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PARALLELISM:			
WHAT	IS	IT?	



Parallelism:	What	is	it?	
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parallel	computa?ons	involve		
doing	many	things	at	the	same	?me		

instead	of	sequen?ally	(one-aMer-the-other)	



Flavors	of	Parallelism	
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Data	Parallelism	
–  same	computa?on	being	performed	on	a	collec%on	of	
independent	items	

–  e.g.,	adding	two	vectors	of	numbers	
Task	Parallelism	

–  different	computa?ons/programs	running	at	the	same	?me	
–  e.g.,	running	web	server	and	database	

Pipeline	Parallelism	
–  assembly	line:	

sequen?al	
f	

sequen?al	
g	

map	f	over	all	items	 map	g	over	all	items	



Parallelism	vs.	Concurrency	
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Parallelism:		performs	many	tasks	simultaneously	

•  purpose:		improves	throughput	(total	jobs	processed	in	aloVed	?me)	
•  mechanism:			

–  many	independent	compu?ng	devices	
–  decrease	run	?me	of	program	by	u?lizing	mul?ple	cores	or	computers	

•  eg:	running	your	web	crawler	on	a	cluster	versus	one	machine.	



Parallelism	vs.	Concurrency	
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Parallelism:		performs	many	tasks	simultaneously	

•  purpose:		improves	throughput	(total	jobs	processed	in	aloVed	?me)	
•  mechanism:			

–  many	independent	compu?ng	devices	
–  decrease	run	?me	of	program	by	u?lizing	mul?ple	cores	or	computers	

•  eg:	running	your	web	crawler	on	a	cluster	versus	one	machine.	

Concurrency:	mediates	mul?-party	access	to	shared	resources	
•  purpose:	decrease	response	?me	
•  mechanism:	

–  switch	between	different	threads	of	control	
–  work	on	one	thread	when	it	can	make	useful	progress;	when	it	can't,	
suspend	it	and	work	on	another	thread	

•  eg:		running	your	clock,	editor,	chat	at	the	same	?me	on	a	single	CPU.	
–  OS	gives	each	of	these	programs	a	small	?me-slice	(~10msec)	
–  oMen	slows	throughput	due	to	cost	of	switching	contexts	

•  eg:		don't	block	while	wai?ng	for	I/O	device	to	respond,	but	let	another	thread	
do	useful	CPU	computa?on	



Parallelism	vs.	Concurrency	
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cpu	 cpu	 cpu	

job	

…	

Parallelism:	
perform	several	independent	
tasks	simultaneously	
	

resource	
(cpu,	disk,	server,		
data	structure)	

job	 …	Concurrency:	
mediate/mul?plex		
access	to		shared	
resource	
	

job	 job	

many	efficient	programs	use	some	parallelism	and	some	concurrency	



PARALLELISM:		WHY	NOW?	
UNDERSTANDING	TECHNOLOGY	TRENDS	



Moore's	Law	
•  Moore's	Law:		The	number	of	transistors	you	can	put	on	a	

computer	chip	doubles	(approximately)	every	couple	of	years.	

•  Consequence	for	most	of	the	history	of	compu?ng:		All	
programs	double	in	speed	every	couple	of	years.	
–  Why?		Hardware	designers	are	wicked	smart.	
–  They	have	been	able	to	use	those	extra	transistors	to	(for	
example)	double	the	number	of	instruc?ons	executed	per	?me	
unit,	thereby	processing	speed	of	programs	

•  Consequence	for	applica?on	writers:	
–  watch	TV	for	a	while	and	your	programs	op%mize	themselves!	
–  new	applica?ons	thought	impossible	became	possible	because	
of	increased	computa?onal	power	



CPU	Clock	Speeds	from	1993-2005	
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CPU	Clock	Speeds	from	1993-2005	
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Next	year’s	machine	
is	twice	as	fast!	



CPU	Clock	Speeds	from	1993-2005	
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Oops!	



Power	Dissipa?on		
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Power	Dissipa?on		
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(Dave-drawn	
curve.)	
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Moore’s	Law	s?ll	
holds,	so	far,	for		
transistors-per-chip.	

But:	
•  clock	speed,	
•  power	
•  performance/clock	cycle	
all	level	off.	
	
What	do	we	do	
with	all	those	transistors?	



THE	SOLUTION	



Core	
	
	

Mul?-core	Hardware	

L2	cache	

Core	
	
	

Main	memory	

L1	cache	 L1	cache	

ALU	
ALU	

ALU	
ALU	
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GPUs	

•  There's	nothing	like	video	
gaming	to	drive	progress	
in	computa%on!	

•  GPUs	can	have	hundreds	
or	even	thousands	of	
cores	

•  Three	of	the	5	most	
powerful	supercomputers	
in	the	world	take	
advantage	of	GPU	
accelera?on.	

•  Scien?sts	use	GPUs	for	
simula?on	and	modelling	
–  eg:	protein	folding	and	
fluid	dynamics		



So…	
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Instead	of	trying	to	make	your	CPU	go	faster,	Intel’s	just	going	to	
pack	more	CPUs	onto	a	chip.	

–  a	few	years	ago:	dual	core	(2	CPUs).	
–  a	liVle	more	recently:	4,	6,	8	cores.	
–  Soon	we	may	have	hundreds	or	thousands	on	a	chip.	

	
In	fact,	that’s	already	happening	with	graphics	chips.	

–  really	good	at	simple	data	parallelism	(many	deep	pipes)	
–  but	they	are	much	dumber	than	an	Intel	core.	
–  and	right	now,	chew	up	a	lot	of	power.	
–  watch	for	GPUs	to	get	“smarter”	and	more	power	efficient,	while	
CPUs	become	more	like	GPUs.	



STILL	MORE	PROCESSORS:			
THE	DATA	CENTER	



Data	Centers:		Genera?on	Z	Super	Computers	



Data	Centers:		Lots	of	Connected	Computers!	



Data	Centers	
10s	or	100s	of	thousands	of	computers	connected	together	
•  Mo?vated	by	new	applica?ons	and	scalable	web	services:	

–  let's	catalogue	all	N	billion	webpages	in	the	world	
–  let's	all	allow	anyone	in	the	world	to	search	for	the	page	he	or	
she	needs	

–  let's	process	that	search	in	less	than	a	second	
	
It's	rather	amazing.		We	are	living	science	fic?on.	



Data	Centers:		Lots	of	Connected	Computers	
Computer	containers	for	plug-and-play	parallelism:	



Sounds	Great!	
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So	my	old	programs	will	run	2x,	4x,	48x,	256x,	1024x	faster?	



Sounds	Great!	
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So	my	old	programs	will	run	2x,	4x,	48x,	256x,	1024x	faster?	
–  no	way!	



Sounds	Great!	
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So	my	old	programs	will	run	2x,	4x,	48x,	256x,	1024x	faster?	
–  no	way!	
–  to	upgrade	from	Intel	386	to	486,	the	app	writer	and	compiler	
writer	did	not	have	to	do	anything	(much)	
•  IA	486	interpreted	the	same	sequen?al	stream	of	instruc?ons;	it	
just	did	it	faster	

•  this	is	why	we	could	watch	TV	while	Intel	engineers	op?mized	our	
programs	for	us	

–  to	upgrade	from	Intel	486	to	dual	core,	we	need	to	figure	out	
how	to	split	a	single	stream	of	instruc?ons	in	to	two	streams	of	
instruc?ons	that	collaborate	to	complete	the	same	task.	
•  without	work	&	thought,	our	programs	don't	get	any	faster	at	all	
•  it	takes	ingenuity	to	generate	efficient	parallel	algorithms	from	
sequen%al	ones	



In	Part:		Func?onal	Programming!	

Dryad	

Pig	

Naiad	



PARALLEL	AND	CONCURRENT	
PROGRAMMING	



Speedup	
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•  Speedup:	the	ra?o	of	sequen?al	program	execu?on	?me	to	
parallel	execu?on	?me.	

•  If	T(p)	is	the	?me	it	takes	to	run	a	computa?on	on	p	processors	

•  A	parallel	program	has	perfect	speedup	(aka	linear	speedup)	if	

•  Bad	news:		Not	every	program	can	be	effec%vely	parallelized.	
–  in	fact,	very	few	programs	will	scale	with	perfect	speedups.	
–  we	certainly	can't	achieve	perfect	speedups	automa?cally	
–  limited	by	sequen?al	por?ons,	data	transfer	costs,	...	

speedup(p)	=	T(1)/T(p)	

T(1)/T(p)	=	speedup	=	p	



Most	Troubling…	

32	

Most,	but	not	all,	parallel	and	concurrent	programming	models	
are	far	harder	to	work	with	than	sequen?al	ones:	

•  They	introduce	nondeterminism	
–  the	root	of	(almost	all)	evil	
–  program	parts	suddenly	have	many	different	outcomes	

•  they	have	different	outcomes	on	different	runs	
•  debugging	requires	considering	all	of	the	possible	outcomes	
•  horrible	heisenbugs	hard	to	track	down	

•  They	are	nonmodular	
–  module	A	implicitly	influences	the	outcomes	of	module	B	

•  They	introduce	new	classes	of	errors	
–  race	condi?ons,	deadlocks	

•  They	introduce	new	performance/scalability	problems	
–  busy-wai?ng,	sequen?aliza?on,	conten?on	



Informal	Error	Rate	Chart	

regularity	
with	which	
you	shoot		
yourself	
in	the	foot	



Informal	Error	Rate	Chart	

regularity	
with	which	
you	shoot		
yourself	
in	the	foot	

null	pointers,	
paucity	of	types,	
inheritence	

manual	
memory	
management	

kitchen	
sink	+		
manual	
memory	

heaven	
on	earth	

unstructured	
parallel	
or	concurrent	
programming	



Solid	Parallel	Programming	Requires	
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1.	Good	sequen?al	programming	skills.	
–  all	the	things	we’ve	been	talking	about:	use	modules,	types,	...	

	
2.	Deep	knowledge	of	the	applica?on.	
	
3.	Pick	a	correct-by-construc%on	parallel	programming	model	

–  whenever	possible,	a	parallel	model	with	seman?cs	that	coincides	
with	sequen?al	seman?cs	
•  whenever	possible,	reuse	well-tested	libraries	that	hide	parallelism	

–  whenever	possible,	a	model	that	cuts	down	non-determinism	
–  whenever	possible,	a	model	with	fewer	possible	concurrency	bugs	
–  if	bugs	can	arise,	know	and	use	safe	programming	paVerns	

	
4.	Careful	engineering	to	ensure	scaling.	

–  unfortunately,	there	is	some?mes	a	tradeoff:	
•  reduced	nondeterminism	can	lead	to	reduced	resource	u?liza?on	

–  synchroniza?on,	communica?on	costs	may	need	op?miza?on	



OUR	FIRST	PARALLEL	
PROGRAMMING	MODEL:		THREADS	



Threads:	A	Warning	
Concurrent	Threads	with	Locks:		the	classic	shoot-yourself-in-the-
foot	concurrent	programming	model	

–  all	the	classic	error	modes	

Why	Threads?	
–  almost	all	programming	languages	will	have	a	threads	library	

•  OCaml	in	par?cular!	
–  you	need	to	know	where	the	piualls	are	
–  the	assembly	language	of	concurrent	programming	paradigms	

•  we’ll	use	threads	to	build	several	higher-level	programming	
models	



Threads	
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Threads:		an	abstrac?on	of	a	processor.	
–  programmer	(or	compiler)	decides	that	some	work	can	be	done	
in	parallel	with	some	other	work,	e.g.:	

–  we	fork	a	thread	to	run	the	computa?on	in	parallel,	e.g.:	

let _ = compute_big_thing() in  
let y = compute_other_big_thing() in 
... 

let t = Thread.create compute_big_thing () in  
let y = compute_other_big_thing () in 
 ... 



Intui?on	in	Pictures	
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let t = Thread.create f () in  
let y = g () in 
 ... 

Thread.create   
 
execute g () 
  
... 

processor	1	

(* doing nothing *)   
 
execute f () 
  
... 

processor	2	

?me	1	
	
?me	2	
	
?me	3	



Of	Course…	
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Suppose	you	have	2	available	cores	and	you	fork	4	threads....	
	
In	a	typical	mul?-threaded	system,		
	

–  the	opera?ng	system	provides	the	illusion	that	there	are	an	
infinite	number	of	processors.	
•  not	really:		each	thread	consumes	space,	so	if	you	fork	too	many	
threads	the	process	will	die.	

–  it	%me-mul%plexes	the	threads	across	the	available	processors.	
•  about	every	10	msec,	it	stops	the	current	thread	on	a	processor,	
and	switches	to	another	thread.	

•  so	a	thread	is	really	a	virtual	processor.	



OCaml,	Concurrency	and	Parallelism	
Unfortunately,	even	if	your	computer	has	2,	4,	6,	8	cores,	OCaml	
cannot	exploit	them.		It	mul?plexes	all	threads	over	a	single	core	

	
Hence,	OCaml	provides	concurrency,	but	not	parallelism.	Why?	
Because	OCaml	(like	Python)	has	no	parallel	“run?me	system”	or	
garbage	collector.		Other	func?onal	languages	(Haskell,	F#,	...)	do.			
	
Fortunately,	when	thinking	about	program	correctness,	it	doesn’t	
maVer	that	OCaml	is	not	parallel	--	I	will	oMen	pretend	that	it	is.			
	
You	can	hide	I/O	latency,	do	mul?process	programming	or	distribute	
tasks	amongst	mul?ple	computers	in	OCaml.	

core	

thread	 …	thread	 thread	



Coordina?on	
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How	do	we	get	back	the	result	that	t	is	compu?ng?	
	
	

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t 
 
let t = Thread.create f () in  
let y = g () in 
 ... 



First	AVempt	
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let r = ref None 
let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

  match !r with  
    | Some v -> (* compute with v and y *) 

    | None -> ??? 

 
 

 

What’s	wrong	with	this?	



Second	AVempt	
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let r = ref None 
let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

let rec wait() =  

  match !r with  
    | Some v -> v 

    | None -> wait() 

in 
let v = wait() in 
  (* compute with v and y *)   
 
 

 



Two	Problems	
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First,	we	are	busy-wai%ng.			
•  consuming	cpu	without	doing	something	useful.	
•  the	processor	could	be	either	running	a	useful	thread/program	or	power	

down.			

	
	

let r = ref None 
let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

let rec wait() =  

  match !r with  
    | Some v -> v 

    | None -> wait() 

in 
let v = wait() in 
  (* compute with v and y *) 



Two	Problems	
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Second,	an	opera?on	like	r	:=	Some	v	may	not	be	atomic.	
•  r	:=	Some	v		requires	us	to	copy	the	bytes	of	Some	v	into	the	ref	r	
•  we	might	see	part	of	the	bytes	(corresponding	to	Some)	before	we’ve	

wriVen	in	the	other	parts	(e.g.,	v).	
•  So	the	waiter	might	see	the	wrong	value.	
	
	
	

let r = ref None 
let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

let rec wait() =  

  match !r with  
    | Some v -> v 

    | None -> wait() 

in 
let v = wait() in 
  (* compute with v and y *) 



An	Aside:		Atomicity	
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Consider	the	following:	
	

	
and	suppose	two	threads	are	incremen?ng	the	same	ref	r:	
	
Thread	1 	 	Thread	2	
inc(r);   inc(r); 
!r    !r 

	
If	r	ini?ally	holds	0,	then	what	will	Thread	1	see	when	it	reads	r?			

let inc(r:int ref) = r := (!r) + 1 



Atomicity	
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The	problem	is	that	we	can’t	see	exactly	what	instruc?ons	the	
compiler	might	produce	to	execute	the	code.	
	
It	might	look	like	this:	
	
Thread	1 	 														Thread	2	
R1 := load(p);     R1 := load(p); 

R1 := R1 + 1;      R1 := R1 + 1; 
store R1 into r    store R1 into p 

R1 := load(p)      R1 := load(p) 

	



Atomicity	
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But	a	clever	compiler	might	op?mize	this	to:	
	
Thread	1 	 														Thread	2	
R1 := load(p);     R1 := load(p); 

R1 := R1 + 1;      R1 := R1 + 1; 

store R1 into p    store R1 into p 
R1 := load(r)      R1 := load(r) 

	



Atomicity	

50	

Furthermore,	we	don’t	know	when	the	OS	might	interrupt	one	
thread	and	run	the	other.		
	
Thread	1 	 														Thread	2	
R1 := load(p);     R1 := load(p); 

R1 := R1 + 1;      R1 := R1 + 1; 
store R1 into p    store R1 into p 

R1 := load(r)      R1 := load(p) 
	
(The	situa?on	is	similar,	but	not	quite	the	same	on	mul?-
processor	systems.)	



Atomicity	
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One	possible	interleaving	of	the	instruc?ons:	
	
Thread	1 	 														Thread	2	
R1 := load(p);      R1 := load(p); 
R1 := R1 + 1;       R1 := R1 + 1; 

store R1 into r     store R1 into p 
R1 := load(p)       R1 := load(p) 

What	answer	do	we	get?	



Atomicity	
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Another	possible	interleaving:	
	
Thread	1 	 														Thread	2	
R1 := load(p);      R1 := load(p); 
R1 := R1 + 1;       R1 := R1 + 1; 

store R1 into p     store R1 into p 
R1 := load(p)       R1 := load(p) 

What	answer	do	we	get	this	?me?	



Atomicity	
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Another	possible	interleaving:	
	
Thread	1 	 														Thread	2	
R1 := load(p);       R1 := load(p); 
R1 := R1 + 1;        R1 := R1 + 1; 
store R1 into p      store R1 into p 
R1 := load(r)       R1 := load(p) 

What	answer	do	we	get	this	?me?	
	
Moral:		The	system	is	responsible	for	scheduling	execu?on	of	
instruc?ons.	
	
Moral:		This	can	lead	to	an	enormous	degree	of	nondeterminism.	



Even	Worse	...	

54	

In	fact,	today’s	mul?core	processors	don’t	treat	memory	in	a	
sequen%ally	consistent	fashion.	That	means	that	we	can’t	even	
assume	that	what	we	will	see	corresponds	to	some	interleaving	
of	the	threads’	instruc%ons!	
	
	
	
	
	
	
	
Beyond	the	scope	of	this	class!		But	the	take-away	is	this:	It’s	not	a	good	idea	
to	use	ordinary	loads/stores	to	synchronize	threads;	you	should	use	explicit	synchroniza?on	
primi?ves	so	the	hardware	and	op?mizing	compiler	don’t	op?mize	them	away.	

Core	1	
	
	

L2	cache	

Core	2	
	
	

L1	cache	 L1	cache	

ALU	 ALU	

Core	3	
	
	

Core	4	
	
	

L1	cache	 L1	cache	

ALU	 ALU	
When	Core1	stores	to	
“memory”,	it	lazily	

propagates	to	Core2’s	L1	
cache.		The	load	at	Core2	
might	not	see	it,	unless	
there	is	an	explicit	
synchroniza?on.	



Even	Worse	
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In	fact,	today’s	mul?core	processors	don’t	treat	memory	in	a	
sequen%ally	consistent	fashion.	That	means	that	we	can’t	even	
assume	that	what	we	will	see	corresponds	to	some	interleaving	
of	the	threads’	instruc%ons!	
	
Thread	1 	 														Thread	2	
R1 := load(r);      R1 := load(r); 
R1 := R1 + 1;       R1 := R1 + 1; 
store R1 into r     store R1 into r 
R1 := load(r)       R1 := load(r) 
	
Beyond	the	scope	of	this	class!		But	the	take-away	is	this:	It’s	not	a	good	idea	
to	use	ordinary	loads/stores	to	synchronize	threads;	you	should	use	explicit	synchroniza?on	
primi?ves	so	the	hardware	and	op?mizing	compiler	don’t	op?mize	them	away.	



The	Happens	Before	Rela?on	
We	assume	OCaml	obeys	a	par?cular	Happens	Before	rela?on:	
	
Rule	1:		Given	two	expressions	(or	instruc?ons)	in	sequence:	
e1;	e2	we	know	that	e1	happens	before	e2.	
	
Rule	2:		Given	a	program:	
	
	
	
	
we	know	that	(f	x)	happens	before	e.	

let	t	=	Thread.create	f	x	in	
			....	
Thread.join	t;	
e	



In	Pictures	
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Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	know	that	for	each	
thread	the	previous	
instruc?ons	must	happen	
before	the	later	instruc?ons.	
	
So	for	instance,	inst1,1	must	
happen	before	inst1,2.	

g	 f	



In	Pictures	
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Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	also	know	that	the		
fork	must	happen	before	
the	first	instruc?on	of	the		
second	thread.	



In	Pictures	
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Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

We	also	know	that	the		
fork	must	happen	before	
the	first	instruc?on	of	the		
second	thread.	

And	thanks	to	the	join,		
we	know	that	all	of	the	
instruc?ons	of	the	second	
thread	must	be	completed	
before	the	join	finishes.	



In	Pictures	
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Thread	1	
t=create	f	x	
inst1,1;		
inst1,2;	
inst1,3;	
inst1,4;	
…	
inst1,n-1;	
inst1,n;	
join	t	

Thread	2	
	
	
inst2,1;		
inst2,2;	
inst2,3;	
…	
inst2,m;	

However,	in	general,	we	
do	not	know	whether	
inst1,i	executes	before	or		
aMer	inst2,j.	
	
In	general,	synchroniza%on	
instruc%ons	like	fork	and	
join	reduce	the	number	of	
possible	interleavings.	
	
Synchroniza%on	cuts	down		
nondeterminism.	
	
In	the	absence	of		
synchroniza?on	we	don’t	
know	anything…	



Summary:	Interleaving	&	Race	Condi?ons	
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Calculate	possible	outcomes	for	a	program	by	considering	all	of	the	possible	
interleavings	of	the	atomic	ac?ons	performed	by	each	thread.	

–  Subject	to	the	happens-before	rela?on.	
•  can’t	have	a	child	thread’s	ac?ons	happening	before	a	parent	forks	it.	
•  can’t	have	later	instruc?ons	execute	earlier	in	the	same	thread.	

–  Here,	atomic	means	indivisible	ac?ons.	
•  For	example,	on	most	machines	reading	or	wri?ng	a	32-bit	word	is	atomic.	
•  But,	wri?ng	a	mul?-word	object	is	usually	not	atomic.	
•  Most	opera?ons	like	“b	:=	b	-	w”	are	implemented	in	terms	of	a	series	of	
simpler	opera?ons	such	as		
–  r1	=	read(b);	r2	=	read(w);	r3	=	r1	–	r2;	write(b,	r3)	

	
Reasoning	about	all	interleavings	is	hard.	just	about	impossible	for	people	

–  Number	of	interleavings	grows	exponen?ally	with	number	of	statements.	
–  It	can	be	hard	to	tell	what	is	and	isn’t	atomic	in	a	high-level	language.	
–  YOU	ARE	DOOMED	TO	FAIL	IF	YOU	HAVE	TO	WORRY	ABOUT	THIS	STUFF!	



Another	approach	to	the	coordina?on	Problem	
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How	do	we	get	back	the	result	that	t	is	compu%ng?	
	
	

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t 
 
let t = Thread.create f () in  
let y = g () in 
 ... 



One	Solu?on	(using	join)	
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 let r = ref None 

 let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

    Thread.join t ;  

    match !r with  
  | Some v -> (* compute with v and y *) 

    | None -> failwith “impossible” 

 
 

 



One	Solu?on	(using	join)	
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 let r = ref None 

 let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

    Thread.join t ;  

    match !r with  
  | Some v -> (* compute with v and y *) 

    | None -> failwith “impossible” 

 
 

 

Thread.join t	causes	
the	current	thread	to	wait	

un?l	the	thread	t	
terminates.	



One	Solu?on	(using	join)	
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 let r = ref None 

 let t = Thread.create (fun _ -> r := Some(f ())) in  
let y = g() in 

    Thread.join t ;  

    match !r with  
  | Some v -> (* compute with v and y *) 

    | None -> failwith “impossible” 

 
 

 So	aMer	the	join,	we	know	
that	any	of	the	opera?ons	

of	t	have	completed.	

SynchronizaEon	



FUTURES:		A	PARALLEL	
PROGRAMMING	ABSTRACTION	



Futures	
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The	fork-join	paVern	we	just	saw	is	so	common,	we’ll	create	an	abstrac?on	for	it:	
	

module type FUTURE =  
sig 
  type ‘a future  
 
  (* future f x forks a thread to run f(x) 
     and stores the result in a future when complete *) 
  val future : (‘a->‘b) -> ‘a -> ‘b future  
    
  (* force f causes us to wait until the  
     thread computing the future value is done 
     and then returns its value. *) 
  val force : ‘a future -> ‘a   
end 



Does	that	interface	looks	familiar	....	?	



Future	Implementa?on	
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module Future : FUTURE =  
struct  
  type ‘a future = {tid   : Thread.t      ;  
                    value : ’a option ref } 

 
 

 
 
 
 
 
 
 
 
 
end  



Future	Implementa?on	
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module Future : FUTURE =  
struct  
  type ‘a future = {tid   : Thread.t      ;  
                    value : ‘a option ref } 

 
  let future(f:‘a->‘b)(x:‘a) : ‘b future =  
    let r = ref None in  
    let t = Thread.create (fun () -> r := Some(f x)) ()  
    in 
    {tid=t ; value=r} 

 

 
 
 
 
end  



Future	Implementa?on	
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module Future : FUTURE =  
struct  
  type ‘a future = {tid   : Thread.t      ;  
                    value : ‘a option ref } 

 
  let future(f:‘a->‘b)(x:‘a) : ‘b future =  
    let r = ref None in  
    let t = Thread.create (fun () -> r := Some(f x)) ()  
    in 
    {tid=t ; value=r} 

 

  let force (f:‘a future) : ‘a =  
    Thread.join f.tid ;  
    match !(f.value) with 
    | Some v -> v 
    | None -> failwith “impossible!” 

end  



Now	using	Futures	

72	

let x = future f () in 
let y = g () in 
let v = force x in 

(* compute with v and y *) 

 

 

 
 

 



Back	to	the	Futures	
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let x = future f () in 
let y = g () in 
let v = force x in 

y + v 

 

 
 

 

 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

with	futures	library:	 without	futures	library:	

val f : unit -> int 

val g : unit -> int 

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 



Back	to	the	Futures	
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what	happens	if	
we	delete	these	
lines?	

let x = future f () in 
let y = g () in 
let v = force x in 

y + v 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with	futures	library:	 without	futures	library:	

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 



Back	to	the	Futures	
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let x = future f () in 
let y = g () in 
let v = force x in 

y + x 
 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with	futures	library:	 without	futures	library:	

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 

what	happens	if	
we	use	x	and	
forget	to	force?	



Back	to	the	Futures	
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let x = future f () in 
let y = g () in 
let v = force x in 

y + x 
 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

let y = g() in 

Thread.join t ;  

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with	futures	library:	 without	futures	library:	

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 

Moral:		Futures	+	typing	ensure	
en?re	categories	of	errors	can’t		
happen	--	you	protect	yourself	
from	your	own	stupidity	



Back	to	the	Futures	
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let x = future f () in 

let v = force x in 
let y = g () in 
y + x 
 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

Thread.join t ;  

let y = g() in 

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with	futures	library:	 without	futures	library:	

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 

what	happens	if	you	
relocate	force,	join?	



Back	to	the	Futures	

78	

let x = future f () in 

let v = force x in 
let y = g () in 
y + x 
 

let r = ref None 

let t = Thread.create  

           (fun _ -> r := Some(f ()))  

           () 

in  

Thread.join t ;  

let y = g() in 

match !r with 

    Some v -> y + v 

  | None -> failwith “impossible” 

val f : unit -> int 

val g : unit -> int 

with	futures	library:	 without	futures	library:	

module type FUTURE =  
sig 
  type ‘a future  
 
  val future : (’a->’b) -> ’a -> ‘b future  
  val force :’a future -> ‘a   
end 

Moral:		Futures	are	
not	a	universal	savior	



An	Example:		Mergesort	on	Arrays	

79	

let mergesort (cmp:'a->'a->int)  
              (arr : 'a array) : 'a array =  
  let rec msort (start:int) (len:int) : 'a array =  
    match len with  
      | 0 -> Array.of_list [] 

      | 1 -> Array.make 1 arr.(start) 

      | _ -> let half = len / 2 in 
             let a1 = msort start half in 
             let a2 = msort (start + half)  
                            (len - half) in 
               merge a1 a2 

 
  and merge (a1:'a array) (a2:'a array) : 'a array = 

 ...  



An	Example:		Mergesort	on	Arrays	
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let mergesort (cmp:'a->'a->int)  
              (arr : 'a array) : 'a array =  
  let rec msort (start:int) (len:int) : 'a array =  
    match len with  
      | 0 -> Array.of_list [] 

      | 1 -> Array.make 1 arr.(start) 

      | _ -> let half = len / 2 in 
             let a1 = msort start half in 
             let a2 = msort (start + half)  
                            (len - half) in 
               merge a1 a2 

 
  and merge (a1:'a array) (a2:'a array) : 'a array = 

 ...  

Opportunity	for	
paralleliza?on	



Making	Mergesort	Parallel	
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let mergesort (cmp:'a->'a->int)  
              (arr : 'a array) : 'a array =  
  let rec msort (start:int) (len:int) : 'a array =  
    match len with  
      | 0 -> Array.of_list [] 

      | 1 -> Array.make 1 arr.(start) 

      | _ -> let half = len / 2 in 
             let a1_f =  
               Future.future (msort start) half in 
             let a2 =  
               msort (start + half)(len - half) in 
             merge (Future.force a1_f) a2 
 

  and merge (a1:'a array) (a2:'a array) : 'a array =  



Divide-and-Conquer	
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This	is	an	instance	of	a	basic	divide-and-conquer	paVern	in	
parallel	programming	

–  take	the	problem	to	be	solved	and	divide	it	in	half	
–  fork	a	thread	to	solve	the	first	half	
–  simultaneously	solve	the	second	half	
–  synchronize	with	the	thread	we	forked	to	get	its	results	
–  combine	the	two	solu?on	halves	into	a	solu?on	for	the	whole	
problem.	

Warning:		the	fact	that	we	only	had	to	rewrite	2	lines	of	code	for	
mergesort	made	the	paralleliza?on	transforma?on	look	
decep?vely	easy	

–  we	also	had	to	verify	that	any	two	threads	did	not	touch	
overlapping	por?ons	of	the	array	--	if	they	did	we	would	have	to	
again	worry	about	scheduling	nondeterminism	



Caveats	
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There	is	some	overhead	for	crea?ng	a	thread.	
–  On	uniprocessor,	parallel	code	slower	than	sequen?al	code.	

	

Even	on	a	mul?processor,	we	do	not	always	want	to	fork.	
–  when	the	subarray	is	small,	faster	to	sort	it	sequen?ally	than	to	fork	

•  similar	to	using	inser?on	sort	when	arrays	are	small	vs.	quicksort	
–  this	is	known	as	a	granularity	problem	

•  more	parallelism	than	we	can	effec?vely	take	advantage	of.	



Caveats	
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In	a	good	implementa?on	of	futures,	a	compiler	and	run-?me	system	
might	look	to	see	whether	the	cost	of	doing	the	fork	is	jus?fied	by	
the	amount	of	work	that	will	be	done.		Today,	it’s	up	to	you	to	figure	
this	out…		L	

–  typically,	use	parallel	divide-and-conquer	un?l:	
(a)	we	have	generated	at	least	as	many	threads	as	there	are	processors	

–  oMen	more	threads	than	processors	because	different	jobs	take	
different	amounts	of	?me	to	complete	and	we	would	like	to	keep	
all	processors		busy	

(b)	the	sub-arrays	have	goVen	small	enough	that	it’s	not	worth	forking.	
	

We’re	not	going	to	worry	about	these	performance-tuning	details	
but	rather	focus	on	the	dis?nc?ons	between	parallel	and	sequen%al	
algorithms.	



Another	Example	
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type 'a tree = Leaf | Node of 'a node 
and 'a node = {left  : 'a tree ;  
               value : 'a      ; 

               right : 'a tree } 

 

let rec fold (f:'a -> 'b -> 'b -> 'b) (u:'b)  
             (t:'a tree) : 'b =  

  match t with  
  | Leaf -> u 

  | Node n ->  

     f n.value (fold f u n.left) (fold f u n.right) 

 
let sum (t:int tree) = fold (+) 0 t 

 



Another	Example	
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type 'a tree = Leaf | Node of 'a node 
and 'a node = {left  : 'a tree ; 
               value : 'a      ;  

               right : 'a tree } 

 

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)  
              (t:'a tree) : 'b =  

  match t with  
  | Leaf -> u 

  | Node n ->  
     let l_f = Future.future (pfold f u) n.left in 
     let r = pfold f u n.right in 
     f n.value (Future.force l_f) r 

 
let sum (t:int tree) = pfold (+) 0 t 

 



Note	
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If	the	tree	is	unbalanced,	then	we’re	not	going	to	get	the	same	
speedup	as	if	it’s	balanced.	
Consider	the	degenerate	case	of	a	list.	

–  The	forked	child	will	terminate	without	doing	any	useful	work.	
–  So	the	parent	is	going	to	have	to	do	all	that	work.	
–  Pure	overhead…		L	

In	general,	lists	are	a	horrible	data	structure	for	parallelism.	
–  we	can’t	cut	the	list	in	half	in	constant	%me	
–  for	arrays	and	trees,	we	can	do	that	(assuming	the	tree	is	
balanced.)	



Side	Effects?	
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type 'a tree = Leaf | Node of 'a node 
and 'a node = { left  : 'a tree ;  
                value : 'a      ;  
                right : 'a tree } 
 
let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)  
              (t:'a tree) : 'b =  
  match t with  
  | Leaf -> u 
  | Node n ->  
     let l_f = Future.future (pfold f u) n.left in 
     let r = pfold f u n.right in 
     f n.value (Future.force l_f) r 
 
let print (t:int tree) =  
  pfold (fun n _ _ -> Printf.print “%d\n” n) () 



Huge	Point	
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If	code	is	purely	func%onal,	then	it	never	ma[ers	in	what	order	it	is	run.	
If	f	()	and	g	()	are	pure	then	all	of	the	following	are	equivalent:	

	
As	soon	as	we	introduce	side-effects,	the	order	starts	to	maVer.			

–  This	is	why,	IMHO,	impera%ve	languages	where	even	the	simplest	of	
program	phrases	involves	a	side	effect,	are	doomed.	

–  Of	course,	we’ve	been	saying	this	for	30	years!	
–  See	J.	Backus’s	Turing	Award	lecture,	“Can	Programming	be	Liberated	from	

the	von	Neumann	Style?		A	Func%onal	Style	and	Its	Algebra	of	Programs.”	
					hVp://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf	

let x = f() in 
let y = g() in 
e  

let y = g () in 
let x = f () in 
e  

let y_g = future g () in 
let x   = f ()        in 
let y   = force y_g   in 
e  

let x_f = future f () in 
let y   = g ()        in 
let x   = force x_f   in 
e  



SUMMARY	



Programming	with	muta?on,	threads	and	locks	
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thread	1	 thread	2	

Reasoning	about	shared	variables	
and	synchroniza?on	is	hard	in	general,	

but		futures	are	a	discipline	
for	gezng	it	right.	

	
Much	of	programming-language	design	
is	the	art	of	finding	good	disciplines	

in	which	it’s	harder*	to	write	bad	programs.	
	

Even	aside	from	PL	design,	the	same	is	true	of	
soMware	engineering	with	Abstract	Data	Types:	
if	you	engineer	disciplines	into	your	interfaces,	

it	is	harder	for	the	user	to	get	it	wrong.	
*but	somebody	will	always	find	a	way…	

Reasoning	about	the	correctness	of	pure	parallel	programs	that	
include	futures	is	easy	--	no	harder	than	ordinary,	sequen?al	
programs.		(Reasoning	about	their	performance	may	be	harder.)	
	


