	work)	

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Opera/ons:	

Example	

(* map f <v0, ..., vn-1> == <f v0, ..., f vn-1> *)
let map f s =
 tabulate (fun i -> nth s i) (length s)

Write	a	func/on	such	that	given	a	sequence	<v0,	...,	vn-1>,			
maps	f	over	each	element	of	the	sequence	with	Span	=	O(1)	and		
Work	=	O(n),	returning	the	new	sequence	(if	f	is	constant	work)	

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Opera/ons:	

Example	

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =

Write	a	func/on	such	that	given	a	sequence	<v1,	...,	vn-1>,	
reverses	the	sequence.	with	Span	=	O(1)	and	Work	=	O(n)	

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Opera/ons:	

Example	

(* reverse <v0, ..., vn-1> == <vn-1, ..., v0> *)
let reverse s =
 let n = length s in
 tabulate (fun i -> nth s (n-i-1)) n

Write	a	func/on	such	that	given	a	sequence	<v1,	...,	vn-1>,	
reverses	the	sequence.	with	Span	=	O(1)	and	Work	=	O(n)	

 Work Span
tabulate f n n 1
nth i s 1 1
length s 1 1

Opera/ons:	

	A	Parallel	Sequence	API	

type 'a seq

tabulate : (int -> 'a) -> int -> 'a seq

length : 'a seq -> int

nth : 'a seq -> int -> 'a

append : 'a seq -> 'a seq -> 'a seq

split : 'a seq -> int -> 'a seq * 'a seq

O(N)	

Work	 Span	

O(1)	

O(1)	

O(N+M)	

O(N)	

O(1)	

O(1)	

O(1)	

O(1)	

O(1)	

For	efficient	implementa/ons,	see	Blelloch's	NESL	project:	
hPp://www.cs.cmu.edu/~scandal/nesl.html	

	A	Parallel	Sequence	API	

type 'a seq

tabulate : (int -> 'a) -> int -> 'a seq

length : 'a seq -> int

nth : 'a seq -> int -> 'a

append : 'a seq -> 'a seq -> 'a seq

split : 'a seq -> int -> 'a seq * 'a seq

O(N)	

Work	 Span	

O(1)	

O(1)	

O(N+M)	

O(N)	

O(1)	

O(1)	

O(1)	

O(1)	

O(1)	

For	efficient	implementa/ons,	see	Blelloch's	NESL	project:	
hPp://www.cs.cmu.edu/~scandal/nesl.html	

Fold	and	Reduce	
We	have	seen	many	sequen/al	algorithms	can	be	programmed	
succinctly	using	fold	or	reduce.		Eg:	sum	all	elements:	

	

	

7	 4	 3	 9	 8	

0	sum:	

Fold	and	Reduce	
We	have	seen	many	sequen/al	algorithms	can	be	programmed	
succinctly	using	fold	or	reduce.		Eg:	sum	all	elements:	

	

	

7	 4	 3	 9	 8	

0	 7	sum:	

Fold	and	Reduce	
We	have	seen	many	sequen/al	algorithms	can	be	programmed	
succinctly	using	fold	or	reduce.		Eg:	sum	all	elements:	

	

	

7	 4	 3	 9	 8	

0	 7	 23	14	11	sum:	 31	

Fold	and	Reduce	
We	have	seen	many	sequen/al	algorithms	can	be	programmed	
succinctly	using	fold	or	reduce.		Eg:	sum	all	elements:	

	

	

let sum_all (l:int list) = reduce (+) 0 l

7	 4	 3	 9	 8	

0	 7	 23	14	11	sum:	 31	

Fold	and	Reduce	
We	have	seen	many	sequen/al	algorithms	can	be	programmed	
succinctly	using	fold	or	reduce.		Eg:	sum	all	elements:	

	

	
Key	to	paralleliza/on:		No/ce	that	because	sum	is	an	associa-ve	
operator,	we	do	not	have	to	add	the	elements	strictly	let-to-right:	

let sum_all (l:int list) = reduce (+) 0 l

7	 4	 3	 9	 8	

0	 7	 23	14	11	sum:	 31	

(((((init	+	v1)	+	v2)	+	v3)	+	v4)	+	v5)		==		((init	+	v1)	+	v2)	+	((v3	+	v4)	+	v6)	

add	on	processor	1	 add	on	processor	2	

Side	Note:		Associa/vity	vs	Commuta/vity	

(((((init	+	v1)	+	v2)	+	v3)	+	v4)	+	v5)		==		((init	+	v1)	+	v2)	+	((v3	+	v4)	+	v6)	

add	on	processor	1	 add	on	processor	2	

Associa-vity	admits	parallelism	

Commuta-vity	allows	us	to	reorder	the	elements:	

v1	+	v2	==		v2	+	v1	

But	we	don't	have	to	reorder	elements	to	obtain	a	significant	speedup;	
we	just	have	to	reorder	the	execu/on	of	the	opera/ons.	

Parallel	Sum	

7	 4	 3	 9	 8	 2	 1	2	

Parallel	Sum	

7	 4	 3	 9	 8	 2	 1	2	

9	 8	 2	 1	7	 4	 3	2	

Parallel	Sum	

7	 4	 3	 9	 8	 2	 1	2	

9	 8	 2	 1	7	 4	 3	2	

2	 1	9	 8	4	 3	7	2	

Parallel	Sum	

7	 4	 3	 9	 8	 2	 1	2	

9	 8	 2	 1	7	 4	 3	2	

2	 1	9	 8	4	 3	7	2	

2	 7	 4	 3	 9	 8	 2	 1	

Parallel	Sum	

3	17	7	9	

2	 7	 4	 3	 9	 8	 2	 1	

+	 +	 +	+	

Parallel	Sum	

2	 7	 4	 3	 9	 8	 2	 1	

+	+	

+	

+	 +	 +	+	

3	17	7	9	

16	 20	

36	

Splifng	Sequences	

type 'a treeview =
 Empty
| One of 'a
| Pair of 'a seq * 'a seq

let show_tree (s:'a seq) : 'a treeview =
 match length s with
 0 -> Empty
 | 1 -> One (nth s 0)
 | n -> Pair (split s (n/2))

Parallel	Sum	

let rec psum (s : int seq) : int =
 match treeview s with
 Empty -> 0
 | One v -> v
 | Pair (s1, s2) ->
 let (n1, n2) = both psum s1
 psum s2 in
 n1 + n2

Parallel	Reduce	

7	 4	 3	 9	 8	 2	 1	2	

9	 8	 2	 1	7	 4	 3	2	

2	 1	9	 8	4	 3	7	2	

2	 7	 4	 3	 9	 8	 2	 1	

op		

op		

op		 op		 op		 op		

op		

If	op	is	associa/ve	and	the	base	case	has	the	proper/es:	
				op	base	X	==	X																		op	X	base	==	X	

then	the	parallel	reduce	is	equivalent	to	the	sequen/al	let-to-right	fold.	

Parallel	Reduce	

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
 match treeview s with
 Empty -> base
 | One v -> f base v
 | Pair (s1, s2) ->
 let (n1, n2) = both (reduce f base) s1
 (reduce f base) s2 in
 f n1 n2

Parallel	Reduce	

let rec reduce (f:'a -> 'a -> 'a) (base:'a) (s:'a seq) =
 match treeview s with
 Empty -> base
 | One v -> f base v
 | Pair (s1, s2) ->
 let (n1, n2) = both (reduce f base) s1
 (reduce f base) s2 in
 f n1 n2

let sum s = reduce (+) 0 s

A	liPle	more	general	
let rec mapreduce (inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) =
 match treeview s with
 Empty -> base
 | One v -> inject v
 | Pair (s1, s2) ->
 let (r1, r2) = both mapreduce s1
 mapreduce s2 in
 combine r1 r2

A	liPle	more	general	

let count s = mapreduce (fun x -> 1) (+) 0 s

let rec mapreduce
 (in:'a -> 'b)(comb:'b -> 'b -> 'b)(b:'b)(s:'a seq) =
 let mr = mapreduce in comb b in
 match treeview s with
 Empty -> b
 | One v -> in v
 | Pair (s1, s2) ->
 let (r1, r2) = both mr s1
 mr s2 in
 comb r1 r2

A	liPle	more	general	

let average s =
 let (count, total) =
 mapreduce (fun x -> (1,x))
 (fun (c1,t1) (c2,t2) -> (c1+c2, t1 + t2))
 (0,0) s in
 if count = 0 then 0 else total / count

let count s = mapreduce (fun x -> 1) (+) 0 s

let rec mapreduce
 (in:'a -> 'b)(comb:'b -> 'b -> 'b)(b:'b)(s:'a seq) =
 let mr = mapreduce in comb b in
 match treeview s with
 Empty -> b
 | One v -> in v
 | Pair (s1, s2) ->
 let (r1, r2) = both mr s1
 mr s2 in
 comb r1 r2

Parallel	Reduce	with	Sequen/al	Cut-off	
When	data	is	small,	the	overhead	of	paralleliza/on	isn't	worth	it.	
You	should	revert	to	the	sequen/al	version.	

type 'a treeview =
 Small of 'a seq | Big of 'a treeview * 'a treeview

let show_tree (s:'a seq) : 'a treeview =
 if length s < sequential_cutoff then
 Small s
 else
 Big (split s (n/2))
 let rec reduce f b s =

 match treeview s with
 Small s -> sequential_reduce f b s
 | Big (s1, s2) ->
 let (n1, n2) = both (reduce f b) s1
 (reduce f b) s2
 in
 f n1 n2

BALANCED	PARENTHESES	

The	Balanced	Parentheses	Problem	
Consider	the	problem	of	determining	whether	a	sequence	of	
parentheses	is	balanced	or	not.		For	example:	

–  balanced:	()()(())	
–  not	balanced:	(
–  not	balanced:)	
–  not	balanced:	()))		

	
We	will	try	formula/ng	a	divide-and-conquer	parallel	algorithm	
to	solve	this	problem	efficiently:	

type paren = L | R (* L(eft) or R(ight) paren *)

let balanced (ps : paren seq) : bool = ...

First,	a	sequen/al	approach	

(()))	 ()	 (

fold	from	let	to	right,	keep	track	of		
#	of	unmatched	let	parens	

0	

First,	a	sequen/al	approach	

(()))	 ()	 (

fold	from	let	to	right,	keep	track	of		
#	of	unmatched	let	parens	

0	 1	

First,	a	sequen/al	approach	

(()))	 ()	 (

fold	from	let	to	right,	keep	track	of		
#	of	unmatched	let	parens	

0	 1	 2	

First,	a	sequen/al	approach	

(()))	 ()	 (

fold	from	let	to	right,	keep	track	of		
#	of	unmatched	let	parens	

0	 1	 2	 1	

First,	a	sequen/al	approach	

(()))	 ()	 (

fold	from	let	to	right,	keep	track	of		
#	of	unmatched	let	parens	

0	 1	 2	 1	 0	

First,	a	sequen/al	approach	

(()))	 ()	 (

fold	from	let	to	right,	keep	track	of		
#	of	unmatched	let	parens	

0	 1	 2	 1	 0	 -1!!	

too	many	right	parens	
indicates	no	match	

First,	a	sequen/al	approach	

(()	

if	you	reach	the	end	of	
the	end	of	the	sequence,	
you	should	have	no	
unmatched	let	parens	

0	 1	 2	 1	

Easily	Coded	Using	a	Fold	

let rec fold f b s =
 let rec aux n accum =
 if n >= length s then
 accum
 else
 aux (n+1) (f (nth s n) accum)
 in
 aux 0 b

v1	 v2	

b	 f	b	v1		 f	(f	b	v1)	v2	fold:	

Easily	Coded	Using	a	Fold	

(* check to see if we have too many unmatched R parens

 so_far : number of unmatched parens so far
 or None if we have seen too many R parens

 *)

let check (p:paren) (so_far:int option) : int option =
 match (p, so_far) with
 (_, None) -> None
 | (L, Some c) -> Some (c+1)
 | (R, Some 0) -> None (* violation detected *)
 | (R, Some c) -> Some (c-1)

Easily	Coded	Using	a	Fold	

let fold f base s = ...

let check so_far s = ...

let balanced (s: paren seq) : bool =
 match fold check (Some 0) s with
 Some 0 -> true
 | (None | Some n) -> false

Parallel	Version	
Key	insights	

–  if	you	find	()	in	a	sequence,	you	can	delete	it	without	changing	
the	balance	
	

Parallel	Version	
Key	insights	

–  if	you	find	()	in	a	sequence,	you	can	delete	it	without	changing	
the	balance	

–  if	you	have	deleted	all	of	the	pairs	(),	you	are	let	with:	
• )))	...	j	...)))		(((...	k	...	(((

Parallel	Version	
Key	insights	

–  if	you	find	()	in	a	sequence,	you	can	delete	it	without	changing	
the	balance	

–  if	you	have	deleted	all	of	the	pairs	(),	you	are	let	with:	
• )))	...	j	...)))		(((...	k	...	(((

For	divide-and-conquer,	splifng	a	sequence	of	parens	is	easy	

Parallel	Version	
Key	insights	

–  if	you	find	()	in	a	sequence,	you	can	delete	it	without	changing	
the	balance	

–  if	you	have	deleted	all	of	the	pairs	(),	you	are	let	with:	
• )))	...	j	...)))		(((...	k	...	(((

For	divide-and-conquer,	splifng	a	sequence	of	parens	is	easy	
Combining	two	sequences	where	we	have	deleted	all	():	

– )))	...	j	...)))		(((...	k	...	((()))	...	x	...)))	(((...	y	...	(((
	

Parallel	Version	
Key	insights	

–  if	you	find	()	in	a	sequence,	you	can	delete	it	without	changing	
the	balance	

–  if	you	have	deleted	all	of	the	pairs	(),	you	are	let	with:	
• )))	...	j	...)))		(((...	k	...	(((

For	divide-and-conquer,	splifng	a	sequence	of	parens	is	easy	
Combining	two	sequences	where	we	have	deleted	all	():	

– )))	...	j	...)))		(((...	k	...	((()))	...	x	...)))	(((...	y	...	(((

–  if	x	>	k	then)))	...	j	...))))))	...	x	–	k	...)))		(((...	y	...	(((

Parallel	Version	
Key	insights	

–  if	you	find	()	in	a	sequence,	you	can	delete	it	without	changing	
the	balance	

–  if	you	have	deleted	all	of	the	pairs	(),	you	are	let	with:	
• )))	...	j	...)))		(((...	k	...	(((

For	divide-and-conquer,	splifng	a	sequence	of	parens	is	easy	
Combining	two	sequences	where	we	have	deleted	all	():	

– )))	...	j	...)))		(((...	k	...	((()))	...	x	...)))	(((...	y	...	(((

–  if	x	>	k	then)))	...	j	...))))))	...	x	–	k	...)))		(((...	y	...	(((

–  if	x	<	k	then)))	...	j	...)))		(((...	k	–	x	...	((((((...	y	...	(((

Parallel	Matcher	

(* delete all () and return the (j, k) corresponding to:

))) ... j ...))) (((... k ... (((

 *)

let rec matcher s =
 match show_tree s with
 Empty -> (0, 0)
 | One L -> (0, 1)
 | One R -> (1, 0)
 | Pair (left, right) ->
 let (j, k), (x, y) = both matcher left
 matcher right in
 if x > k then
 (j + (x – k), y)
 else
 (j, (k – x) + y)

)))	...	j	...)))		(((...	k	...	(((
)))	...	x	...)))	(((...	y	...	(((

Parallel	Matcher	

(* delete all () and return the (j, k) corresponding to:

))) ... j ...))) (((... k ... (((

 *)

let rec matcher s =
 match show_tree s with
 Empty -> (0, 0)
 | One L -> (0, 1)
 | One R -> (1, 0)
 | Pair (left, right) ->
 let (j, k), (x, y) = both matcher left
 matcher right in
 if x > k then
 (j + (x – k), y)
 else
 (j, (k – x) + y)

Work:	O(N)	
Span:	O(log	N)	

Parallel	Balance	

(* *)
let matcher s = ...

(* true if s is a sequence of balanced parens *)
let balanced s =
 match matcher s with
 | (0, 0) -> true
 | (i,j) -> false

Work:	O(N)	
Span:	O(log	N)	

Using	a	Parallel	Fold	

let inject paren =
 match paren with
 L -> (0, 1)
 | R -> (1, 0)

let combine (j,k) (x,y) =
 if x > k then (j + (x – k), y)
 else (j, (k – x) + y)

let balanced s =
 match mapreduce inject combine (0,0) s with
 | (0, 0) -> true
 | (i,j) -> false

let rec mapreduce(inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) = ...

Using	a	Parallel	Fold	

let inject paren =
 match paren with
 L -> (0, 1)
 | R -> (1, 0)

let combine (j,k) (x,y) =
 if x > k then (j + (x – k), y)
 else (j, (k – x) + y)

let balanced s =
 match mapreduce inject combine (0,0) s with
 | (0, 0) -> true
 | (i,j) -> false

let rec mapreduce(inject: 'a -> 'b)
 (combine:'b -> 'b -> 'b)
 (base:'b)
 (s:'a seq) = ...

For	correctness,	
check	the	associa/vity	

of	combine	

also	check:	
combine	base	(i,j)	==	(i,	j)		

PARALLEL	SCAN	AND	PREFIX	SUM	

The	prefix-sum	problem	

input 6	 4	 16	 10	 16	 14	 2	 8	

	76	

Sum	of	Sequence:	

input

output

6	 4	 16	 10	 16	 14	 2	 8	

		6	 	10	 	26	 	36	 	52	 	66	 	68	 	76	

output

Prefix-Sum	of	Sequence:	

The	prefix-sum	problem	

val	prefix_sum	:	int	seq	->	int	seq	

input

output

6	 4	 16	 10	 16	 14	 2	 8	

		6	 	10	 	26	 	36	 	52	 	66	 	68	 	76	

The	simple	sequen/al	algorithm:		accumulate	the	sum	from	let	to	right		
–  Sequen/al	algorithm:		Work:	O(n),	Span:	O(n)	
–  Goal:		a	parallel	algorithm	with	Work:	O(n),	Span:	O(log	n)	

Parallel	prefix-sum	

The	trick:		Use	two	passes	
–  Each	pass	has	O(n)	work	and	O(log	n)	span	
–  So	in	total	there	is	O(n)	work	and	O(log	n)	span	

First	pass	builds	a	tree	of	sums	boAom-up	
–  the	“up”	pass	

Second	pass	traverses	the	tree	top-down	to	compute	prefixes	
–  the	“down”	pass	computes	the	"from-let-of-me"	sum	

Historical	note:	
–  Original	algorithm	due	to	R.	Ladner	and	M.	Fischer,	1977	

91	

input

output

6	 4	 16	 10	 16	 14	 2	 8	

range 			0,8	
sum	
fromlet	

range 		0,4	
sum	
fromlet	

range 		4,8	
sum	
fromlet	

range 		6,8	
sum	
fromlet	

range 		4,6	
sum	
fromlet	

range 		2,4	
sum	
fromlet	

range 		0,2	
sum	
fromlet	

r			0,1	
s			
f	

r			1,2	
s			
f	

r			2,3	
s			
f	

r			3,4	
s			
f	

r			4,5	
s			
f	

r			5,6	
s			
f	

r			6,7	
s			
f	

r			7,8	
s			
f	

6	 4	 16	 10	 16	 14	 2	 8	

10	 26	 30	 10	

36	 40	

76	

input

output

6	 4	 16	 10	 16	 14	 2	 8	

6	 	10	 	26	 	36	 	52	 	66	 	68	 	76	

range 			0,8	
sum	
fromlet	

range 		0,4	
sum	
fromlet	

range 		4,8	
sum	
fromlet	

range 		6,8	
sum	
fromlet	

range 		4,6	
sum	
fromlet	

range 		2,4	
sum	
fromlet	

range 		0,2	
sum	
fromlet	

r			0,1	
s			
f	

r			1,2	
s			
f	

r			2,3	
s			
f	

r			3,4	
s			
f	

r			4,5	
s			
f	

r			5,6	
s			
f	

r			6,7	
s			
f	

r			7,8	
s			
f	

6	 4	 16	 10	 16	 14	 2	 8	

10	 26	 30	 10	

36	 40	

76	
0	

0	

0	

0	

36	

10	 36	 66	6	 26	 52	 68	

10	 66	

36	

The	algorithm,	pass	1	
1.  Up:	Build	a	binary	tree	where		
–  Root	has	sum	of	the	range	[x,y)
–  If	a	node	has	sum	of	[lo,hi)	and	hi>lo,		

•  Let	child	has	sum	of	[lo,middle)
•  Right	child	has	sum	of	[middle,hi)		
•  A	leaf	has	sum	of	[i,i+1),		i.e.,	nth input i

This	is	an	easy	parallel	divide-and-conquer	algorithm:	“combine”	
results	by	actually	building	a	binary	tree	with	all	the	range-sums	
–  Tree	built	boPom-up	in	parallel	

Analysis:	O(n)	work,	O(log	n)	span	

The	algorithm,	pass	2	
2.  Down:	Pass	down	a	value	fromLeft
–  Root	given	a	fromLeft	of	0
–  Node	takes	its	fromLeft	value	and	

•  Passes	its	let	child	the	same	fromLeft
•  Passes	its	right	child	its	fromLeft	plus	its	let	child’s	sum		

–  as	stored	in	part	1	
–  At	the	leaf	for	sequence	posi/on	i,		

•  nth output i == fromLeft + nth input i

This	is	an	easy	parallel	divide-and-conquer	algorithm:	traverse	the	
tree	built	in	step	1	and	produce	no	result		
–  Leaves	create	output	
–  Invariant:	fromLeft	is	sum	of	elements	let	of	the	node’s	range	

Analysis:	O(n)	work,	O(log	n)	span	

Sequen/al	cut-off	
For	performance,	we	need	a	sequen/al	cut-off:	

•  Up:		
–  just	a	sum,	have	leaf	node	hold	the	sum	of	a	range	

•  Down:		
–  do	a	sequen/al	scan	

Parallel	prefix,	generalized	
Just	as	map	and	reduce	are	the	simplest	examples	of	a	common	

paPern,	prefix-sum	illustrates	a	paPern	that	arises	in	many,	many	
problems	

	
•  Minimum,	maximum	of	all	elements	to	the	leB	of	i

•  Is	there	an	element	to	the	leB	of	i	sa/sfying	some	property?	

•  Count	of	elements	to	the	leB	of	i sa/sfying	some	property	
–  This	last	one	is	perfect	for	an	efficient	parallel	filter	…	
–  Perfect	for	building	on	top	of	the	“parallel	prefix	trick”	

	

Parallel	Scan	

							pre_scan	(o)	base	<x1,		...,	xn>	
==		
						<base,	base	o	x1,	...,	base	o	x1	o	...	o	xn-1>	

							scan	(o)	<x1,		...,	xn>	
==		
						<x1,		x1	o	x2,		...,		x1	o	...	o	xn>	

sequence	with	o	applied	to	all	items		
to	the	let	of	index	in	input	

like	a	fold,	except	return	
the	folded	prefix	at	each	step	

More	Algorithms	
•  To	add	mul/precision	numbers.		
•  To	evaluate	polynomials	
•  To	solve	recurrences.		
•  To	implement	radix	sort	
•  To	delete	marked	elements	from	an	array	
•  To	dynamically	allocate	processors		
•  To	perform	lexical	analysis.	For	example,	to	parse	a	program	

into	tokens.	
•  To	search	for	regular	expressions.	For	example,	to	implement	

the	UNIX	grep	program.	
•  To	implement	some	tree	opera/ons.	For	example,	to	find	the	

depth	of	every	vertex	in	a	tree	
•  To	label	components	in	two	dimensional	images.	
												See	Guy	Blelloch	“Prefix	Sums	and	Their	Applica-ons”	

Summary	
Folds	and	reduces	are	easily	coded	as	parallel	divide-and-
conquer	algorithms	with	O(n)	work	and	O(log	n)	span	
	
Scans	are	trickier	and	use	a	2-pass	algorithm	that	builds	a	tree.	
	
The	map-reduce-fold	paradigm,	inspired	by	func/onal	
programming,		is	a	big	winner	when	it	comes	to	big	data	
processing.	
	
Hadoop	is	an	industry	standard	but	higher-level	data	processing	
languages	have	been	built	on	top.	

