Parallelism

COS 326
David Walker
Princeton University

slides copyright 2013-2015 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Parallelism

What is it?

Why now? Today's technology trends

Some preliminary linguistic constructs

PARALLELISM:
WHAT IS IT?

Parallelism: What is it?

parallel computations involve
doing many things at the same time
instead of sequentially (one-after-the-other)

Flavors of Parallelism

Data Parallelism

— same computation being performed on a collection of
independent items

— e.g., adding two vectors of numbers

Task Parallelism
— different computations/programs running at the same time
— e.g., running web server and database

Pipeline Parallelism

— assembly line:

ﬁl . sequential . sequential . ﬁl

f g

7 S~

map f over all items map g over all items

[Parallelism vs. Concurrency

Parallelism: performs many tasks simultaneously
* purpose: improves throughput (total jobs processed in alotted time)
* mechanism:
— many independent computing devices
— decrease run time of program by utilizing multiple cores or computers
* eg:running your web crawler on a cluster versus one machine.

Parallelism vs. Concurrency

Parallelism: performs many tasks simultaneously
* purpose: improves throughput (total jobs processed in alotted time)
* mechanism:
— many independent computing devices
— decrease run time of program by utilizing multiple cores or computers
* eg:running your web crawler on a cluster versus one machine.

Concurrency: mediates multi-party access to shared resources
* purpose: decrease response time
* mechanism:
— switch between different threads of control

— work on one thread when it can make useful progress; when it can't,
suspend it and work on another thread

* eg: running your clock, editor, chat at the same time on a single CPU.
— OS gives each of these programs a small time-slice (~10msec)
— often slows throughput due to cost of switching contexts

* eg: don't block while waiting for /O device to respond, but let another thread
do useful CPU computation 7

Parallelism vs. Concurrency

Parallelism: job
perform several independent
tasks simultaneously

cpu cpu cpu
Concurrency: job job job
mediate/multiplex
access to shared
resource

resource

(cpu, disk, server,
data structure)

many efficient programs use some parallelism and some concurrency 38

PARALLELISM: WHY NOW?
UNDERSTANDING TECHNOLOGY TRENDS

Moore's Law

* Moore's Law: The number of transistors you can put on a
computer chip doubles (approximately) every couple of years.

* Consequence for most of the history of computing: All
programs double in speed every couple of years.
— Why? Hardware designers are wicked smart.

— They have been able to use those extra transistors to (for
example) double the number of instructions executed per time

unit, thereby processing speed of programs

* Consequence for application writers:
— watch TV for a while and your programs optimize themselves!

— new applications thought impossible became possible because
of increased computational power

CPU Clock Speeds from 1993-2005

CPU-Frequency 1993 - 2005

AMD and Intel

Q
Sioé?éswarg
guide

4000 -

£
3
:
=
g

CPU Clock Speeds from 1993-2005

CPU-Frequency 1993 - 2005

AMD and Intel

Next year’s machine
is twice as fast!

12

CPU Clock Speeds from 1993-2005

CPU-Frequency 1993 - 2005

AMD and Intel

Power Dissipation

1000 v v v v v
“Nuclear
Reactor”
NA O
g Prescott
§ 100 AA Corei7
< Pentium4 4, A
> AT A A
D AA Core2Duo
- Hot Plate
()
O A Pentium 3
g 10 A A Pentium 2 A
e) P6 Atom
o A
Pentium

A
386 4 486

1 A A A A A
1980 1985 1990 1995 2000 2005 2010
Year

14

Power Dissipation

1000

100

Power Density (W/cmz)
=

“Nuclear
Reactor”
O
Prescott
AA Corei7
Pentium 4

A
Core2Duo
Hot Plate

“ Pentium 3

A
A Pentium 2 A

P6 Atom

Pentium

386

1
1980

(Dave-drawn
curve.)

1985 1990 1995 2000 2005 2010

Year

15

10,000,000
Dual-Core Ita o / , .
1,000,000 _ Moore’s Law still
- [}
Intel CPU Trends (" <— holds, so far, for
sources: Intel, Wikipedia, K. Olukotun - : _ _chi
100,000 | pe) transistors-per-chip.
10,000
* clock speed,
* power
100
« performance/clock cycle
all level off.
10
What do we do
m Transistors (000) H H
! s | with all those transistors?
A Power (W)
@ Perf/Clock (ILP)
\ \

0
1970 1975 1980 1985 1990 1995 2000 2005 2010

16

THE SOLUTION

Multi-core Hardware

Core Core
ALU ALU
ALU ALU

v v
L1 cache L1 cache

/ 7
L2 cache

Main memory

* There's nothing like video
gaming to drive progress
in computation!

e GPUs can have hundreds
or even thousands of
cores

 Three of the 5 most
powerful supercomputers
in the world take
advantage of GPU
acceleration.

e Scientists use GPUs for
simulation and modelling

— eg: protein folding and
fluid dynamics

So...

Instead of trying to make your CPU go faster, Intel’s just going to
pack more CPUs onto a chip.

— a few years ago: dual core (2 CPUs).
— a little more recently: 4, 6, 8 cores.
— Soon we may have hundreds or thousands on a chip.

In fact, that’s already happening with graphics chips.
— really good at simple data parallelism (many deep pipes)
— but they are much dumber than an Intel core.
— and right now, chew up a /ot of power.

— watch for GPUs to get “smarter” and more power efficient, while
CPUs become more like GPUs.

20

STILL MORE PROCESSORS:
THE DATA CENTER

Data Centers: Generation Z Super Computers]

... 50 | THOUGHT
To MYSELF, WHY CLUTTER
YoUR BRAIN UP WITH
5 MEMORIES WHEN | CAN
STORE THEM IN THE
Cloud?

...l\w
-
Q
)
-
Q.
&
O
@)
O
Q
)
O
()
C
C
O
@)
(T
@
i
o
~J
n
-
Q
)
C
Q
O
(qV)
)
(q0)
QO

Data Centers

10s or 100s of thousands of computers connected together
 Motivated by new applications and scalable web services:
— let's catalogue all N billion webpages in the world

— let's all allow anyone in the world to search for the page he or
she needs

— let's process that search in less than a second

It's rather amazing. We are living science fiction.

Data Centers: Lots of Connected Computers

Computer containers for plug-and-play parallelism:

Sounds Great!

So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?

26

Sounds Great!

So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?
— no way!

27

Sounds Great!

So my old programs will run 2x, 4x, 48x, 256x, 1024x faster?
— no way!
— to upgrade from Intel 386 to 486, the app writer and compiler

writer did not have to do anything (much)

* |A 486 interpreted the same sequential stream of instructions; it
just did it faster

* this is why we could watch TV while Intel engineers optimized our
programs for us

— to upgrade from Intel 486 to dual core, we need to figure out
how to split a single stream of instructions in to two streams of

instructions that collaborate to complete the same task.
e without work & thought, our programs don't get any faster at all

* jt takes ingenuity to generate efficient parallel algorithms from
sequential ones

28

In Part: Functional Programming!]

Dryad
‘ ¥ ? ? ? Input files
RO ORY ERD (ERY .
X X X X X X
Qr S
M M
7 L/ \;ertices
Channels —

Lightning-Fast Cluster Computing s ® &

PARALLEL AND CONCURRENT
PROGRAMMING

Speedup

Speedup: the ratio of sequential program execution time to
parallel execution time.

If T(p) is the time it takes to run a computation on p processors

speedup(p) = T(1)/T(p)

A parallel program has perfect speedup (aka linear speedup) if

T(1)/T(p) = speedup = p

Bad news: Not every program can be effectively parallelized.
— in fact, very few programs will scale with perfect speedups.
— we certainly can't achieve perfect speedups automatically

— limited by sequential portions, data transfer costs, ... o

Most Troubling...

Most, but not all, parallel and concurrent programming models
are far harder to work with than sequential ones:

* They introduce nondeterminism

— the root of (almost all) evil

— program parts suddenly have many different outcomes
* they have different outcomes on different runs
* debugging requires considering all of the possible outcomes
* horrible heisenbugs hard to track down

 They are nonmodular

— module A implicitly influences the outcomes of module B
* They introduce new classes of errors

— race conditions, deadlocks

* They introduce new performance/scalability problems
— busy-waiting, sequentialization, contention

32

Informal Error Rate Chart

/

regularity
with which
you shoot
yourself

in the foot

v

Informal Error Rate Chart

/h

regularity
with which
you shoot
yourself

in the foot

heaven _ |
on earth

manual
memory

kitchen
sink +
manual
memory

management

\

null pointers,

paucity of types,

inheritence

\

unstructured
parallel

or concurrent
programming

v

Solid Parallel Programming Requires

1. Good sequential programming skills.
— all the things we’ve been talking about: use modules, types, ...

2. Deep knowledge of the application.

3. Pick a correct-by-construction parallel programming model

— whenever possible, a parallel model with semantics that coincides
with sequential semantics

* whenever possible, reuse well-tested libraries that hide parallelism
— whenever possible, a model that cuts down non-determinism
— whenever possible, a model with fewer possible concurrency bugs
— if bugs can arise, know and use safe programming patterns

4. Careful engineering to ensure scaling.
— unfortunately, there is sometimes a tradeoff:
* reduced nondeterminism can lead to reduced resource utilization
— synchronization, communication costs may need optimization

35

OUR FIRST PARALLEL
PROGRAMMING MODEL: THREADS

Threads: A Warning

Concurrent Threads with Locks: the classic shoot-yourself-in-the-
foot concurrent programming model

— all the classic error modes

Why Threads?

— almost all programming languages will have a threads library
* OCaml in particular!

— you need to know where the pitfalls are

— the assembly language of concurrent programming paradigms

* we’ll use threads to build several higher-level programming
models

Threads

Threads: an abstraction of a processor.

— programmer (or compiler) decides that some work can be done
in parallel with some other work, e.g.:

let = compute big thing() in
let y = compute other big thing() in

— we fork a thread to run the computation in parallel, e.g.:

let t = Thread.create compute big thing () in
let y = compute other big thing () in

38

Intuition in Pictures

time 1

time 2

time 3

let v = g

()

let t = Thread.create f

in

() in

processor 1

processor 2

Thread.create

execute g ()

(* doing nothing *)

execute £ ()

39

Of Course...

Suppose you have 2 available cores and you fork 4 threads....

In a typical multi-threaded system,

— the operating system provides the illusion that there are an
infinite number of processors.

* not really: each thread consumes space, so if you fork too many
threads the process will die.

— it ime-multiplexes the threads across the available processors.

e about every 10 mseg, it stops the current thread on a processor,
and switches to another thread.

* so athreadis really a virtual processor.

40

[OCaml, Concurrency and Parallelism

Unfortunately, even if your computer has 2, 4, 6, 8 cores, OCaml
cannot exploit them. It multiplexes all threads over a single core

thread thread thread

e - =

core

Hence, OCaml provides concurrency, but not parallelism. Why?
Because OCaml (like Python) has no parallel “runtime system” or
garbage collector. Other functional languages (Haskell, F#, ...) do.

Fortunately, when thinking about program correctness, it doesn’t
matter that OCaml is not parallel -- | will often pretend that it is.

You can hide I/O latency, do multiprocess programming or distribute
tasks amongst multiple computers in OCaml.

Coordination

Thread.create : (‘a -> ‘b) -> ‘a -> Thread.t

let t = Thread.create £ () in
let v = g () in

How do we get back the result that t is computing?

42

First Attempt

let r =
let t =
let vy =

match

ref None
Thread.create (fun -> r := Some (f

g() in ;
'r with

| Some v -> (* compute with v and y *)

| None -> 27?7

()))

in

What’s wrong with this?

43

Second Attempt

let r = ref None
let t = Thread.create (fun -> r := Some(f ())) in
let v = g() in

let rec wait () =

match !'r with
| Some v -> v

| None -> wait ()
in
let v = wait () in
(* compute with v and y *)

Two Problems

let r = ref None
let t = Thread.create (fun -> r := Some(f ())) in
let v = g() in

let rec wait () =

match !'r with
| Some v -> v

| None -> wait ()
in
let v = wait () in
(* compute with v and y *)

First, we are busy-waiting.
* consuming cpu without doing something useful.

* the processor could be either running a useful thread/program or power
down.

45

Two Problems

let r = ref None
let t = Thread.create (fun -> r := Some(f ())) in
let v = g() in

let rec wait () =

match !'r with
| Some v -> v

| None -> wait ()
in
let v = wait () in
(* compute with v and y *)

Second, an operation like r := Some v may not be atomic.
* r:=Some v requires us to copy the bytes of Some v into the ref r

* we might see part of the bytes (corresponding to Some) before we’ve
written in the other parts (e.g., v).

* So the waiter might see the wrong value.

46

An Aside: Atomicity

Consider the following:

let inc(r:int ref) = r := (!'r) + 1

and suppose two threads are incrementing the same ref r:

Thread 1 Thread 2
inc (r) ; inc (r) ;
'r 'r

If r initially holds O, then what will Thread 1 see when it reads r?

47

Atomicity

The problem is that we can’t see exactly what instructions the
compiler might produce to execute the code.

It might look like this:

Thread 1 Thread 2

Rl := load(p); Rl := load(p);
R1 := R1 + 1; R1 := R1 + 1;
store Rl 1nto r store R1 into p

R1 := load(p) R1 := load(p)

48

Atomicity

But a clever compiler might optimize this to:

Thread 1 Thread 2

R1 := load(p); Rl := load(p);
R1 := R1 + 1; R1 := R1 + 1;
store R1 into p store R1 into p

D] ° — 1~ [+ D 1 ° — 1 ~ A ()
\ =7/ \ =7/

L\ L O L J L4 L\ L O L J L4

Atomicity

Furthermore, we don’t know when the OS might interrupt one

thread and run the other.

Thread 1

Rl := load(p);
R1 := R1 + 1;
store R1 into p
Rl := load(r)

Thread 2

Rl := load(p);
R1 := R1 + 1;
store R1 into p
Rl := load(p)

(The situation is similar, but not quite the same on multi-

processor systems.)

50

Atomicity

One possible interleaving of the instructions:

Thread 1 Thread 2

Rl := load(p); — " Rl :=

R1 := R1 + 1; & _R1 :=
' /

store R1 1nto r store

Rl := load(p) = R1 :=

What answer do we get?

load(p) ;
R1I + 1;
R1 1into
load (p)

P

51

Atomicity

Another possible interleaving:

Thread 1 Thread 2
R1 := load(p); R1 :=
R1 := R1 + 1; /Rl P =
store R1 1nto p store
Rl := load(p) = R1 :=

What answer do we get this time?

load(p) ;
R1I + 1;
R1 1nto p
load (p)

52

Atomicity

Another possible interleaving:

Thread 1 Thread 2

Rl := load(p); Rl := load(p):
Rl := R1 + 1; Rl := R1 + 1;
store R1 1nto p store R1 1nto p
Rl := load(r) = R1 := load(p)

What answer do we get this time?

Moral: The system is responsible for scheduling execution of
instructions.

Moral: This can lead to an enormous degree of nondeterminism.

53

Even Worse ...

In fact, today’s multicore processors don’t treat memory in a
sequentially consistent fashion. That means that we can’t even
assume that what we will see corresponds to some interleaving

of the threads’ instructions!

Core 1 Core 2 Core 3 Core 4
ALU ALU ALU ALU
L1 cache L1 cache L1 cache L1 cache
L2 cache

When Corel stores to
“memory”, it lazily
propagates to Core2’s L1
cache. The load at Core2
might not see it, unless
there is an explicit
synchronization.

Beyond the scope of this class! But the take-away is this: It’s not a good idea
to use ordinary loads/stores to synchronize threads; you should use explicit synchronization
primitives so the hardware and optimizing compiler don’t optimize them away.

54

Even Worse

In fact, today’s multicore processors don’t treat memory in a
sequentially consistent fashion. That means that we can’t even
assume that what we will see corresponds to some interleaving
of the threads’ instructions!

Thread 1 Thread 2

R1 := load(r); R1 := load(r);
R1 := R1 + 1; R1 := R1 + 1;
store R1 1nto r store R1 1nto r
R1 := load(r) R1 := load(r)

Beyond the scope of this class! But the take-away is this: It’s not a good idea

to use ordinary loads/stores to synchronize threads; you should use explicit synchronization
primitives so the hardware and optimizing compiler don’t optimize them away.

55

The Happens Before Relation

We assume OCaml obeys a particular Happens Before relation:

Rule 1: Given two expressions (or instructions) in sequence:

el; e2 we know that el happens before e2.

Rule 2: Given a program:

let t = Thread.create f x in

Thread.join t;
e

we know that (f x) happens before e.

In Pictures

Thread 1

t=create f x -
inst, ,; \
Inst, ,;

Inst, ;;
INst, ,;

Thread 2

Inst, 4,
INst, ,;
Inst, 5;

inst, _:

2,m’

Inst; ;.
Inst, .;

joint

We know that for each
thread the previous
instructions must happen
before the later instructions.

So for instance, inst,; ; must
happen before inst ,.

57

In Pictures

Thread 1
t=create f x
inst, ;;
inst, ,;
inst, s;
INsty 4

Inst; ;.
inst,

1,n’

I

joint

Thread 2

INst, 4;
INst, ,;
Inst, 5;

inst, _:

2,m’

We also know that the
fork must happen before
the first instruction of the
second thread.

58

In Pictures

Thread 1 Thread 2
t=create f x 1

inst, ,; \

inst, ,; inst, ;;
inst, s; inst, ,;
INsty 4 inst, ,;
inst, 1. inst, .
instl,n; /

joint

We also know that the
fork must happen before

the first instruction of the
second thread.

And thanks to the join,
we know that all of the
instructions of the second
thread must be completed
before the join finishes.

59

In Pictures

However, in general, we
do not know whether

Thread 1 Thread 2 inst, ; executes before or
t=create f x- after inst; ;.

inStl,l; \ In general, synchronization
inst, ,; inst, ;; instructions like fork and

: . - . join reduce the number of
! NSty s I NSt; 2 possible interleavings.
NSty 4; INst, 3;

Synchronization cuts down
in Stl - instz - nondeterminism.

inStl,n; / In the absence of

joint synchronization we don’t

know anything...

60

Summary: Interleaving & Race Conditions]

Calculate possible outcomes for a program by considering all of the possible
interleavings of the atomic actions performed by each thread.
— Subject to the happens-before relation.
e can’t have a child thread’s actions happening before a parent forks it.
e can’t have later instructions execute earlier in the same thread.
— Here, atomic means indivisible actions.
* For example, on most machines reading or writing a 32-bit word is atomic.
* But, writing a multi-word object is usually not atomic.

* Most operations like “b := b - w” are implemented in terms of a series of
simpler operations such as

— rl =read(b); r2 =read(w); r3 =rl —r2; write(b, r3)

Reasoning about all interleavings is hAard. just about impossible for people
— Number of interleavings grows exponentially with number of statements.
— It can be hard to tell what is and isn’t atomic in a high-level language.
— YOU ARE DOOMED TO FAIL IF YOU HAVE TO WORRY ABOUT THIS STUFF6|1

[Another approach to the coordination Problem]

Thread.create : (‘a -> ‘b) -> ‘Ya -> Thread.t

let t = Thread.create £ () in
let v = g () in

How do we get back the result that t is computing?

62

One Solution (using join)

let r = ref None

let t = Thread.create (fun -> r := Some(f
let v = g() in

Thread.join t ;

match !'r with
| Some v -> (* compute with v and y *)

| None -> failwith “impossible”

()))

in

63

One Solution (using join)

let r = ref None

let t = Thread.create (fun -> r := Some(f ())) in

let v = g() in
Thread.joilin t ;

match !'r with
| Some v -> (* compu th v and y *)

| None -> failwith “impo

Thread.joln t causes
the current thread to wait
until the thread t
terminates.

- /

64

[One Solution (using join)

4

match !'r with
| S v -> (* compute with v and y *)

| e —> failwith “impossible”

4 h

So after the join, we know
that any of the operations
of t have completed.

S /

let r = ref None
let t = Thread.create (fun -> r := Some (£ jl}) i
let v = g() in

n

65

FUTURES: A PARALLEL
PROGRAMMING ABSTRACTION

Futures

The fork-join pattern we just saw is so common, we’ll create an abstraction for it:

module type FUTURE =
sig
type ‘a future

(* future f x forks a thread to run f(x)
and stores the result in a future when complete *)
val future : (‘a->‘'b) -> ‘'Ya -> ‘b future

(* force f causes us to wait until the
thread computing the future value 1is done
and then returns its value. *)

val force : ‘a future -> ‘a

end

67

Does that interface looks familiar ?

.

Future Implementation

module Future
struct

type ‘a future

end

FUTURE =
= {tid Thread.t ;
value a option ref }

Future Implementation

.

module Future : FUTURE =

struct
type ‘a future = {tid : Thread.t g
value : ‘a option ref }
let future(f:‘a->'b) (x:'a) : ‘b future =
let r = ref None in
let t = Thread.create (fun () -> r := Some(f x)) ()
in

{tid=t ; wvalue=r}

end

[Future Implementation

module Future : FUTURE =

struct
type ‘a future = {tid : Thread.t g
value : ‘a option ref }
let future(f:‘a->'b) (x:'a) : ‘b future =
let r = ref None in
let t = Thread.create (fun () -> r := Some(f x)) ()
in

{tid=t ,; wvalue=r}

let force (f:‘a future) : ‘a =
Thread.join f.tid ;
match ! (f.value) with
| Some v -> v
| None -> failwith “impossible!”

end

Now using Futures

let x = future £ () 1in
let v = g () in
let v = force x in

(* compute with v and y *)

72

Back to the Futures

module type FUTURE =
sig

type ‘a future val £ : unit -> int

val future : (ra_>rb) -> 3 -> ‘b future val g : unit —-> int
val force :’a future -> ‘a

end

with futures library: without futures library:

let x = future £ () in let r = ref None

let y = g () in let t = Thread.create

let v = force x in o = = = Semel(E 0))

y t+ v ()

in

let v = g() in
Thread.join t ;
match !'r with

Some v -> vy + v

| None -> failwith “impossible”

Back to the Futures

module type FUTURE =
sig

type ‘a future val £ : unit -> int

val future : (ra_>rb) -> 3 -> ‘b future val g : unit —-> int
val force :’a future -> ‘a

end

with futures library: without futures library:

let x = future £ () in let r = ref None

let y = g () in let t = Thread.create

let v = force x in (fun _ -> r := Some(f ()))

y t+ v 'R ()

in

let v = g() in

,////’//////////;> Thread. join t ;
. match !'r with
what happens if
we delete these

Some v -> vy + v

| None -> failwith “impossible”

lines?

74

Back to the Futures

module type FUTURE =
sig

type ‘a future val £ : unit -> int

val future : ("a->'b) -> 'a -> ‘b future val g : unit -> int
val force :’a future -> ‘a

end

with futures library: without futures library:

let x = future £ () in let r = ref None

let vy = g () in let t = Thread.create

let v = force x in (fun _ -> r := Some(f ()))

in

let v = g() in

//////////,////’/> Thread.join t ;

. match !'r with
what happens if
we use x and

Some v -> vy + v

| None -> failwith “impossible”

forget to force?

Back to the Futures

module type FUTURE =
sig

type ‘a future val £ : unit -> int

val future : ("a->'b) -> 'a -> ‘b future val g : unit -> int
val force :’a future -> ‘a
end
with futures library: without futures library:
let x = future £ () in let r = ref None
let vy = g () in let t = Thread.create
let v = force x in (fun _ —> r := Some(f ()))
y + X ()
in
Moral: Futures + typing ensure toie = gl o

entire categories of errors can’t Thread.join t /

happen -- you protect yourself
from your own stupidity

match !'r with

Some v -> vy + v

| None -> failwith “impossible”

76

Back to the Futures

module type FUTURE =
sig
type ‘a future
val future
val force
end

("a=>"b) -> "a —->
:"a future -> 1‘a

‘b future

val £ : unit -> int

val g : unit -> int

with futures library:

= future £ () in

let x

let v = force x in

let v = g () in|
X

y +

4//////////////4>

what happens if you
relocate force, join?

without futures library:

let r = ref None
let t = Thread.create
(fun -> r := Some (f

0

()))

in
Thread.join t ;
let v = g() in
match !'r with
Some v -> vy + v

| None -> failwith “impossible”

77

Back to the Futures

module type FUTURE =
sig

type ‘a future

("a->"b)
:"a future ->

val future
val force
end

-> 'a —>

‘a

val £ :
val g :

unit —-> int

with futures library:

let x =
let v = force x in
let v = g () in

y + X

future £ () in

Moral: Futures are
not a universal savior

without futures library:

let r = ref None

let t = Thread.create
(fun -> r := Some(f ()))
0

in

Thread.join t ;

let v = g() in

match !'r with

Some v -> vy + v

| None -> failwith “impossible”

78

An Example: Mergesort on Arrays

let mergesort (cmp:'a->'a->int)
(arr : 'a array) : 'a array =
let rec msort (start:int) (len:int) : 'a array =
match len with
| 0 -> Array.of list []
| 1 -> Array.make 1 arr. (start)
| -> let half = len / 2 in
let al = msort start half in
let a2 = msort (start + half)
(len - half) in

merge al a2

and merge (al:'a array) (a2:'a array) : 'a array =

An Example: Mergesort on Arrays

let mergesort (cmp:'a->'a->int)

(arr : 'a array) : 'a arrasr—=
Opportunity for

parallelization

let rec msort (start:int) (len:int)

match len with

| 0 -> Array.of list []
| 1 -> Array.make 1 arr. (start)
| —> let half = len / 2 in
let al = msort start half in
let a2 = msort (start + half)
(len - half) 1in

merge al aZ

and merge (al:'a array) (a2:'a array) : 'a array =

Making Mergesort Parallel

let mergesort (cmp:'a->'a->int)
(arr : 'a array) : 'a array =
let rec msort (start:int) (len:int) : 'a array =
match len with
| 0 -> Array.of list []
| 1 -> Array.make 1 arr. (start)
| -> let half = len / 2 in
let al £ =
Future.future (msort start) half in
let a2 =
msort (start + half) (len - half) 1in

merge (Future.force al f) aZ

and merge (al:'a array) (a2:'a array) : 'a array

Divide-and-Conquer

This is an instance of a basic divide-and-conquer pattern in
parallel programming

— take the problem to be solved and divide it in half

— fork a thread to solve the first half

— simultaneously solve the second half

— synchronize with the thread we forked to get its results

— combine the two solution halves into a solution for the whole
problem.

Warning: the fact that we only had to rewrite 2 lines of code for
mergesort made the parallelization transformation look
deceptively easy

— we also had to verify that any two threads did not touch

overlapping portions of the array -- if they did we would have to
again worry about scheduling nondeterminism

Caveats

There is some overhead for creating a thread.
— On uniprocessor, parallel code slower than sequential code.

Even on a multiprocessor, we do not always want to fork.
— when the subarray is small, faster to sort it sequentially than to fork
e similar to using insertion sort when arrays are small vs. quicksort
— this is known as a granularity problem
* more parallelism than we can effectively take advantage of.

83

[Caveats

In a good implementation of futures, a compiler and run-time system
might look to see whether the cost of doing the fork is justified by
the amount of work that will be done. Today, it’s up to you to figure
this out... ®
— typically, use parallel divide-and-conquer until:
(a) we have generated at least as many threads as there are processors

— often more threads than processors because different jobs take
different amounts of time to complete and we would like to keep
all processors busy

(b) the sub-arrays have gotten small enough that it’s not worth forking.

We're not going to worry about these performance-tuning details
but rather focus on the distinctions between parallel and sequential
algorithms.

84

Another Example

type 'a tree = Leaf | Node of 'a node

and 'a node = {left : 'a tree ;
value : 'a ;
right : 'a tree }

let rec fold (f:'a -> 'b —> 'b -> 'b) (u:'b)
(t:'a tree) : 'b =

match ¢t with
| Leaf -> u
| Node n ->
f n.value (fold £ u n.left) (fold £ u n.right)

let sum (t:int tree) = fold (+) 0 t

85

Another Example

type 'a tree = Leaf | Node of 'a node

and 'a node = {left : 'a tree ;
value : 'a ;
right : 'a tree }

let rec pfold (f:'a -> 'b -> 'b -> 'b) (u:'b)
(t:'a tree) : 'b =
match ¢t with
| Leaf -> u
| Node n ->

let 1 £ = Future.future (pfold £ u) n.left 1in
let r = pfold £ u n.right 1in

f n.value (Future.force 1 f) «r

let sum (t:int tree) = pfold (+) 0 t

Note

If the tree is unbalanced, then we’re not going to get the same
speedup as if it’s balanced.

Consider the degenerate case of a list.

— The forked child will terminate without doing any useful work.

— So the parent is going to have to do all that work.
— Pure overhead... ®
In general, lists are a horrible data structure for parallelism.

— we can’t cut the list in half in constant time

— for arrays and trees, we can do that (assuming the tree is
balanced.)

87

Side Effects?

type 'a tree = Leaf | Node of 'a node

and 'a node = { left : 'a tree ;
value : 'a ;
right : 'a tree }

let rec pfold (f:'a -> 'b -=> 'b -> 'b) (u:'b)
(t:'a tree) : 'b =
match t with
| Leaf -> u

| Node n —>
let 1 £ = Future.future (pfold f u) n.left in
let r = pfold £ u n.right 1in

f n.value (Future.force 1 f) r

let print (t:int tree) =
pfold (fun n -> Printf.print “%d\n” n) ()

Huge Point

If code is purely functional, then it never matters in what order it is run.
If f () and g () are pure then all of the following are equivalent:

1 f = f f]
let x = £() in et x uture () }n
let v = g() in ety =9 0 o
o Y J let x = force x f in
e
let = fut '
Tet v — g f1 4n et vy g uture g () }n
. let x = £ () in
let x = £ () 1n .
o let vy = force y g in
e

As soon as we introduce side-effects, the order starts to matter.

— This is why, IMHO, imperative languages where even the simplest of
program phrases involves a side effect, are doomed.

— Of course, we’ve been saying this for 30 years!

— See J. Backus’s Turing Award lecture, “Can Programming be Liberated from
the von Neumann Style? A Functional Style and Its Algebra of Programs.”

http://www.cs.cmu.edu/~crary/819-f09/Backus78.pdf

89

SUMMARY

[Programming with mutation, threads and locks]

Reasoning about the correctness of pure parallel programs that
include futures is easy -- no harder than ordinary, sequential
programs. (Reasoning about their performance may be harder.)

/ Reasoning about shared variables \
and synchronization is hard in general,

but futures are a discipline
for getting it right.

thread 1 thread 2

Much of programming-language design
is the art of finding good disciplines
in which it’s harder* to write bad programs.

Even aside from PL design, the same is true of
software engineering with Abstract Data Types:

if you engineer disciplines into your interfaces,
it is harder for the user to get it wrong.

~ *but somebody will always find a way...

