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Last	Time:		Threads!	

A	thread:		an	abstrac>on	of	a	processor	

let t = Thread.create f () in  
let y = g () in 
 ... 

Thread.create  
  
execute g () 
 
... 

processor	1	
(* doing nothing *)  
  
execute f () 
 
... 

processor	2	

>me	1	
	
>me	2	
	
>me	3	



THREADS	&	COORDINATION	



Coordina>on	

4	

How	do	we	get	back	the	result	that	t	is	compu>ng?	
	
	

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t 
 
let t = Thread.create f () in  
let y = g () in 
 ... 



First	APempt	
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let r = ref None 
let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

  match !r with  
    | Some v -> (* compute with v and y *) 

    | None -> ??? 

 
 

 

What’s	wrong	with	this?	



Second	APempt	
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let r = ref None 
let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

let rec wait() =  

  match !r with  
    | Some v -> v 

    | None -> wait() 

in 
let v = wait() in 
  (* compute with v and y *)   
 
 

 



Two	Problems	
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First,	we	are	busy-wai.ng.			
•  consuming	cpu	without	doing	something	useful.	
•  the	processor	could	be	either	running	a	useful	thread/program	or	power	

down.			

	
	

let r = ref None 
let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

let rec wait() =  

  match !r with  
    | Some v -> v 

    | None -> wait() 

in 
let v = wait() in 
  (* compute with v and y *) 



Two	Problems	
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Second,	an	opera>on	like	r	:=	Some	v	may	not	be	atomic.	
•  r	:=	Some	v		requires	us	to	copy	the	bytes	of	Some	v	into	the	ref	r	
•  we	might	see	part	of	the	bytes	(corresponding	to	Some)	before	we’ve	

wriPen	in	the	other	parts	(e.g.,	v).	
•  So	the	waiter	might	see	the	wrong	value.	
	
	
	

let r = ref None 
let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

let rec wait() =  

  match !r with  
    | Some v -> v 

    | None -> wait() 

in 
let v = wait() in 
  (* compute with v and y *) 



An	Aside:		Atomicity	
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Consider	the	following:	
	

	
and	suppose	two	threads	are	incremen>ng	the	same	ref	r:	
	
Thread	1 	 	Thread	2	
inc(r);   inc(r); 
!r    !r 

	
If	r	ini>ally	holds	0,	then	what	will	Thread	1	see	when	it	reads	r?			

let inc(r:int ref) = r := (!r) + 1 



Atomicity	
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The	problem	is	that	we	can’t	see	exactly	what	instruc>ons	the	
compiler	might	produce	to	execute	the	code.	
	
It	might	look	like	this:	
	
Thread	1 	 														Thread	2	
R1 := load(p);     R1 := load(p); 

R1 := R1 + 1;      R1 := R1 + 1; 
store R1 into r    store R1 into p 

R1 := load(p)      R1 := load(p) 

	



Atomicity	
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But	a	clever	compiler	might	op>mize	this	to:	
	
Thread	1 	 														Thread	2	
R1 := load(p);     R1 := load(p); 

R1 := R1 + 1;      R1 := R1 + 1; 

store R1 into p    store R1 into p 
R1 := load(r)      R1 := load(r) 

	



Atomicity	
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Furthermore,	we	don’t	know	when	the	OS	might	interrupt	one	
thread	and	run	the	other.		
	
Thread	1 	 														Thread	2	
R1 := load(p);     R1 := load(p); 

R1 := R1 + 1;      R1 := R1 + 1; 
store R1 into p    store R1 into p 

R1 := load(r)      R1 := load(p) 
	
(The	situa>on	is	similar,	but	not	quite	the	same	on	mul>-
processor	systems.)	



Atomicity	
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One	possible	interleaving	of	the	instruc>ons:	
	
Thread	1 	 														Thread	2	
R1 := load(p);      R1 := load(p); 
R1 := R1 + 1;       R1 := R1 + 1; 

store R1 into r     store R1 into p 
R1 := load(p)       R1 := load(p) 

What	answer	do	we	get?	



Atomicity	
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Another	possible	interleaving:	
	
Thread	1 	 														Thread	2	
R1 := load(p);      R1 := load(p); 
R1 := R1 + 1;       R1 := R1 + 1; 

store R1 into p     store R1 into p 
R1 := load(p)       R1 := load(p) 

What	answer	do	we	get	this	>me?	



Atomicity	
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Another	possible	interleaving:	
	
Thread	1 	 														Thread	2	
R1 := load(p);       R1 := load(p); 
R1 := R1 + 1;        R1 := R1 + 1; 
store R1 into p      store R1 into p 
R1 := load(r)       R1 := load(p) 

What	answer	do	we	get	this	>me?	
	
Moral:		The	system	is	responsible	for	scheduling	execu>on	of	
instruc>ons.	
	
Moral:		This	can	lead	to	an	enormous	degree	of	nondeterminism.	



Even	Worse	...	
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In	fact,	today’s	mul>core	processors	don’t	treat	memory	in	a	
sequen.ally	consistent	fashion.	That	means	that	we	can’t	even	
assume	that	what	we	will	see	corresponds	to	some	interleaving	
of	the	threads’	instruc.ons!	
	
	
	
	
	
	
	
Beyond	the	scope	of	this	class!		But	the	take-away	is	this:	It’s	not	a	good	idea	
to	use	ordinary	loads/stores	to	synchronize	threads;	you	should	use	explicit	synchroniza>on	
primi>ves	so	the	hardware	and	op>mizing	compiler	don’t	op>mize	them	away.	

Core	1	
	
	

L2	cache	

Core	2	
	
	

L1	cache	 L1	cache	

ALU	 ALU	

Core	3	
	
	

Core	4	
	
	

L1	cache	 L1	cache	

ALU	 ALU	
When	Core1	stores	to	
“memory”,	it	lazily	

propagates	to	Core2’s	L1	
cache.		The	load	at	Core2	
might	not	see	it,	unless	
there	is	an	explicit	
synchroniza>on.	



Even	Worse	...	

17	

In	fact,	today’s	mul>core	processors	don’t	treat	memory	in	a	
sequen.ally	consistent	fashion.	That	means	that	we	can’t	even	
assume	that	what	we	will	see	corresponds	to	some	interleaving	
of	the	threads’	instruc.ons!	
	
Thread	1 	 														Thread	2	
R1 := load(r);      R1 := load(r); 
R1 := R1 + 1;       R1 := R1 + 1; 
store R1 into r     store R1 into r 
R1 := load(r)       R1 := load(r) 
	
Beyond	the	scope	of	this	class!		But	the	take-away	is	this:	It’s	not	a	good	idea	
to	use	ordinary	loads/stores	to	synchronize	threads;	you	should	use	explicit	synchroniza>on	
primi>ves	so	the	hardware	and	op>mizing	compiler	don’t	op>mize	them	away.	



The	Happens	Before	Rela>on	
We	assume	OCaml	obeys	a	par>cular	Happens	Before	rela>on:	
	
Rule	1:		Given	two	expressions	(or	instruc>ons)	in	sequence:	
e1;	e2	we	know	that	e1	happens	before	e2.	
	
Rule	2:		Given	a	program:	
	
	
	
	
we	know	that	(f	x)	happens	before	e.	

let	t	=	Thread.create	f	x	in	
			....	
Thread.join	t;	
e	



In	Pictures	
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Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	know	that	for	each	
thread	the	previous	
instruc>ons	must	happen	
before	the	later	instruc>ons.	
	
So	for	instance,	inst1,1	must	
happen	before	inst1,2.	

g	 f	



In	Pictures	
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Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	also	know	that	the		
fork	must	happen	before	
the	first	instruc>on	of	the		
second	thread.	



In	Pictures	
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Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	also	know	that	the		
fork	must	happen	before	
the	first	instruc>on	of	the		
second	thread.	

And	thanks	to	the	join,		
we	know	that	all	of	the	
instruc>ons	of	the	second	
thread	must	be	completed	
before	the	join	finishes.	



In	Pictures	
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Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

However,	in	general,	we	
do	not	know	whether	
inst1,i	executes	before	or		
aier	inst2,j.	
	
In	general,	synchroniza.on	
instruc.ons	like	fork	and	
join	reduce	the	number	of	
possible	interleavings.	
	
Synchroniza.on	cuts	down		
nondeterminism.	
	
In	the	absence	of		
synchroniza>on	we	don’t	
know	anything…	



Another	approach	to	the	coordina>on	Problem	
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How	do	we	get	back	the	result	that	t	is	compu.ng?	
	
	

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t 
 
let t = Thread.create f () in  
let y = g () in 
 ... 



One	Solu>on	(using	join)	

24	

 

 let r = ref None 

 let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

    Thread.join t ;  

    match !r with  
  | Some v -> (* compute with v and y *) 

    | None -> failwith “impossible” 

 
 

 



One	Solu>on	(using	join)	

25	

 

 let r = ref None 

 let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

    Thread.join t ;  

    match !r with  
  | Some v -> (* compute with v and y *) 

    | None -> failwith “impossible” 

 
 

 

Thread.join t	causes	
the	current	thread	to	wait	

un>l	the	thread	t	
terminates.	



One	Solu>on	(using	join)	
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 let r = ref None 

 let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

    Thread.join t ;  

    match !r with  
  | Some v -> (* compute with v and y *) 

    | None -> failwith “impossible” 

 
 

 So	aier	the	join,	we	know	
that	any	of	the	opera>ons	

of	t	have	completed.	

Synchroniza:on	



FUTURES:		A	PARALLEL	
PROGRAMMING	ABSTRACTION	



Futures	
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The	fork-join	paPern	we	just	saw	is	so	common,	we’ll	create	an	abstrac>on	for	it:	
	

module type FUTURE =  
sig 
  type ‘a future  
 
  (* future f x forks a thread to run f(x) 
     and stores the result in a future when complete *) 
  val future : (‘a->‘b) -> ‘a -> ‘b future  
    
  (* force f causes us to wait until the  
     thread computing the future value is done 
     and then returns its value. *) 
  val force : ‘a future -> ‘a   
end 



Does	that	interface	looks	familiar	....	?	



Future	Implementa>on	
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module Future : FUTURE =  
struct  
  type ‘a future = {tid   : Thread.t      ;  
                    value : ’a option ref } 

 
 

 
 
 
 
 
 
 
 
 
end  



Future	Implementa>on	
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module Future : FUTURE =  
struct  
  type ‘a future = {tid   : Thread.t      ;  
                    value : ‘a option ref } 

 
  let future(f:‘a->‘b)(x:‘a) : ‘b future =  
    let r = ref None in  
    let t = Thread.create (fun () -> r := Some(f x)) ()  
    in 
    {tid=t ; value=r} 

 

 
 
 
 
end  



Future	Implementa>on	
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module Future : FUTURE =  
struct  
  type ‘a future = {tid   : Thread.t      ;  
                    value : ‘a option ref } 

 
  let future(f:‘a->‘b)(x:‘a) : ‘b future =  
    let r = ref None in  
    let t = Thread.create (fun () -> r := Some(f x)) ()  
    in 
    {tid=t ; value=r} 

 

  let force (f:‘a future) : ‘a =  
    Thread.join f.tid ;  
    match !(f.value) with 
    | Some v -> v 
    | None -> failwith “impossible!” 

end  



Now	using	Futures	
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let x = future f () in 
let y = g () in 
let v = force x in 

(* compute with v and y *) 

 

 

 
 

 



Back	to	the	Futures	

34	

let x = future f () in 
let y = g () in 
let v = force x in 

y + v 

 

 
 

 

 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

with	futures	library:	 without	futures	library:	

val f : unit -> int 

val g : unit -> int 

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 



Back	to	the	Futures	
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what	happens	if	
we	delete	these	
lines?	

let x = future f () in 
let y = g () in 
let v = force x in 

y + v 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with	futures	library:	 without	futures	library:	

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 



Back	to	the	Futures	
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let x = future f () in 
let y = g () in 
let v = force x in 

y + x 
 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with	futures	library:	 without	futures	library:	

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 

what	happens	if	
we	use	x	and	
forget	to	force?	



Back	to	the	Futures	
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let x = future f () in 
let y = g () in 
let v = force x in 

y + x 
 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with	futures	library:	 without	futures	library:	

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 

Moral:		Futures	+	typing	ensure	
en>re	categories	of	errors	can’t		
happen	--	you	protect	yourself	
from	your	own	stupidity	



Back	to	the	Futures	
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let x = future f () in 

let v = force x in 
let y = g () in 
y + x 
 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

Thread.join t ;  

let y = g() in 

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with	futures	library:	 without	futures	library:	

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 

what	happens	if	you	
relocate	force,	join?	



Back	to	the	Futures	
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let x = future f () in 

let v = force x in 
let y = g () in 
y + x 
 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

Thread.join t ;  

let y = g() in 

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with	futures	library:	 without	futures	library:	

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 

Moral:		Futures	are	
not	a	universal	savior	



An	Example:		Mergesort	on	Arrays	
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let mergesort (cmp:'a->'a->int)  
              (arr : 'a array) : 'a array =  
  let rec msort (start:int) (len:int) : 'a array =  
    match len with  
      | 0 -> Array.of_list [] 

      | 1 -> Array.make 1 arr.(start) 

      | _ -> let half = len / 2 in 
             let a1 = msort start half in 
             let a2 = msort (start + half)  
                            (len - half) in 
               merge a1 a2 

 
  and merge (a1:'a array) (a2:'a array) : 'a array = 

 ...  



An	Example:		Mergesort	on	Arrays	
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let mergesort (cmp:'a->'a->int)  
              (arr : 'a array) : 'a array =  
  let rec msort (start:int) (len:int) : 'a array =  
    match len with  
      | 0 -> Array.of_list [] 

      | 1 -> Array.make 1 arr.(start) 

      | _ -> let half = len / 2 in 
             let a1 = msort start half in 
             let a2 = msort (start + half)  
                            (len - half) in 
               merge a1 a2 

 
  and merge (a1:'a array) (a2:'a array) : 'a array = 

 ...  

Opportunity	for	
paralleliza>on	



Making	Mergesort	Parallel	
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let mergesort (cmp:'a->'a->int)  
              (arr : 'a array) : 'a array =  
  let rec msort (start:int) (len:int) : 'a array =  
    match len with  
      | 0 -> Array.of_list [] 

      | 1 -> Array.make 1 arr.(start) 

      | _ -> let half = len / 2 in 
             let a1_f =  
               Future.future (msort start) half in 
             let a2 =  
               msort (start + half)(len - half) in 
             merge (Future.force a1_f) a2 
 

  and merge (a1:'a array) (a2:'a array) : 'a array =  



Divide-and-Conquer	
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This	is	an	instance	of	a	basic	divide-and-conquer	paPern	in	
parallel	programming	

–  take	the	problem	to	be	solved	and	divide	it	in	half	
–  fork	a	thread	to	solve	the	first	half	
–  simultaneously	solve	the	second	half	
–  synchronize	with	the	thread	we	forked	to	get	its	results	
–  combine	the	two	solu>on	halves	into	a	solu>on	for	the	whole	
problem.	

Warning:		the	fact	that	we	only	had	to	rewrite	2	lines	of	code	for	
mergesort	made	the	paralleliza>on	transforma>on	look	
decep>vely	easy	

–  we	also	had	to	verify	that	any	two	threads	did	not	touch	
overlapping	por>ons	of	the	array	--	if	they	did	we	would	have	to	
again	worry	about	scheduling	nondeterminism	



Caveats	
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There	is	some	overhead	for	crea>ng	a	thread.	
–  On	uniprocessor,	parallel	code	slower	than	sequen>al	code.	

	

Even	on	a	mul>processor,	we	do	not	always	want	to	fork.	
–  when	the	subarray	is	small,	faster	to	sort	it	sequen>ally	than	to	fork	

•  similar	to	using	inser>on	sort	when	arrays	are	small	vs.	quicksort	
–  this	is	known	as	a	granularity	problem	

•  more	parallelism	than	we	can	effec>vely	take	advantage	of.	



Caveats	
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In	a	good	implementa>on	of	futures,	a	compiler	and	run->me	system	
might	look	to	see	whether	the	cost	of	doing	the	fork	is	jus>fied	by	
the	amount	of	work	that	will	be	done.		Today,	it’s	up	to	you	to	figure	
this	out…		L	

–  typically,	use	parallel	divide-and-conquer	un>l:	
(a)	we	have	generated	at	least	as	many	threads	as	there	are	processors	

–  oien	more	threads	than	processors	because	different	jobs	take	
different	amounts	of	>me	to	complete	and	we	would	like	to	keep	
all	processors		busy	

(b)	the	sub-arrays	have	goPen	small	enough	that	it’s	not	worth	forking.	
	

We’re	not	going	to	worry	about	these	performance-tuning	details	
too	much	but	rather	focus	on	the	dis>nc>ons	between	parallel	and	
sequen.al	algorithms.	



Another	Example	
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type 'a tree = Leaf | Node of 'a node 
and 'a node = {left  : 'a tree ;  
               value : 'a      ; 

               right : 'a tree } 

 

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b)  
             (t:'a tree) : 'b =  

  match t with  
  | Leaf -> u 

  | Node n ->  

     f n.value (fold f u n.left) (fold f u n.right) 

 
let sum (t:int tree) = fold (+) 0 t 

 



Another	Example	

47	

type 'a tree = Leaf | Node of 'a node 
and 'a node = {left  : 'a tree ; 
               value : 'a      ;  

               right : 'a tree } 

 

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)  
              (t:'a tree) : 'b =  

  match t with  
  | Leaf -> u 

  | Node n ->  
     let l_f = Future.future (pfold f u) n.left in 
     let r = pfold f u n.right in 
     f n.value (Future.force l_f) r 

 
let sum (t:int tree) = pfold (+) 0 t 

 



Note	
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If	the	tree	is	unbalanced,	then	we’re	not	going	to	get	the	same	
speedup	as	if	it’s	balanced.	
Consider	the	degenerate	case	of	a	list.	

–  The	forked	child	will	terminate	without	doing	any	useful	work.	
–  So	the	parent	is	going	to	have	to	do	all	that	work.	
–  Pure	overhead…		L	

In	general,	lists	are	a	horrible	data	structure	for	parallelism.	
–  we	can’t	cut	the	list	in	half	in	constant	.me	
–  for	arrays	and	trees,	we	can	do	that	(assuming	the	tree	is	
balanced.)	



Side	Effects?	

49	

type 'a tree = Leaf | Node of 'a node 
and 'a node = { left  : 'a tree ;  
                value : 'a      ;  
                right : 'a tree } 
 
let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)  
              (t:'a tree) : 'b =  
  match t with  
  | Leaf -> u 
  | Node n ->  
     let l_f = Future.future (pfold f u) n.left in 
     let r = pfold f u n.right in 
     f n.value (Future.force l_f) r 
 
let print (t:int tree) =  
  pfold (fun n _ _ -> Printf.print “%d\n” n) () 



Huge	Point	

50	

If	code	is	purely	func.onal,	then	it	never	maLers	in	what	order	it	is	run.	
If	f	()	and	g	()	are	pure	then	all	of	the	following	are	equivalent:	

	

let x = f() in 
let y = g() in 
e  

let y = g () in 
let x = f () in 
e  

let y_g = future g () in 
let x   = f ()        in 
let y   = force y_g   in 
e  

let x_f = future f () in 
let y   = g ()        in 
let x   = force x_f   in 
e  



Huge	Point	

51	

If	code	is	purely	func.onal,	then	it	never	maLers	in	what	order	it	is	run.	
If	f	()	and	g	()	are	pure	then	all	of	the	following	are	equivalent:	

	
As	soon	as	we	introduce	side-effects,	the	order	starts	to	maPer.			

–  This	is	why,	IMHO,	impera.ve	languages	where	even	the	simplest	of	
program	phrases	involves	a	side	effect,	are	doomed.	

–  Of	course,	we’ve	been	saying	this	for	30	years!	
–  See	J.	Backus’s	Turing	Award	lecture,	“Can	Programming	be	Liberated	from	

the	von	Neumann	Style?		A	Func.onal	Style	and	Its	Algebra	of	Programs.”	
					hPp://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf	

let x = f() in 
let y = g() in 
e  

let y = g () in 
let x = f () in 
e  

let y_g = future g () in 
let x   = f ()        in 
let y   = force y_g   in 
e  

let x_f = future f () in 
let y   = g ()        in 
let x   = force x_f   in 
e  



Future	Reasoning	in	a	Nutshell	

52	

f ()  ==  force (future f ()) 



Scheduling	
Parallel	Computa>ons	



Visualizing	Computa>onal	Costs	

let	x	=	1	+	2	in	
3	+	x	



Visualizing	Computa>onal	Costs	

let	x	=	1	+	2	in	
3	+	x	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	



Visualizing	Computa>onal	Costs	

let	x	=	1	+	2	in	
3	+	x	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

dependence:	
x	=	1	+	2	happens	before	3	+	x	



Visualizing	Computa>onal	Costs	

let	x	=	1	+	2	in	
3	+	x	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

Execu:on	of	dependency	diagrams:		A	processor	can	only	begin	execu>ng	the		
computa>on	associated	with	a	block	when	the	computa>ons	of	all	of	its		
predecessor	blocks	have	been	completed.	



Visualizing	Computa>onal	Costs	

step	1:	
execute	first	block	 x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

Cost	so	far:	0	



Visualizing	Computa>onal	Costs	

step	1:	
execute	first	block	 x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

Cost	so	far:	1	



Visualizing	Computa>onal	Costs	

step	2:	
execute	second	block	
because	all	of	its		
predecessors	have	
been	completed	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

Cost	so	far:	1	



Visualizing	Computa>onal	Costs	

step	2:	
execute	second	block	
because	all	of	its		
predecessors	have	
been	completed	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

Cost	so	far:	1	+	1	



Visualizing	Computa>onal	Costs	

let	x	=	1	+	2	in	
3	+	x	

x	=	1	+	2	

3	+	x	

cost	=	1	

cost	=	1	

			total	cost		
=	1	+	1	
=	2	



A	Handy	Abbrevia>on	

let	both	f	x	g	y	=	
		let	r1	=	future	f	x	in	
		let	r2	=	future	g	y	in	
		(force	r1,	force	r2)	



Visualizing	Computa>onal	Costs	

both	g	2	f	3	 g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

A	

B	 C	

D	



Visualizing	Computa>onal	Costs	

g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	1	processor.		How	much	>me	does	this	computa>on	take?	

A	

B	 C	

D	

both	g	2	f	3	



Visualizing	Computa>onal	Costs	

g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	1	processor.		How	much	>me	does	this	computa>on	take?	
Scheduld	A-B-C-D:		1	+	1	+	7	+	1	

A	

B	 C	

D	

both	g	2	f	3	



Visualizing	Computa>onal	Costs	

g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	1	processor.		How	much	>me	does	this	computa>on	take?	
Schedule	A-C-B-D:		1	+	1	+	7	+	1	

A	

B	 C	

D	

both	g	2	f	3	



Visualizing	Computa>onal	Costs	

g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	2	processors.		How	much	>me	does	this	computa>on	take?	

A	

B	 C	

D	

both	g	2	f	3	



Visualizing	Computa>onal	Costs	

g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	2	processors.		How	much	>me	does	this	computa>on	take?	
Cost	so	far:	1	

A	

B	 C	

D	

both	g	2	f	3	



Visualizing	Computa>onal	Costs	

g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	2	processors.		How	much	>me	does	this	computa>on	take?	
Cost	so	far:	1	+	max(1,7)	

A	

B	 C	

D	

both	g	2	f	3	



Visualizing	Computa>onal	Costs	

g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	2	processors.		How	much	>me	does	this	computa>on	take?	
Cost	so	far:	1	+	max(1,7)	+	1	
	

A	

B	 C	

D	

both	g	2	f	3	



Visualizing	Computa>onal	Costs	

g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	2	processors.		How	much	>me	does	this	computa>on	take?	
Total	cost:	1	+	max(1,7)	+	1.		We	say	the	schedule	we	used	was:		A-CB-D	

A	

B	 C	

D	

both	g	2	f	3	



Visualizing	Computa>onal	Costs	

g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	3	processors.		How	much	>me	does	this	computa>on	take?	

A	

B	 C	

D	

both	g	2	f	3	



Visualizing	Computa>onal	Costs	

g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	3	processors.		How	much	>me	does	this	computa>on	take?	
Schedule	A-BC-D:	1	+	max(1,7)	+	1	=	9	

A	

B	 C	

D	

both	g	2	f	3	



Visualizing	Computa>onal	Costs	

g	2	 f	3	

(		,		)	

cost	=	7	cost	=	1	

cost	=	1	

cost	=	1	

Suppose	we	have	infinite	processors.		How	much	>me	does	this	computa>on	take?	
Schedule	A-BC-D:	1	+	max(1,7)	+	1	=	9	

A	

B	 C	

D	

both	g	2	f	3	



Work	and	Span	
•  Understanding	the	complexity	of	a	parallel	program	is	a	liPle	

more	complex	than	a	sequen>al	program	
–  the	number	of	processors	has	a	significant	effect	

•  One	way	to	approximate	the	cost	is	to	consider	a	parallel	
algorithm	independently	of	the	machine	it	runs	on	is	to	
consider	two	metrics:		
–  Work:		The	cost	of	execu>ng	a	program	with	just	1	processor.	
–  Span:		The	cost	of	execu>ng	a	program	with	an	infinite	number	
of	processors	

•  Always	good	to	minimize	work	
–  Every	instruc>on	executed	consumes	energy	
–  Minimize	span	as	a	second	considera>on	
–  Communica>on	costs	are	also	crucial	(we	are	ignoring	them)	



Parallelism	
The	parallelism	of	an	algorithm	is	an	es>mate	of	the	maximum	
number	of	processors	an	algorithm	can	profit	from.	
•  parallelism	=	work	/	span	

If	work	=	span	then	parallelism	=	1.			
•  We	can	only	use	1	processor	
•  It's	a	sequen>al	algorithm	
	
If	span	=	½	work	then	parallelism	=	2	
•  We	can	use	up	to	2	processors	

If	work	=	100,	span	=	1	
•  All	opera>ons	are	independent	&	can	be	executed	in	parallel	
•  We	can	use	up	to	100	processors	



Series-Parallel	Graphs	

Series-parallel	graphs	arise	from	execu>on	of	func>onal	programs	with		
parallel	pairs.		Also	known	as	well-structured,	nested	parallelism.		

one	opera>on	 two	opera>ons	
in	sequence:	

e1;	e2	

two	opera>ons	
in	parallel:	

both	(fun	_->	e1)	
											(fun	_	->	e2)	



Series-Parallel	Graphs		Compose	

In	general,	a	series-parallel	graph	has	a	source	and	a	sink	and	is:	
•  a	single	node,	or	
•  two	series-parallel	graphs	in	sequence,	or	
•  two	series-parallel	graphs	in	parallel	

one	opera>on	 two	graphs	
in	sequence	

two	graphs	
in	parallel	



Not	a	Series-Parallel	Graph	

However:	
The	results	about	greedy	
schedulers	(next	few	
slides)	do	apply	to	DAG	
schedules	as	well	as	

series-parallel	schedules!	



Work	and	Span	of	Acyclic	Graphs	
Let's	assume	each	node	costs	1.	

Work:	sum	the	nodes.	

Span:	longest	path	from		
source	to	sink.	
	



Work	and	Span	of	Acyclic	Graphs	
Let's	assume	each	node	costs	1.	

Work:	sum	the	nodes.	

Span:	longest	path	from		
source	to	sink.	
	

work	=	10	
span	=	5	



Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa>on?	



Scheduling	
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J	
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Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa>on?	

Op>on	1:	
A	
B	G	
C	D	



Scheduling	
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G	

J	
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Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa>on?	

Op>on	1:	
A	
B	G	
C	D	
E	H	



Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa>on?	

Op>on	1:	
A	
B	G	
C	D	
E	H	
I	



Scheduling	
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H	 I	
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Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa>on?	

Op>on	1:	
A	
B	G	
C	D	
E	H	
I	
J	
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Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa>on?	

Op>on	1:	
A	
B	G	
C	D	
E	H	
I	
J	
F	
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Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa>on?	

Op>on	1:	
A	
B	G	
C	D	
E	H		 	H	I	
I 		
J 		
F	
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Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa>on?	

Op>on	1:	
A	
B	G	
C	D	
E	H		 	H	I	
I 	E	J	
J 		
F	



Scheduling	
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Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa>on?	

Op>on	1:	
A	
B	G	
C	D	
E	H		 	H	I	
I 	E	J	
J 	F	
F	



Scheduling	

B	

E	

C	 D	

A	

G	

J	

H	 I	

F	

Let's	assume	each	node	costs	1.	

Let's	assume	we	have	2	processors.	
How	do	we	schedule	computa>on?	

Op>on	1:	
A	
B	G	
C	D	
E	H		 	H	I	
I 	E	J	
J 	F	
F	

Conclusion:	
How	you	schedule	
jobs	can	have	an	
impact	on	performance	



Greedy	Schedulers	
•  Greedy	schedulers	will	schedule	some	task	to	a	processor	as	

soon	as	that	processor	is	free.	
–  Doesn't	sound	so	smart!	

•  Proper>es	(for	p	processors):	
–  T(p)	<	work/p	+	span	

•  won't	be	worse	than	dividing	up	the	data	perfectly	between	
processors,	except	for	the	last	liPle	bit,	which	causes	you	to	add	
the	span	on	top	of	the	perfect	division	

–  T(p)	>=	max(work/p,	span)	
•  can't	do	bePer	than	perfect	division	between	processors	(work/p)	
•  can't	be	faster	than	span	



Greedy	Schedulers	
Proper>es	(for	p	processors):	

max(work/p,	span)			<=		T(p)			<			work/p	+	span	
	

Consequences:	
–  as	span	gets	small	rela>ve	to	work/p	

•  work/p	+	span		==>	work/p	
•  max(work/p,	span)	==>	work/p	
•  so	T(p)	==>	work/p		--	greedy	schedulers	converge	to	the	op>mum!	

–  if	span	approaches	the	work	
•  work/p	+	span	==>	span	
•  max(work/p,	span)	==>	span	
•  so	T(p)	==>	span	–	greedy	schedulers	converge	to	the	op>mum!	



SUMMARY	



Programming	with	muta>on,	threads	and	locks	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

...	

thread	1	 thread	2	

Reasoning	about	shared	variables	
and	synchroniza>on	is	hard	in	general,	

but		futures	are	a	discipline	
for	gexng	it	right.	

	
Much	of	programming-language	design	
is	the	art	of	finding	good	disciplines	

in	which	it’s	harder*	to	write	bad	programs.	
	

Even	aside	from	PL	design,	the	same	is	true	of	
soiware	engineering	with	Abstract	Data	Types:	
if	you	engineer	disciplines	into	your	interfaces,	

it	is	harder	for	the	user	to	get	it	wrong.	
*but	somebody	will	always	find	a	way…	

Reasoning	about	the	correctness	of	pure	parallel	programs	that	
include	futures	is	easy	--	no	harder	than	ordinary,	sequen>al	
programs.		(Reasoning	about	their	performance	may	be	harder.)	
	


