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— Abstractions involve using your imagination
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Welcome to the Infinite!

module type INFINITE =
Sig
type ‘a stream (* an infinite series of values *)
val const : ‘a -> ‘astream (* an infinite series - all the same *)

val head : ‘a stream -> ‘a (* get next value - there always is one! *)
val tail : ‘a stream -> ‘a stream (* get all the rest *)

val map : (‘a -> ‘b) -> ‘a stream -> ‘b stream
val nats : () -> int stream (* all of the natural numbers *)

end

module Inf ;: INFINITE = ... ?




[How would you implement this data structure?]

module type INFINITE =
Sig
type ‘a stream (* an infinite series of values *)
val const : ‘a -> ‘astream (* an infinite series - all the same *)

val head : ‘a stream -> ‘a (* get next value - there always is one! *)
val tail : ‘a stream -> ‘a stream (* get all the rest *)

val map : (‘a -> ‘b) -> ‘a stream -> ‘b stream
val nats : () -> int stream (* all of the natural numbers *)

end

module Inf ;: INFINITE = ... ?




Consider this definition:

type ‘a stream =
Cons of ‘a * (‘a stream)

We can write functions to extract a stream’s head and tail:

let head(s:’a stream):’'a =
match s with
| Cons (h, ) -> h

let tail(s:’a stream):’'a stream =
match s with
| Cons (_,t) -> t



But there’s a problem...

type ‘a stream =
Cons of ‘a * (‘a stream)

How do | build a value of type ‘a stream?

attempt: Cons (3, ) .... Cons (3, Cons (4,
There doesn’t seem to be a base case (e.g., Nil)

Since we need a stream to build a stream,
what can we do to get started?

—))



One idea

type ‘a stream =
Cons of ‘a * (‘a stream)

let rec ones = Cons(1l,ones) ;;

What happens?

# let rec ones = Cons(1,0nes);;
val ones : int stream =
Cons (1,
Cons (1,
Cons (1,
Cons (1, ...

)
#




One idea

type ‘a stream =
Cons of ‘a * (‘a stream)

let rec ones = Cons(1l,ones) ;;

OCaml builds this!

/

What happens?

val ones : int stream =
Cons (1,
Cons (1,
Cons (1,
Cons (1, ...

)
#

# let rec ones = Cons(1,0nes);; /




Fraught with Peril

mlen.ml

DEExEH OB

Lype 'a mlist =
Nil | Cons of 'a * ('a mlist ref)

let rec mlength(m:'a mlist) : int =
match m with
| Nil —> @

Cons(h,t) = 1 + mlength(!t)

let r = ref Nil
let m = Cons(3,r)
let _ = (r := m ; mlength m)

—:—— mlen.ml All L1
0OCaml version 4.02.1

(Tuareg Merlin (default) AC)

type 'a mlist =
Nil | Cons of 'a * ('a mlist ref)

let rec mlength(m:'a mlist) : int =
match m with

| Nil — 0@

| Cons(h,t) = 1 + mlength(!t)

let r ref Nil

let m = Cons(3,r)

let _ = (r :=m ; mlength m);;

# Stack overflow during evaluation (looping recursiliij?).
# []

T = I TR D A1T1T 1 Ar ™™ ot ot e et M e e Y



[ Oops, | lied ... big time ]

cmoretti@tars:~$utop

| Welcome to utop version 1.19.3 (using OCaml versi

It bugs me

that you can
do this in Type #utop _help for help about using utop.

OCaml.
—( 22:43:50 )—< command 0 >

WHY?22? utop # let rec twos = 2::twos;;
Bt val twos : int list = [2; <cycle>]
—( 22:43:50 )—< commangss
utop # LiSlauisesetivOg

i
uto
ocamL -1! Bl
Java -12 Theoretician's bubble
C -200 where lists are finite and

_ non-circular. \




An alternative would be to use refs

type ‘a stream =
Cons of ‘a * (‘a stream) option ref
r

let circular cons h = N
let r = ref None in ¢
let ¢ = Cons(h,r) in :
(r := (Some c); c) Cons(h, r)
c r
. \ None
This works ... Cons(h, r)

but has a serious drawback

Somif
/ 1




An alternative would be to use refs

type ‘a stream =
Cons of ‘a * ('‘a stream) option ref

let circular cons h =
let r = ref None in
let ¢ = Cons(h,r) in
(r := (Some c); c)

This works ...
but has a serious drawback:
when we try to get out the tail, it may not exist.

12



Back to our earlier idea

type ‘a stream =

Cons of ‘a * (‘a stream)

Let's look at creating the stream of all natural numbers:

let rec nats 1 = Cons(i,nats (1i+1l))

# let n = nats 0;;
Stack overflow during evaluation (looping recursion?).

OCaml evaluates our code just a little bit too eagerly.
We want to evaluate the right-hand side only when necessary...



Be Less Eager

How can we prevent OCaml from evaluating an expression
immediately when it is defined?

Wait, this sounds familiar ...
gquestion

Testing Part 3a

The instructions say: "Next, scroll down to IntStringBTDict and uncomment those two lines. All the tests should pass." But how do we actually run the code? Running

moogle.d.byte gives a TODO exception for me. (I'm pretty confused about this because | don't think I'm running any function that raises a TODO exception; | only have
test_balance uncommented in run_tests.)

hw5

N XK ) dict.m
—1 =T {:-L._ I:::_._irl ™
ODeEx E 9 & 65
TODO:
Implement these to-string functions
of_key and of_value are given as anonymous functions to avoid

crashing the program if run while not implemented even if they
are not called (cf of_dict, which is already a function). When

% you implement them, you can remove the function wrappers x)
let string_of_key = (fun _ —> raise TODO)

let string_of_value = (fun _ —> raise TODO)

let string_of_dict (d: dict) : string = raise TODO




Another idea ]

One way to implement “waiting” is to wrap a computation
up in a function and then call that function later when we want
to.

Another attempt:

type ‘a stream = Cons of ‘a * (‘a stream)

let rec ones = Are there any problems
fun () -> Cons(1,ones) with this code?

let head (x) =
match x () with Darn. Doesn’t type check!

Cons (hd, tail) -> hd ones is a function with type
unit -> int stream
not just int stream

o o
rr

head (ones);;

15



Functional Implementation ]

What if we changed the stream definition one more time?

type ‘a str = Cons of ‘a * ('‘a stream)

and ‘a stream = unit -> ‘a str N\
What we had before.
let rec ones : int stream =
fun () -> Cons(1l,ones) Augmented as a

mutually recursive
type definition

Or, the way we’d normally write it:

let rec ones () = Cons(1l,ones)

16



Functional Implementation

How would we define head, tail, and map of an ‘a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

17



Functional Implementation

How would we define head, tail, and map of an ‘a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let head(s:'a stream):’'a =

18



Functional Implementation

How would we define head, tail, and map of an ‘a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let head(s:'a stream):’'a =
match s() with

19



Functional Implementation

How would we define head, tail, and map of an ‘a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let head(s:'a stream):’'a =
match s() with
| Cons(h,t) ->

20



Functional Implementation

How would we define head, tail, and map of an ‘a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let head(s:'a stream):’'a =
match s() with
| Cons(h, ) -=> h

21



Functional Implementation

How would we define head, tail, and map of an ‘a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let head(s:'a stream):’'a =
match s() with
| Cons(h, ) -> h

let tail(s:’'a stream):’'a stream =
match s() with
| Cons(_,t) -> t

22



Functional Implementation

How would we define head, tail, and map of an ‘a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:'a->'b) (s:'a stream) : 'b stream
Cons(f (head s), map £ (tail s))

23



Functional Implementation

How would we define head, tail, and map of an ‘a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:’'a->'b) (s:'a stream) : 'b stream =
Cons(f (head s), map £ (tail s))

Rats!

Infinite looping!

24



Functional Implementation

How would we define head, tail, and map of an ‘a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:'a->'b) (s:'a stream) : 'b stream
Cons(f (head s), map £ (tail s))

But we don’
infinite loop,
because the

typechecker saves
us: Cons (x,Yy)
is a str not a

stream

25



Functional Implementation

How would we define head, tail, and map of an ‘a stream?

type ‘a str = Cons of ‘a * (‘a stream)

and ‘a stream = unit -> ‘a str

let rec map (f:’'a->'b) (s:'a stream) : 'b stream =
fun () -> Cons(f (head s), map £ (tail s))

Importantly, map
must return a
function, which
delays evaluating
the recursive call
to map.

26



Functional Implementation ]

Now we can use map to build other infinite streams:

let rec map(f:'a->'b)(s:'a stream):’'b stream =
fun () -> Cons(f (head s), map £ (tail s))

let rec ones = fun () -> Cons(1l,ones) ;;
let inc x = x + 1

let twos = map inc ones ;;

head twos

--> head (map inc ones)

--> head (fun () -> Cons (inc (head ones), map inc (tail ones)))

--> match (fun () -> ...) () with Cons (hd, _) -> h

--> match Cons (inc (head ones), map inc (tail ones)) with Cons (hd, _) -> h

--> match Cons (inc (head ones), fun () -> ...) with Cons (hd, _) -> h
--> > 2

27



Another combinator for streams:

let rec zip f sl s2 =
fun () ->
Cons(f (head sl) (head s2),
zip £ (tail sl) (tail s2)) ;;

let threes = zip (+) ones twos ;;

let rec fibs =
fun () ->
Cons (0, fun () ->
Cons (1,
zip (+) fibs (tail fibs)))

28



Unfortunately

This is not very efficient:

type ‘a str = Cons of ‘a * ('‘a stream)

and ‘a stream = unit -> ‘a str

Every time we want to look at a stream (e.g., to get the
head or tail), we have to re-run the function.

So when you ask for the 10th fib and then the 11th fib, we
are re-calculating the fibs starting from 0, when we
could cache or memoize the result of previous fibs.



LAZY EVALUATION



Memoizing Streams

We can take advantage of refs to memoize:

type ‘a thunk =

Unevaluated of (unit -> ‘a) | Evaluated of ‘a
type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref

When we build a stream, we use an Unevaluated thunk to
be lazy. But when we ask for the head or tail, we
remember what Cons-cell we get out and save it to be
re-used in the future.



Memoizing Streams

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a lazy t = (‘a thunk) ref ;;

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy t;;

let rec head(s:’'a stream):’'a =
match !s with
| Evaluated (Cons(h, )) -> h
| Unevaluated f ->

let x = £() in (s := Evaluated x; head s)

32



Memoizing Streams

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a lazy t = (‘a thunk) ref ;;

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy t;;

let rec tail(s:’'a stream) : 'a stream =
match !s with
| Evaluated (Cons(_ ,t)) -> t
| Unevaluated f ->
(s := Evaluated (f()); tail s) ;;

33



Memoizing Streams

type ‘a thunk =
Unevaluated of (unit -> ‘a) | ¥ [luated of ‘a

type ‘a lazy t = (‘a ¥V 1K)

type ‘a sti 0

and ‘a stre:Common pattern!

Dereference & check if

evaluated:

* If so, take the value.

* If not, evaluate it & take the
value

let re

ail :



Memoizing Streams

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a
type ‘a lazy t = ('’a thunk) ref

type ‘a str = Cons of ‘a * ('’a stream)
and ‘a stream = (‘a str) lazy t

let rec force(t:’'a lazy t):'a =
match !t with
| Evaluated v -> v
| Unevaluated f ->
let v = £() in
(t:= Evaluated v ; v)

let head(s:’'a stream) : 'a =
match force s with
| Cons(h, ) -=> h
let tail(s:’'a stream) : 'a stream =

match force s with
| Cons(_,t) -> t

35



Memoizing Streams

type ‘a thunk =

Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref;;
let rec ones =
ref (Unevaluated (fun () -> Cons(1l,ones))) ;;

36



Memoizing Streams

type ‘a thunk =
Unevaluated of (unit -> ‘a) | Evaluated of ‘a

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) thunk ref;;

let thunk £ ref (Unevaluated f)

let rec ones =

thunk (fun () -> Cons(1l,ones))

37



[ What’s the interface?

type ‘a lazy
val thunk : (unit -> ‘a) -> ‘a lazy

val force: ‘a lazy -> ‘a

\_

type ‘a str = Cons of ‘a * (‘a stream)
and ‘a stream = (‘a str) lazy

let rec ones =

thunk(fun () -> Cons(1l,ones))

38



OCaml’s Builtin Lazy Constructor

If you use Ocaml’s built-in lazy_t, then you can write:
let rec ones = lazy (Cons(l,ones)) ;;

and this takes care of wrapping a “ref (Unevaluated (fun () -> ...))”
around the whole thing.

So for example:

let rec fibs =
lazy (Cons(0,
lazy (Cons(1l,zip (+) fibs (tail fibs)))))

39



The whole example at once

type 'a str = Cons of 'a * 'a stream
and 'a stream = ('a str) Lazy.t;;

let rec zip £ (sl: 'a stream) (s2: 'a stream) : 'a stream =
lazy (match Lazy.force sl, Lazy.force s2 with
Cons (x1l,rl), Cons (x2,r2) ->
Cons (f x1 x2, zip f rl r2));;

let tail (s: 'a stream) : 'a stream =
match Lazy.force s with Cons (x,r) -> r;;

let rec fibs : int stream =
lazy (Cons(0, lazy (Cons (1, zip (+) fibs (tail fibs)))));;

let rec g n s =

if n>0 then

match Lazy.force s with Cons (x,r) ->
(print_int x; print string "\n"; g (n-1) r)

else ();;

g 10 fibs;;



More Examples: Pi

(* pl 1s approximated by the Taylor series:
* 4/1 - 4/3 + 4/5 - 4/7 + ...
*)
let rec alt fours =
lazy (Cons (4.0,
lazy (Cons (-4.0, alt fours))));:

let pi series = zip (/.) alt fours (map
float of int odds);;

let pi up to n =
List.fold left (+.) 0.0
(first n pi series) ;;

41



A note on laziness

By default, OCaml is an eager language, but you can use
the “lazy” features to build lazy datatypes.

Other functional languages, notably Haskell, are lazy by
default. Everything is delayed until you ask for it.

— generally much more pleasant to do programming with
infinite data.

— but harder to reason about space and time.
— and has bad interactions with side-effects.

The basic idea of laziness gets used a lot:
— e.g., Unix pipes, TCP sockets, etc.



[ Summary

You can build infinite data structures.

— Not really infinite - represented using cyclic data and/or lazy
evaluation.

Lazy evaluation is a useful technique for delaying computation
until it’s needed.

— Can model using just functions.

— But behind the scenes, we are memoizing (caching) results
using refs.

This allows us to separate model generation from evaluation to
get “scale-free” programming.

— e.gd., we can write down the routine for calculating pi
regardless of the number of bits of precision we want.

— Other examples: geometric models for graphics (procedural
rendering); search spaces for Al and game theory (e.g., tree of
moves and counter-moves).



