
Functional Abstractions 
over Imperative Infrastructure 

and  
Lazy Evaluation

COS 326
David Walker

Princeton University

slides copyright 2013-2015 David Walker and Andrew W. Appel
permission granted to reuse these slides for non-commercial educational purposes

2

– Abstractions involve using your imagination

LoStrangolatore

2, 3, 5, 7, 11, 13, 17, 19 …

ConwayLife

Welcome to the Infinite!

module type INFINITE =
 sig
 type ‘a stream (* an infinite series of values *)

 val const : ‘a -> ‘a stream (* an infinite series – all the same *)

 val head : ‘a stream -> ‘a (* get next value – there always is one! *)
 val tail : ‘a stream -> ‘a stream (* get all the rest *)

 val map : (‘a -> ‘b) -> ‘a stream -> ‘b stream
 val nats : () -> int stream (* all of the natural numbers *)
 ...
end

module Inf : INFINITE = ... ?

How would you implement this data structure?

module type INFINITE =
 sig
 type ‘a stream (* an infinite series of values *)

 val const : ‘a -> ‘a stream (* an infinite series – all the same *)

 val head : ‘a stream -> ‘a (* get next value – there always is one! *)
 val tail : ‘a stream -> ‘a stream (* get all the rest *)

 val map : (‘a -> ‘b) -> ‘a stream -> ‘b stream
 val nats : () -> int stream (* all of the natural numbers *)
 ...
end

module Inf : INFINITE = ... ?

Consider this definition:

5

type ‘a stream =
 Cons of ‘a * (‘a stream)

We can write functions to extract a stream’s head and tail:

let head(s:’a stream):’a =
 match s with
 | Cons (h,_) -> h

let tail(s:’a stream):’a stream =
 match s with
 | Cons (_,t) -> t

But there’s a problem…

6

type ‘a stream =
 Cons of ‘a * (‘a stream)

How do I build a value of type ‘a stream?

attempt: Cons (3, _____) Cons (3, Cons (4, ___))

There doesn’t seem to be a base case (e.g., Nil)

Since we need a stream to build a stream,
what can we do to get started?

One idea

7

type ‘a stream =
 Cons of ‘a * (‘a stream)

let rec ones = Cons(1,ones) ;;

What happens?

let rec ones = Cons(1,ones);;
val ones : int stream =
 Cons (1,
 Cons (1,
 Cons (1,
 Cons (1, ...
))))

One idea

8

type ‘a stream =
 Cons of ‘a * (‘a stream)

let rec ones = Cons(1,ones) ;;

What happens?

let rec ones = Cons(1,ones);;
val ones : int stream =
 Cons (1,
 Cons (1,
 Cons (1,
 Cons (1, ...
))))

1

OCaml builds this!

Fraught with Peril

9

type ‘a mlist =
 Nil | Cons of ‘a * (‘a mlist ref)

let rec mlength(m:’a mlist) : int =
 match m with
 | Nil -> 0
 | Cons(h,t) -> 1 + mlength(!t)

let r = ref Nil in
let m = Cons(3,r) in
r := m ;
mlength m

3

m
r

Flashback to last lecture …

OCAML –1!
Java -12
C –200

Oops, I lied ... big time

It bugs me
that you can
do this in
OCaml.  

WHY????

Theoretician's bubble
where lists are finite and

non-circular.

An alternative would be to use refs

11

type ‘a stream =
 Cons of ‘a * (‘a stream) option ref

let circular_cons h =
 let r = ref None in
 let c = Cons(h,r) in
 (r := (Some c); c)

None

Cons(h, r)

r

None

c

Cons(h, r)

c

Some c

r

This works ...
but has a serious drawback

An alternative would be to use refs

12

type ‘a stream =
 Cons of ‘a * (‘a stream) option ref

let circular_cons h =
 let r = ref None in
 let c = Cons(h,r) in
 (r := (Some c); c)

This works ...
but has a serious drawback:
 when we try to get out the tail, it may not exist.

Back to our earlier idea

13

type ‘a stream =
 Cons of ‘a * (‘a stream)

Let's look at creating the stream of all natural numbers:

let rec nats i = Cons(i,nats (i+1))

let n = nats 0;;
Stack overflow during evaluation (looping recursion?).

OCaml evaluates our code just a little bit too eagerly.
We want to evaluate the right-hand side only when necessary...

Be Less Eager

14

How can we prevent OCaml from evaluating an expression
immediately when it is defined?

Wait, this sounds familiar …

Another idea

15

type ‘a stream = Cons of ‘a * (‘a stream)

let rec ones =
 fun () -> Cons(1,ones)

let head (x) =
match x () with
 Cons (hd, tail) -> hd

;;

head (ones);;

One way to implement “waiting” is to wrap a computation
up in a function and then call that function later when we want
to.

Another attempt:

Darn. Doesn’t type check!
ones is a function with type
unit -> int stream
not just int stream

Are there any problems
with this code?

Functional Implementation

16

What if we changed the stream definition one more time?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec ones : int stream =
 fun () -> Cons(1,ones)

let rec ones () = Cons(1,ones)

Or, the way we’d normally write it:

What we had before.

Augmented as a
mutually recursive
type definition

Functional Implementation

17

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

Functional Implementation

18

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =

Functional Implementation

19

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =
 match s() with

Functional Implementation

20

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =
 match s() with
 | Cons(h,t) ->

Functional Implementation

21

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =
 match s() with
 | Cons(h,_) -> h

Functional Implementation

22

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let head(s:’a stream):’a =
 match s() with
 | Cons(h,_) -> h

let tail(s:’a stream):’a stream =
 match s() with
 | Cons(_,t) -> t

Functional Implementation

23

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
 Cons(f (head s), map f (tail s))

Functional Implementation

24

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
 Cons(f (head s), map f (tail s))

Rats!

Infinite looping!

Functional Implementation

25

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
 Cons(f (head s), map f (tail s))

But we don’t
infinite loop,
because the

typechecker saves
us: Cons (x,y)
is a str not a

stream

Functional Implementation

26

How would we define head, tail, and map of an 'a stream?

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

let rec map (f:’a->’b) (s:’a stream) : ’b stream =
 fun () -> Cons(f (head s), map f (tail s))

Importantly, map
must return a

function, which
delays evaluating
the recursive call

to map.

Functional Implementation

27

Now we can use map to build other infinite streams:

let rec map(f:’a->’b)(s:’a stream):’b stream =
 fun () -> Cons(f (head s), map f (tail s))

let rec ones = fun () -> Cons(1,ones) ;;
let inc x = x + 1
let twos = map inc ones ;;

head twos
--> head (map inc ones)
--> head (fun () -> Cons (inc (head ones), map inc (tail ones)))
--> match (fun () -> ...) () with Cons (hd, _) -> h
--> match Cons (inc (head ones), map inc (tail ones)) with Cons (hd, _) -> h
--> match Cons (inc (head ones), fun () -> ...) with Cons (hd, _) -> h
--> ... --> 2

Another combinator for streams:

28

let rec zip f s1 s2 =
 fun () ->
 Cons(f (head s1) (head s2),
 zip f (tail s1) (tail s2)) ;;

let threes = zip (+) ones twos ;;

let rec fibs =
 fun () ->
 Cons(0, fun () ->
 Cons (1,
 zip (+) fibs (tail fibs)))

Unfortunately

29

This is not very efficient:

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = unit -> ‘a str

Every time we want to look at a stream (e.g., to get the
head or tail), we have to re-run the function.

So when you ask for the 10th fib and then the 11th fib, we
are re-calculating the fibs starting from 0, when we
could cache or memoize the result of previous fibs.

LAZY EVALUATION

Memoizing Streams

31

We can take advantage of refs to memoize:

type ‘a thunk =
 Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref

When we build a stream, we use an Unevaluated thunk to

be lazy. But when we ask for the head or tail, we
remember what Cons-cell we get out and save it to be
re-used in the future.

Memoizing Streams

32

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a lazy_t = (‘a thunk) ref ;;

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t;;

let rec head(s:’a stream):’a =
 match !s with
 | Evaluated (Cons(h,_)) -> h
 | Unevaluated f ->
 let x = f() in (s := Evaluated x; head s)

Memoizing Streams

33

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a lazy_t = (‘a thunk) ref ;;

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t;;

let rec tail(s:’a stream) : ’a stream =
 match !s with
 | Evaluated (Cons(_,t)) -> t
 | Unevaluated f ->
 (s := Evaluated (f()); tail s) ;;

Memoizing Streams

34

type ‘a thunk =
 Unevaluated of (unit -> ‘a) | Evaluated of ‘a
type ‘a lazy_t = (‘a thunk) ref ;;

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t;;

let rec tail(s:’a stream) : ’a stream =
 match !s with
 | Evaluated (Cons(_,t)) -> t
 | Unevaluated f ->
 (s := Evaluated (f()); tail s) ;;

Common pattern!

Dereference & check if
evaluated:
• If so, take the value.
• If not, evaluate it & take the

value

Memoizing Streams

35

type ‘a thunk =
 Unevaluated of (unit -> ‘a) | Evaluated of ‘a
type ‘a lazy_t = (‘a thunk) ref

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy_t

let rec force(t:’a lazy_t):’a =
 match !t with
 | Evaluated v -> v
 | Unevaluated f ->
 let v = f() in
 (t:= Evaluated v ; v)

let head(s:’a stream) : ’a =
 match force s with
 | Cons(h,_) -> h

let tail(s:’a stream) : ’a stream =
 match force s with
 | Cons(_,t) -> t

Memoizing Streams

36

type ‘a thunk =
 Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref;;

let rec ones =
 ref (Unevaluated (fun () -> Cons(1,ones))) ;;

Memoizing Streams

37

type ‘a thunk =
 Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref;;

let thunk f = ref (Unevaluated f)

let rec ones =
 thunk (fun () -> Cons(1,ones))

What’s the interface?

38

type ‘a lazy

val thunk : (unit -> ‘a) -> ‘a lazy

val force: ‘a lazy -> ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy

let rec ones =
 thunk(fun () -> Cons(1,ones))

OCaml’s Builtin Lazy Constructor

39

If you use Ocaml’s built-in lazy_t, then you can write:

let rec ones = lazy (Cons(1,ones)) ;;

and this takes care of wrapping a “ref (Unevaluated (fun () -> …))”
around the whole thing.

So for example:

let rec fibs =
 lazy (Cons(0,
 lazy (Cons(1,zip (+) fibs (tail fibs)))))

The whole example at once
type 'a str = Cons of 'a * 'a stream
and 'a stream = ('a str) Lazy.t;;

let rec zip f (s1: 'a stream) (s2: 'a stream) : 'a stream =
 lazy (match Lazy.force s1, Lazy.force s2 with
 Cons (x1,r1), Cons (x2,r2) ->
 Cons (f x1 x2, zip f r1 r2));;

let tail (s: 'a stream) : 'a stream =
 match Lazy.force s with Cons (x,r) -> r;;

let rec fibs : int stream =
 lazy (Cons(0, lazy (Cons (1, zip (+) fibs (tail fibs)))));;

let rec g n s =
 if n>0 then
 match Lazy.force s with Cons (x,r) ->
(print_int x; print_string "\n"; g (n-1) r)
 else ();;

g 10 fibs;;

More Examples: Pi

41

(* pi is approximated by the Taylor series:
 * 4/1 - 4/3 + 4/5 - 4/7 + ...
 *)
let rec alt_fours =
 lazy (Cons (4.0,
 lazy (Cons (-4.0, alt_fours))));;

let pi_series = zip (/.) alt_fours (map
float_of_int odds);;

let pi_up_to n =
 List.fold_left (+.) 0.0
 (first n pi_series) ;;

A note on laziness

42

• By default, OCaml is an eager language, but you can use
the “lazy” features to build lazy datatypes.

• Other functional languages, notably Haskell, are lazy by
default. Everything is delayed until you ask for it.
– generally much more pleasant to do programming with

infinite data.
– but harder to reason about space and time.
– and has bad interactions with side-effects.

• The basic idea of laziness gets used a lot:
– e.g., Unix pipes, TCP sockets, etc.

Summary

43

You can build infinite data structures.
– Not really infinite – represented using cyclic data and/or lazy

evaluation.
Lazy evaluation is a useful technique for delaying computation
until it’s needed.

– Can model using just functions.
– But behind the scenes, we are memoizing (caching) results

using refs.
This allows us to separate model generation from evaluation to
get “scale-free” programming.

– e.g., we can write down the routine for calculating pi
regardless of the number of bits of precision we want.

– Other examples: geometric models for graphics (procedural
rendering); search spaces for AI and game theory (e.g., tree of
moves and counter-moves).

