
Muta%on	
COS	326	

David	Walker	
Princeton	University	

	

slides	copyright	2017	David	Walker	
permission	granted	to	reuse	these	slides	for	non-commercial	educa%onal	purposes	

	

Reasoning	about	Mutable	State	is	Hard	

2	

	
Is	member	i	s1	==	true?	…	

–  When	s1	is	mutable,	one	must	look	at	f	to	determine	if	it	
modifies	s1.	

–  Worse,	one	must	oPen	solve	the		aliasing	problem.	
–  Worse,	in	a	concurrent	seQng,	one	must	look	at	every	other	
func5on	that	any	other	thread	may	be	execu5ng	to	see	if	it	
modifies	s1.	

insert i s1;
f x;
member i s1

let s1 = insert i s0 in
f x;
member i s1

mutable	set	 immutable	set	

Thus	far…	

3	

We	have	considered	the	(almost)	purely	func%onal	subset	of	OCaml.	
–  We’ve	had	a	few	side	effects:		prin%ng	&	raising	excep%ons.	

Two	reasons	for	this	emphasis:	
–  Reasoning	about	func5onal	code	is	easier.	

•  Both	formal	reasoning		
–  equa%onally,	using	the	subs%tu%on	model	
–  and	informal	reasoning	

•  Data	structures	are	persistent.			
–  They	don’t	change	–	we	build	new	ones	and	let	the	garbage	collector	
reclaim	the	unused	old	ones.	

•  Hence,	any	invariant	you	prove	true	stays	true.	
–  e.g.,	3	is	a	member	of	set	S.	

–  To	convince	you	that	you	don’t	need	side	effects	for	many	things	where	you	
previously	thought	you	did.	
•  Programming	with	basic	immutable	data	like	ints,	pairs,	lists	is	easy.	

–  types	do	a	lot	of	tes%ng	for	you!	
–  do	not	fear	recursion!	

•  You	can	implement	expressive,	highly	reuseable	func5onal	data	structures	
like	polymorphic	2-3	trees	or	dic%onaries	or	stacks	or	queues	or	sets	or	
expressions	or	programming	languages	with	reasonable	space	and	%me.	

But	alas…	

4	

Purely	func5onal	code	is	pointless.	
–  The	whole	reason	we	write	code	is	to	have	some	effect	on	the	world.			
–  For	example,	the	OCaml	top-level	loop	prints	out	your	result.	

•  Without	that	prin%ng	(a	side	effect),	how	would	you	know	that	your	func%ons	
computed	the	right	thing?			

Some	algorithms	or	data	structures	need	mutable	state.	
–  Hash-tables	have	(essen%ally)	constant-%me	access	and	update.	

•  The	best	func%onal	dic%onaries	have	either:	
–  logarithmic	access	&	logarithmic	update	
–  constant	access	&	linear	update	
–  constant	update	&	linear	access	

•  Don’t	forget	that	we	give	up	something	for	this:			
–  we	can’t	go	back	and	look	at	previous	versions	of	the	dic%onary.		We	can	

do	that	in	a	func%onal	seQng.	
–  Robinson’s	unifica%on	algorithm	

•  A	cri%cal	part	of	the	OCaml	type-inference	engine.	
•  Also	used	in	other	kinds	of	program	analyses.	

–  Depth-first	search,	more	...	

However,	purely		mostly	func5onal	code	is	amazingly	produc5ve	

John	Alan	Robinson	

5	

John	Alan	Robinson	
		1928	–		
PhD	Princeton	1956	(philosophy)	
Professor	(emeritus),	Syracuse	U.	

The	value	of	a	classics	degree	

6	

John	Alan	Robinson	
		1928	–		
PhD	Princeton	1956	(philosophy)	

"Robinson	was	born	in	Yorkshire,	England	in	1930	and	leP	for	the	United	States	in	
1952	with	a	classics	degree	from	Cambridge	University.	He	studied	philosophy	at	
the	University	of	Oregon	before	moving	to	Princeton	University	where	he	received	
his	PhD	in	philosophy	in	1956.	He	then	worked	at	Du	Pont	as	an	opera%ons	
research	analyst,	where	he	learned	programming	and	taught	himself	
mathema%cs.	He	moved	to	Rice	University	in	1961,	spending	his	summers	as	a	
visi%ng	researcher	at	the	Argonne	Na%onal	Laboratory's	Applied	Mathema%cs	
Division.	He	moved	to	Syracuse	University	as	Dis%nguished	Professor	of	Logic	and	
Computer	Science	in	1967	and	became	professor	emeritus	in	1993."		
--Wikipedia		

Inventor	(1960s)	of	algorithms		
now	fundamental	to	computa%onal	
logical	reasoning	(about	soPware,	
	hardware,	and	other	things…)	

OCAML	MUTABLE	REFERENCES	

References	

8	

•  New	type:		t ref
–  Think	of	it	as	a	pointer	to	a	box	that	holds	a	t	value.	
–  The	contents	of	the	box	can	be	read	or	wrilen.	

References	

9	

•  New	type:		t ref
–  Think	of	it	as	a	pointer	to	a	box	that	holds	a	t	value.	
–  The	contents	of	the	box	can	be	read	or	wrilen.	

•  To	create	a	fresh	box:			ref 42
–  allocates	a	new	box,	ini%alizes	its	contents	to	42,	and	returns	a	pointer:	

–  ref 42 : int ref	

42	

References	

10	

•  New	type:		t ref
–  Think	of	it	as	a	pointer	to	a	box	that	holds	a	t	value.	
–  The	contents	of	the	box	can	be	read	or	wrilen.	

•  To	create	a	fresh	box:			ref 42
–  allocates	a	new	box,	ini%alizes	its	contents	to	42,	and	returns	a	pointer:	

–  ref 42 : int ref	
•  To	read	the	contents:	 !r

–  if	r	points	to	a	box	containing	42,	then	return	42.	
–  if	r : t ref then	!r : t

•  To	write	the	contents:		r := 5
–  updates	the	box	that	r	points	to	so	that	it	contains	5.	
–  if	r : t ref then	r := 5 : unit

42	

Example	

11	

let c = ref 0 in

let x = !c in (* x will be 0 *)

c := 42;

let y = !c in (* y will be 42.
 x will still be 0! *)

Another	Example	

12	

let c = ref 0 ;;

let next() =
 let v = !c in
 (c := v+1 ; v)

Another	Example	

13	

let c = ref 0

let next() =
 let v = !c in
 (c := v+1 ; v)

If		e1 : unit
and	e2 : t then	
(e1 ; e2) : t

You	can	also	write	it	like	this:	

14	

let c = ref 0

let next() =
 let v = !c in
 let _ = c := v+1 in
 v

Another	Idiom	

15	

let c = ref 0

let next () : int =
 let v = !c in
 (c := v+1 ; v)

let counter () =
 let c = ref 0 in

 fun () ->

 let v = !c in
 (c := v+1 ; v)

let countA = counter() in

let countB = counter() in

countA() ; (* 0 *)
countA() ; (* 1 *)

countB() ; (* 0 *)

countB() ; (* 1 *)

countA() ; (* 2 *)

c	

3	

code	

countA	

Global	Mutable	Reference	 Mutable	Reference	Captured	in	Closure	

Impera%ve	loops	

(* sum of 0 .. n *)

let sum (n:int) =
 let s = ref 0 in
 let current = ref n in
 while !current > 0 do
 s := !s + !current;
 current := !current - 1
 done;
 !s

(* print n .. 0 *)
let count_down (n:int) =
 for i = n downto 0 do
 print_int i;
 print_newline()
 done

(* print 0 .. n *)
let count_up (n:int) =
 for i = 0 to n do
 print_int i;
 print_newline()
 done

Impera%ve	loops?	

(* print n .. 0 *)

let count_down (n:int) =
 for i = n downto 0 do
 print_int i;
 print_newline()
 done

(* for i=n downto 0 do f i *)

let rec for_down
 (n : int)
 (f : int -> unit)
 : unit =
 if n >= 0 then
 (f n; for_down (n-1) f)
 else
 ()

let count_down (n:int) =
 for_down n (fun i ->
 print_int i;
 print_newline()
)

Aliasing	

18	

let c = ref 0

let x = c

x := 42 ;

!c

0	

c

Aliasing	

19	

let c = ref 0

let x = c

x := 42 ;

!c

0	

c

x

Aliasing	

20	

let c = ref 0

let x = c

x := 42 ;

!c

42	

c

x

Aliasing	

21	

let c = ref 0

let x = c

x := 42 ;

!c

42	

c

x

result:		42	

warning!		we	can’t	say	!c	==	0	

REFS	AND	MODULES	

Types	and	References	
Concrete,	first-order	type	tells	you	a	lot	about	a	data	structure:	
•  int				 	 	==>	immutable	
•  int	ref	 	 	==>	mutable	
•  int	*	int			 	 	==>	immutable	
•  int	*	(int	ref)	 	==>	1st	component	immutable,	2nd	mutable	
•  ...	etc	

What	about	higher-order	types?	
•  int	->	int 	 	==>	the	func%on	can't	be	changed	

	 	 	==>	what	happens	when	we	run	it?	
	
What	about	abstract	types?	
•  stack,	queue?		stack	*	queue?			

Func%onal	Stacks	

24	

module type STACK =
 sig
 type ‘a stack
 val empty : unit -> ‘a stack
 val push : ‘a -> ‘a stack -> ‘a stack
 val peek : ‘a stack -> ‘a option
 ...

 end

Func%onal	Stacks	

25	

module type STACK =
 sig
 type ‘a stack
 val empty : unit -> ‘a stack
 val push : ‘a -> ‘a stack -> ‘a stack
 val peek : ‘a stack -> ‘a option
 ...

 end

A	func%onal	interface	takes	
in	arguments,	analyzes	them,	
and	produces	new	results	

Impera%ve	Stacks	

26	

module type IMP_STACK =
 sig
 type ‘a stack
 val empty : unit -> ‘a stack
 val push : ‘a -> ‘a stack -> unit
 val peek : ‘a stack -> ‘a option
 ...

 end

Impera%ve	Stacks	

27	

module type IMP_STACK =
 sig
 type ‘a stack
 val empty : unit -> ‘a stack
 val push : ‘a -> ‘a stack -> unit
 val peek : ‘a stack -> ‘a option
 ...

 end When	you	see	“unit”	as	the	
return	type,	you	know	the	
func%on	is	being	executed	

for	its	side	effects.		(Like	void	
in	C/C++/Java.)	

Impera%ve	Stacks	

28	

module type IMP_STACK =
 sig
 type ‘a stack
 val empty : unit -> ‘a stack
 val push : ‘a -> ‘a stack -> unit
 val peek : ‘a stack -> ‘a option
 val pop : ‘a stack -> ‘a option
 end

Unfortunately,	we	can’t	always	
tell	from	the	type	that	there	are	
side-effects	going	on.		It’s	a	good	
idea	to	document	them	explicitly	
if	the	user	can	perceive	them.		

Impera%ve	Stacks	

29	

module type IMP_STACK =
 sig
 type ‘a stack
 val empty : unit -> ‘a stack
 val push : ‘a -> ‘a stack -> unit
 val peek : ‘a stack -> ‘a option
 val pop : ‘a stack -> ‘a option
 end

Unfortunately,	we	can’t	always	
tell	from	the	type	that	there	are	
side-effects	going	on.		It’s	a	good	
idea	to	document	them	explicitly	
if	the	user	can	perceive	them.	

Some%mes,	one	uses	
references	inside	a	
module	but	the	data	

structures	have	
func%onal	(persistent)	

seman%cs	

Impera%ve	Stacks	

30	

module type IMP_STACK =
 sig
 type ‘a stack
 val empty : unit -> ‘a stack
 val push : ‘a -> ‘a stack -> unit
 val peek : ‘a stack -> ‘a option
 val pop : ‘a stack -> ‘a option
 end

Unfortunately,	we	can’t	always	
tell	from	the	type	that	there	are	
side-effects	going	on.		It’s	a	good	
idea	to	document	them	explicitly	
if	the	user	can	perceive	them.	

Some%mes,	one	uses	
references	inside	a	
module	but	the	data	

structures	have	
func%onal	(persistent)	

seman%cs	

This	is	a	terrific	
way	to	use	

references	in	ML.		
Look	for	these	
opportuni%es	

Impera%ve	Stacks	

31	

module ImpStack : IMP_STACK =
 struct
 type ‘a stack = (‘a list) ref

 let empty() : ‘a stack = ref []

 let push(x:’a)(s:’a stack) : unit =
 s := x::(!s)

 let pop(s:’a stack) : ‘a option =
 match !s with
 | [] -> None
 | h::t -> (s := t ; Some h)

 end

Impera%ve	Stacks	

32	

module ImpStack : IMP_STACK =
 struct
 type ‘a stack = (‘a list) ref

 let empty() : ‘a stack = ref []

 let push(x:’a)(s:’a stack) : unit =
 s := x::(!s)

 let pop(s:’a stack) : ‘a option =
 match !s with
 | [] -> None
 | h::t -> (s := t ; Some h)

 end

Note:		We	don't	have	to	
make	everything	mutable.		
The	list	is	an	immutable	
data	structure	stored	in	a	

single	mutable	cell.	

Fully	Mutable	Lists	

33	

type ‘a mlist =
 Nil | Cons of ‘a * (‘a mlist ref)

let ml = Cons(1, ref (Cons(2, ref
(Cons(3, ref Nil)))))

ml	

1	 2	

ref	 ref	cons	cons	 ref	cons	

3	

Fully	Mutable	Lists	

34	

type ‘a mlist =
 Nil | Cons of ‘a * (‘a mlist ref)

let ml = Cons(1, ref (Cons(2, ref
(Cons(3, ref Nil)))))

let ml2 = Cons(7, ref Nil)

ml	

1	 2	

ref	 ref	cons	cons	 ref	cons	

3	

7	
ml2	

Fully	Mutable	Lists	

35	

type ‘a mlist =
 Nil | Cons of ‘a * (‘a mlist ref)

let rec fudge(l:’a mlist)
 (m:’a mlist) : unit =

 match l with
 | Nil -> ()

 | Cons(h,t) -> t := m ; ()

ml	

1	 2	

ref	 ref	cons	cons	 ref	cons	

3	

7	
ml2	

Fully	Mutable	Lists	

36	

type ‘a mlist =
 Nil | Cons of ‘a * (‘a mlist ref)

let rec fudge(l:’a mlist)
 (m:’a mlist) : unit =

 match l with
 | Nil -> ()

 | Cons(h,t) -> t := m ; ()

ml	

1	 2	

ref	 ref	cons	cons	 ref	cons	

3	

7	
ml2	

Fully	Mutable	Lists	

37	

type ‘a mlist =
 Nil | Cons of ‘a * (‘a mlist ref)

let rec mlength(m:’a mlist) : int =
 match m with
 | Nil -> 0

 | Cons(h,t) -> 1 + mlength(!t)

ml	

1	 2	 3	

ml	
1	 2	

ref	 ref	cons	cons	 ref	cons	

3	

pictorial	
conven%on:	

Fraught	with	Peril	

38	

type ‘a mlist =
 Nil | Cons of ‘a * (‘a mlist ref)

let rec mlength(m:’a mlist) : int =
 match m with
 | Nil -> 0

 | Cons(h,t) -> 1 + length(!t)

let r = ref Nil ;;
let m = Cons(3,r) ;;
r := m ;;

mlength m ;;

Fraught	with	Peril	

39	

type ‘a mlist =
 Nil | Cons of ‘a * (‘a mlist ref)

let rec mlength(m:’a mlist) : int =
 match m with
 | Nil -> 0

 | Cons(h,t) -> 1 + length(!t)

let r = ref Nil in
let m = Cons(3,r) in
r := m ;

mlength m

r	

Fraught	with	Peril	

40	

type ‘a mlist =
 Nil | Cons of ‘a * (‘a mlist ref)

let rec mlength(m:’a mlist) : int =
 match m with
 | Nil -> 0

 | Cons(h,t) -> 1 + length(!t)

let r = ref Nil in
let m = Cons(3,r) in
r := m ;

mlength m

3	

m	
r	

Fraught	with	Peril	

41	

type ‘a mlist =
 Nil | Cons of ‘a * (‘a mlist ref)

let rec mlength(m:’a mlist) : int =
 match m with
 | Nil -> 0

 | Cons(h,t) -> 1 + length(!t)

let r = ref Nil in
let m = Cons(3,r) in
r := m ;

mlength m

3	

m	
r	

Another	Example:	

42	

type ‘a mlist =
 Nil | Cons of ‘a * (‘a mlist ref)

let rec mappend xs ys =
 match xs with
 | Nil -> ()
 | Cons(h,t) ->

 (match !t with
 | Nil -> t := ys
 | Cons(_,_) as m -> mappend m ys)

Mutable	Append	Example:	

43	

1	 2	 3	

4	 5	 6	

let rec mappend xs ys =
 match xs with
 | Nil -> ()
 | Cons(h,t) ->

 (match !t with
 | Nil -> t := ys

 | Cons(_,_) as m -> mappend m ys) ;;
let xs = Cons(1,ref (Cons (2, ref (Cons (3, ref Nil))))) ;;
let ys = Cons(4,ref (Cons (5, ref (Cons (6, ref Nil))))) ;;
mappend xs ys ;;

Mutable	Append	Example:	

44	

1	 2	 3	

4	 5	 6	

xs	

ys	

let rec mappend xs ys =
 match xs with
 | Nil -> ()
 | Cons(h,t) ->

 (match !t with
 | Nil -> t := ys

 | Cons(_,_) as m -> mappend m ys) ;;
let xs = Cons(1,ref (Cons (2, ref (Cons (3, ref Nil))))) ;;
let ys = Cons(4,ref (Cons (5, ref (Cons (6, ref Nil))))) ;;
mappend xs ys ;;

Mutable	Append	Example:	

45	

1	 2	 3	

4	 5	 6	

xs	

ys	

let rec mappend xs ys =
 match xs with
 | Nil -> ()
 | Cons(h,t) ->

 (match !t with
 | Nil -> t := ys

 | Cons(_,_) as m -> mappend m ys) ;;
let xs = Cons(1,ref (Cons (2, ref (Cons (3, ref Nil))))) ;;
let ys = Cons(4,ref (Cons (5, ref (Cons (6, ref Nil))))) ;;
mappend xs ys ;;

Mutable	Append	Example:	

46	

1	 2	 3	

4	 5	 6	

xs	

ys	

let rec mappend xs ys =
 match xs with
 | Nil -> ()
 | Cons(h,t) ->

 (match !t with
 | Nil -> t := ys

 | Cons(_,_) as m -> mappend m ys) ;;
let xs = Cons(1,ref (Cons (2, ref (Cons (3, ref Nil))))) ;;
let ys = Cons(4,ref (Cons (5, ref (Cons (6, ref Nil))))) ;;
mappend xs ys ;;

Mutable	Append	Example:	

47	

1	 2	 3	

4	 5	 6	

xs	

ys	

let rec mappend xs ys =
 match xs with
 | Nil -> ()
 | Cons(h,t) ->

 (match !t with
 | Nil -> t := ys

 | Cons(_,_) as m -> mappend m ys) ;;
let xs = Cons(1,ref (Cons (2, ref (Cons (3, ref Nil))))) ;;
let ys = Cons(4,ref (Cons (5, ref (Cons (6, ref Nil))))) ;;
mappend xs ys ;;

Another	Example:	

48	

let rec mappend xs ys =
 match xs with
 | Nil -> ()
 | Cons(h,t) ->

 (match !t with
 | Nil -> t := ys
 | Cons(_,_) as m -> mappend m ys)

let dup xs = mappend xs xs;;
let m = Cons(1,ref Nil);;
dup m ;;

mlength m ;;

Mutable	Append	Example:	

49	

let rec mappend xs ys =
 match xs with
 | Nil -> ()
 | Cons(h,t) ->
 (match !t with
 | Nil -> t := ys
 | Cons(_,_) as m -> mappend m ys) ;;
let dup xs = mappend xs xs;;
let m = Cons(1,ref Nil);;
dup m ;;
mlength m ;;

1	

m	

Mutable	Append	Example:	

50	

1	

xs	ys	

let rec mappend xs ys =
 match xs with
 | Nil -> ()
 | Cons(h,t) ->
 (match !t with
 | Nil -> t := ys
 | Cons(_,_) as m -> mappend m ys) ;;
let dup xs = mappend xs xs;;
let m = Cons(1,ref Nil);;
dup m ;;
mlength m ;;

Mutable	Append	Example:	

51	

1	

m	

let rec mappend xs ys =
 match xs with
 | Nil -> ()
 | Cons(h,t) ->
 (match !t with
 | Nil -> t := ys
 | Cons(_,_) as m -> mappend m ys) ;;
let dup xs = mappend xs xs;;
let m = Cons(1,ref Nil);;
dup m ;;
mlength m ;;

Just	like	our	hand-
constructed	example	from	
“Fraught	with	Peril”	slide.	

Good	luck	calling	
mlength	on	this.	

Add	mutability	judiciously	
Two	types:	

The	first	makes	cyclic	lists	possible,	the	second	doesn't	
–  the	second	preemp%vely	avoids	certain	kinds	of	errors.	
–  oPen	called	a	correct-by-construc5on	design	

type ‘a very_mutable_list =
 Nil
| Cons of ‘a * (‘a very_mutable_list ref)

type ‘a less_mutable_list = ‘a list ref

52	

Is	it	possible	to	avoid	all	state?	

53	

Yes!	(in	single-threaded	programs)	
–  Pass	in	old	values	to	func%ons;	return	new	values	from	func%ons	...	
but	this	isn't	necessarily	the	most	efficient	thing	to	do	

Consider	the	difference	between	our	func%onal	stacks	and	our	
impera%ve	ones:	

–  fnl_push : ‘a -> ‘a stack -> ‘a stack
–  imp_push : ‘a -> ‘a stack -> unit

In	general,	we	could	pass	a	dic%onary	into	and	out	of	every	func%on.		
–  That	dic%onary	would	map	“addresses”	to	“values”	

•  it	would	record	the	value	of	every	reference	
–  But	then	accessing	or	upda%ng	a	reference	takes	O(lg	n)	%me.	
–  ...	(wonder	how	bad	the	constant	factors	would	be,	too)	...	

MUTABLE	RECORDS	AND	ARRAYS	

Records	with	Mutable	Fields	

55	

OCaml	records	with	mutable	fields:	
	
	
	
	
	
	
	
	
	
	
	
In	fact:							type 'a ref = {mutable contents : 'a}

type 'a queue1 =
 {front : 'a list ref;
 back : 'a list ref }

type 'a queue2 =
 {mutable front : 'a list;
 mutable back : 'a list}

let q1 = {front = [1]; back = [2]} in
let q2 = {front = [1]; back = [2]} in

let x = q2.front @ q2.back in

q2.front <- [3]

Mutable	Arrays	

56	

For	arrays,	we	have:	
A.(i)		

•  to	read	the	ith	element	of	the	array	A
A.(i) <- 42

•  to	write	the	ith	element	of	the	array	A
Array.make : int -> ‘a -> ‘a array

•  Array.make 42 ‘x’ creates	an	array	of	length	42	with	all	
elements	ini%alized	to	the	character	‘x’.	

See	the	reference	manual	for	more	opera%ons.	
		

www.caml.inria.fr/pub/docs/manual-ocaml/libref/Array.html	

This	is	a	terrific	
way	to	use	

references	in	ML.		
Look	for	these	
opportuni%es	

Fully	encapsulated	state	

57	

We	can’t	always	tell	from	the	type	
that	there	are	side-effects	going	
on.		It’s	a	good	idea	to	document	
them	explicitly	if	the	user	can	

perceive	them.	

Some%mes,	one	uses	
references	inside	a	
module	but	the	data	

structures	have	
func%onal	(persistent)	

seman%cs	

Factoring!	

let factor n =
 let s = int_of_float (sqrt (float_of_int n)) in
 let rec f i =
 if i<=s then
 if n mod i = 0 then
 Some i
 else
 f (i+1)
 else
 None
 in f 2

Factoring!	

let factor n =
 let s = int_of_float (sqrt (float_of_int n)) in
 let rec f i =
 if i<=s then
 if n mod i = 0 then
 Some i
 else
 f (i+1)
 else
 None
 in f 2

memofactor 77 = Some 7	

memofactor 97 = None	

Memoized	func%ons		

let factor n =
 let s = int_of_float (sqrt (float_of_int n)) in
 let rec f i =
 if i<=s then
 if n mod i = 0 then
 Some i
 else
 f (i+1)
 else
 None
 in f 2

Memoized	func%ons		

let factor n =
 let s = int_of_float (sqrt (float_of_int n)) in
 let rec f i =
 if i<=s then
 if n mod i = 0 then
 Some i
 else
 f (i+1)
 else
 None
 in f 2

Caveat	1:	
Many	applica%ons	of	

prime	numbers	
are	for	many-bit	(500-
bit,	2000-bit)	numbers;	
OCaml	ints	are	31-bit	or	
63-bit,	so	you’d	want	a	
version	of	this	for	the	

bignums	

Caveat	2:	
This	primi%ve	factoring	
algorithm,	already	

obsolete	2000	years	ago,	
is	not	what	you’d	really	
use.		Modern	algorithms	
based	on	fancy	number	
theory	are	much	faster.	

Caveat	3:	
Even	the	fancy	

number-theory	algs	
take	

superpolynomial	
%me	(as	func%on	of	
the	number	of	bits	

	in	n)		

Memoized	factoring	

let table = Hashtbl.create 1000

let memofactor n =
 try Hashtbl.find table n
 with Not_found ->
 let p = factor n
 in Hashtbl.add table n p; p

memofactor 77 = Some 7	

memofactor 97 = None	

Encapsula%ng	the	side	effects	

	
The	table	is	hidden	inside	the	func%on	closure.		

There's	no	way	for	the	client	to	access	it,	or	know	it’s	there.	
We	can	pretend	memofactor	is	a	pure	func%on.	

You	could	also	use	the	module	system	to	do	this	in	a	more	general	way,	
which	permits	several	interface	func%ons	to	share	the	same	impera%ve	
data	structure.		In	fact,	you	will		do	this	in	assignment	6.	

let table = Hashtbl.create 1000

let memofactor n =
 try Hashtbl.find table n
 with Not_found ->
 let p = factor n
 in Hashtbl.add table n p; p

OCaml	Objects	

Xavier	Leroy	(OCaml	inventor):		
•  No	one	ever	uses	objects	in	OCaml!	
•  Adding	objects	to	OCaml	was	one	of	the	best	decisions	I	ever	made!	

hlp://caml.inria.fr/pub/docs/manual-ocaml-4.00/manual005.html	

class point =
 object
 val mutable x = 0
 method get_x = x
 method move d = x <- x + d
 end;;

let p = new point in
let x = p#get in

p#move 4;

x + p#get (* 0 + 4 *)

SUMMARY	

Summary:		How/when	to	use	state?	

66	

•  A	complicated	ques%on!	
•  In	general,	I	try	to	write	the	func%onal	version	first.	

–  e.g.,	prototype	
–  don’t	have	to	worry	about	sharing	and	updates	
–  don’t	have	to	worry	about	race	condi%ons	
–  reasoning	is	easy	(the	subs%tu%on	model	is	valid!)	

•  Some%mes	you	find	you	can’t	afford	it	for	efficiency	reasons.	
–  example:		rou%ng	tables	need	to	be	fast	in	a	switch	
–  constant	%me	lookup,	update	(hash-table)	

•  When	I	do	use	state,	I	try	to	encapsulate	it	behind	an	interface.	
–  try	to	reduce	the	number	of	error	condi%ons	a	client	can	see	

•  correct-by-construc%on	design	
–  module	implementer	must	think	explicitly	about	sharing	and	invariants	
–  write	these	down,	write	asser%ons	to	test	them	
–  if	encapsulated	in	a	module,	these	tests	can	be	localized	
–  most	of	your	code	should	s5ll	be	func5onal	

Summary	

67	

Mutable	data	structures	can	lead	to	efficiency	improvements.	
–  e.g.,	Hash	tables,	memoiza%on,	depth-first	search	

But	they	are	much	harder	to	get	right,	so	don't	jump	the	gun	
–  upda5ng	in	one	place	may	have	an	effect	on	other	places.	
–  wri5ng	and	enforcing	invariants	becomes	more	important.	

•  e.g.,	asser%ons	we	used	in	the	queue	example	
•  why	more	important?		because	the	types	do	less	...	

–  cycles	in	data	(other	than	func5ons)	can't	happen	un5l	we	
introduce	refs.	
•  must	write	opera%ons	much	more	carefully	to	avoid	looping	
•  more	cases	to	deal	with	and	the	compiler	doesn’t	help	you!	

–  we	haven’t	even	golen	to	the	mul%-threaded	part.	
	
So	use	refs	when	you	must,	but	try	hard	to	avoid	it.	

