Type Inference

COS 326
David Walker
Princeton University

slides copyright 2017 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Midterm Exam

Wed Oct 25, 2017
In Class (11:00-12:20)
Midterm Week

Be there or be square!

TYPE INFERENCE

Language Design for Type Inference

The ML language and type system is designed to support a very
strong form of type inference.

Language Design for Type Inference

The ML language and type system is designed to support a very
strong form of type inference.

let rec map £ 1 =
match 1 with
[1 => []
| hd::tl -> £ hd :: map £ tl

ML finds this type for map:

map : ('a -> 'b) -> 'a list -> 'b list

Language Design for Type Inference

The ML language and type system is designed to support a very
strong form of type inference.

let rec map £ 1 =
match 1 with
[1 => []
| hd::tl -> £ hd :: map £ tl

ML finds this type for map:

map : ('a -> 'b) -> 'a list -> 'b list

which is really an abbreviation for this type:

map : forall 'a,'b.('a -> 'b) -> 'a list -> 'b list

[Language Design for Type Inference]

map : ('a -> 'b) -> 'a list -> 'b list

We call this type the principle type (scheme) for map.

Any other ML-style type you can give map is an instance of this type,
meaning we can obtain the other types via substitution of types for
parameters from the principle type.

Eg: (bool -> int) -> bool list -> int list

('a -> int) -> 'a list -> int 1list

('a => 'a) -> 'a list -> 'a list

[Language Design for Type Inference]

Principle types are great:

* the type inference engine can make a best choice for the type to
give an expression

e the engine doesn't have to guess (and won't have to guess wrong)

The fact that principle types exist is surprisingly brittle. If you change
ML's type system a little bit in either direction, it can fall apart.

[Language Design for Type Inference

Suppose we take out polymorphic types and need a type for id:

let 1d x = x

Then the compiler might guess that id has one (and only one) of
these types:

id : bool —-> bool

id : int -> int

[Language Design for Type Inference

Suppose we take out polymorphic types and need a type for id:

let 1d x = x

Then the compiler might guess that id has one (and only one) of
these types:

id : bool —-> bool

id : int -> int

But later on, one of the following code snippets won't type check:

id true id 3

So whatever choice is made, a different one might have been better.

[Language Design for Type Inference]

We showed that removing types from the language causes a failure
of principle types.

Does adding more types always make type inference easier?

[Language Design for Type Inference]

We showed that removing types from the language causes a failure
of principle types.

Does adding more types always make type inference easier?

Language Design for Type Inference

OCaml only has universal types on the outside:

forall 'a,'b. ('a -> 'b) -> 'a list -> 'b list

Consider this program:

let £ g = (g true, g 3)

It won't type check in OCaml. We might want to give it this type:

f : (forall a.a->a) -> bool * int

Notice that the universal quantifier appears under an ->

[Language Design for Type Inference

System F is a lot like OCaml, except that it allows universal
guantifiers in any position. It could type check f.

let £ g = (g true, g 3)

f : (forall a.a->a) -> bool * int

Unfortunately, type inference in System F is undecideable.

[Language Design for Type Inference

System F is a lot like OCaml, except that it allows universal
guantifiers in any position. It could type check f.

let £ g = (g true, g 3)

f : (forall a.a->a) -> bool * int

Unfortunately, type inference in System F is undecideable.

Developed in 1972 by logician Jean Yves-Girard
who was interested in the consistency
of a logic of 2"d-order arithemetic.

Rediscovered as programming language
by John Reynolds in 1974.

[Language Design for Type Inference

Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

let £ x = x + X

[Language Design for Type Inference

Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

let £ x = x + X

f : int -> int °?

f ¢« float -> float 2

[Language Design for Type Inference

Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

let £ x = x + X

f : int -> int °?

f ¢« float -> float 2

f : 'a -> 'a ?

[Language Design for Type Inference

Even seemingly small changes can effect type inference.

Suppose "+" operated on both floats and ints. What type for this?

let £ x = x + X

f : int -> int °?

f ¢« float -> float 2

f : 'a -> 'a ?

No type in OCaml's type system works. In Haskell:

f : Num 'a => 'a —> 'a

INFERRING SIMPLE TYPES

Type Schemes

A type scheme contains type variables that may be filled in
during type inference

s:=a|int| bool|s->s

A term scheme is a term that contains type schemes rather than
proper types. eg, for functions:

fun (x:s) ->e

letrecf (x:s):s=e

The Generic Type Inference Algorithm]22

1) Add distinct variables in all places type schemes are needed

The Generic Type Inference Algorithm]23

1) Add distinct variables in all places type schemes are needed

2) Generate constraints (equations between types) that must be
satisfied in order for an expression to type check
* Notice the difference between this and the type checking
algorithm from last time. Last time, we tried to:
* eagerly deduce the concrete type when checking every expression
* reject programs when types didn't match. eg:

fe --f'sargument type must equal e

* This time, we'll collect up equations like:

a->b=c

The Generic Type Inference Algorithm]2“

1) Add distinct variables in all places type schemes are needed

2) Generate constraints (equations between types) that must be
satisfied in order for an expression to type check
* Notice the difference between this and the type checking
algorithm from last time. Last time, we tried to:
* eagerly deduce the concrete type when checking every expression
* reject programs when types didn't match. eg:

fe --f'sargument type must equal e

* This time, we'll collect up equations like:

a->b=c

3) Solve the equations, generating substitutions of types for var's

Example: Inferring types for map

let rec map £ 1 =
match 1 with
[] —> []
| hd::tl1l -> £ hd :: map £ tl

Step 1: Annotate

let rec map (f:a) (l:b) : c =
match 1 with
[] —> []
| hd::tl1l -> £ hd :: map £ tl

Step 2: Generate Constraints

let rec map (f:a) (l:b) : c =
match 1 with

(] => []

| hd::t1l -> £ hd :: map £ tl b = d list

a =d —-> f

Step 2: Generate Constraints

let rec map (f:a) (l:b)
match 1 with
[] => []
| hd::tl -> £ hd

map £ tl

final constraints:

b =D
b =D
b =Db’
a = a

b =b’
2 = lo
C=C’
a = ¢
d list

list

’ list
" list

" list

) ’
-> a

list

= ¢ list

Step 3: Solve Constraints

let rec map (f:a) (l:b) : c =
match 1 with
[] —> []
| hd::tl1l -> £ hd :: map £ tl

final constraints: final solution:
b = b 1list [b' -> c'/a]
b =0’ list [b' list/b]
b =Db’ 1list [c' list/c]
a = a
b =077 1list
a=b’ ->a
c = c list
a = ¢
d list = ¢’ list
d list =

Step 3: Solve Constraints

let rec map (f:a

match 1 with

[] —> []
| hd::tl ->

) (l:b) : cC

f hd :: map £ tl

final solution:

[b'
[b' list/Db]

[c'

-> c'/a]

list/c]

let rec map

(f:b'" => c¢')

match 1 with

[]

-> []

| hd::tl -> £ hd

(L:b"'" 1list)

map £ tl

C'

list

Step 3: Solve Constraints

[] =>

[]

let rec map (f:a) (l:b) : c
match 1 with

| hd::tl -> £ hd :: map

tl

renaming type variables:

let rec map (f:a —-> Db)
match 1 with

[] —> []
hd::tl -> £ hd

(L:a list)

map £ tl

b

list

Step 4: Generate types

Generate types from type schemes

— Option 1: pick an instance of the most general type when we
have completed type inference on the entire program

* map: (int ->int) -> int list -> int list

— Option 2: generate polymorphic types for program parts and
continue (polymorphic) type inference

 map : forall a,b,c. (a ->b) ->a list -> b list

Type Inference Details

Type constraints are sets of equations between type schemes
— q::={s11=5s12, ..., snl1 =sn2}

— eg:{b=b’" list,a=b->c}

Constraint Generation]

Syntax-directed constraint generation
— our algorithm crawls over abstract syntax of untyped
expressions and generates
e atermscheme
e aset of constraints

Algorithm defined as set of inference rules:
— G |--u=>e:t, q

\ constraints that must be solved
tvype (scheme
context ype ()

annotated

unannotated expression

expression
in OCaml:

gen : ctxt -> exp -> ann_exp * scheme * constraints

Constraint Generation

Simple rules:
— G |-x==>x:s, {} (ifG(x)=5)

— G |--3==>3:int,{} (same for other ints)

— G |--true ==>true : bool, { }

— G |-- false ==> false : bool, { }

[Operators

G|-ul==>el:tl,ql G|-u2==>e2:12,qg2

G|-ul4+u2==>el+e2:int,qlUg2U {t1 =int, t2 = int}

G|-ul==>el:tl,ql G|-u2==>e2:1t2,qg2

G|-ul<u2==>el+e2:bool,glUqg2U{tl =int, t2 = int}

If statements

G |-- if ul then u2 else u3 ==> if el then e2 else e3

:a,q1Uqg2Uqg3U({tl =bool, a =12, a =3}

Function Application

==>el:t], ql
==>e2:12,Qq2 (for a fresh a)

G |--ul u2==> el e2

:a,qlUq2U{tl =t2-> a}

Function Declaration

G x:al|-u==>e:tq (for fresh a)

G|-funx->e==>fun(x:a)->e

:a->b,qU{t =b}

Function Declaration

G f:a->b,x:al|-u==>e:tq (for fresh a,b)

G|--recf(x) =u==>recf(x:a):b=e

:a->b,qU{t =b}

Solving Constraints

A solution to a system of type constraints is a substitution S
— a function from type variables to types
— assume substitutions are defined on all type variables:

« S(a)=a (for almost all variables a)
« S(a)=s (for some type scheme s)

— dom(S) = set of variables s.t. S(a) = a

Solving Constraints

A solution to a system of type constraints is a substitution S
— a function from type variables to types
— assume substitutions are defined on all type variables:

« S(a)=a (for almost all variables a)
« S(a)=s (for some type scheme s)

— dom(S) = set of variables s.t. S(a) = a

We can also apply a substitution S to a full type scheme s.

apply: [int/a, int->bool/b]

to: b->a->b

returns: (int->bool) -> int -> (int->bool)

[Substitutions

We can apply a substitution S to a full type scheme:

eg: apply [int/a, int->bool/b] to b->a->b

returns: (int->bool) -> int -> (int->bool)

[Substitutions

When is a substitution S a solution to a set of constraints?

Constraints: {sl1l=s2,s3=5s4,s5=5s6, ... }

When the substitution makes both sides of all equations the same.

Eg:

constraints:

a=b->c
c = int -> bool

[Substitutions

When is a substitution S a solution to a set of constraints?
Constraints: {sl1l=s2,s3=5s4,s5=5s6, ... }

When the substitution makes both sides of all equations the same.

Eg: solution:
constraints: b -> (int -> bool)/a
int -> bool/c
a=b->c b/b
c = int -> bool

[Substitutions

When is a substitution S a solution to a set of constraints?
Constraints: {sl1l=s2,s3=5s4,s5=5s6, ... }

When the substitution makes both sides of all equations the same.

Eg: solution:
constraints: b -> (int -> bool)/a
int -> bool/c
a=b->c b/b
c = int -> bool

constraints with solution applied:

b->(int->bool) = b->(int->bool)
int ->bool = int->Dbool

[Substitutions

When is a substitution S a solution to a set of constraints?
Constraints: {sl1l=s2,s3=5s4,s5=5s6, ... }
When the substitution makes both sides of all equations the same.

A second solution

solution 1:
constraints: b -> (int -> bool)/a
int -> bool/c
a=b->c b/b
c =int -> bool
solution 2:

int -> (int -> bool)/a
int -> bool/c
int/b

[Substitutions

When is one solution better than another to a set of constraints?

constraints:

a=b->c
c = int -> bool

solution 1: solution 2:

b -> (int -> bool)/a int -> (int -> bool)/a

int -> bool/c int -> bool/c

b/b int/b

type b -> ¢ with solution applied: type b -> ¢ with solution applied:

b -> (int -> bool) int -> (int -> bool)

[Substitutions

solution 1: solution 2:

b -> (int -> bool)/a int -> (int -> bool)/a

int -> bool/c int -> bool/c

b/b int/b

type b -> ¢ with solution applied: type b -> ¢ with solution applied:
b -> (int -> bool) int -> (int -> bool)

Solution 1 is "more general" - there is more flex.
Solution 2 is "more concrete"

We prefer solution 1.

[Substitutions

solution 1: solution 2:

b -> (int -> bool)/a int -> (int -> bool)/a

int -> bool/c int -> bool/c

b/b int/b

type b -> ¢ with solution applied: type b -> ¢ with solution applied:
b -> (int -> bool) int -> (int -> bool)

Solution 1 is "more general" - there is more flex.
Solution 2 is "more concrete"
We prefer the more general (less concrete) solution 1.

Technically, we prefer T to S if there exists another substitution U
and for all types t, S (t) = U (T (t))

[Substitutions

solution 1: solution 2:

b -> (int -> bool)/a int -> (int -> bool)/a

int -> bool/c int -> bool/c

b/b int/b

type b -> ¢ with solution applied: type b -> ¢ with solution applied:
b -> (int -> bool) int -> (int -> bool)

There is always a best solution, which we can a principle solution.
The best solution is (at least as) preferred as any other solution.

[Most General Solutions

S is the principal (most general) solution of a constraint g if
— S |=q (it is a solution)
— if T|=gthenT<=S (itisthe most general one)

Lemma: If g has a solution, then it has a most general one

We care about principal solutions since they will give us the most
general types for terms

Composition of Substitutions

We will need to compare substitutions: T<=S. eg:

— T<=Sif Tis “more specific’/"less general" than S
— If thereis a

— Formally: T<=Sifandonlyif T=U oS forsome U

Composition of Substitutions

Composition (U o S) applies the substitution S and then applies
the substitution U:

— (U oS)(a) = U(S(a))
We will need to compare substitutions
— T<=Sif Tis “more specific’ than S
— T<=SifTis “less general” than S
— Formally: T<=Sifandonlyif T=U oS for some U

Composition of Substitutions

Examples:
— example 1: any substitution is less general than the identity
substitution I:

e S<=lbecauseS=Sol

— example 2:
 S(a)=int,S(b)=c->c
* T(a) =int, T(b) = int -> int
 we conclude: T<=S

« if T(a) =int, T(b) = int -> bool then T is unrelated to S (neither more
nor less general)

Solving a Constraint

S |=qif Sis a solution to the constraints g

S|={} S|={S1=82}Uq
any substitution is a solution to an equation
a solution for the empty is a substitution that makes

set of constraints left and right sides equal

Examples

Example 1
— ¢ = {a=int, b=a}
— principal solution S:

Examples

Example 1
— ¢ = {a=int, b=a}
— principal solution S:
e S(a) =S(b) =int
* S(c)=c (forall cotherthan a,b)

Examples

Example 2
— ¢ = {a=int, b=a, b=bool}
— principal solution S:

Examples

Example 2
— ¢ = {a=int, b=a, b=bool}
— principal solution S:

e does not exist (there is no solution to q)

Unification

Unification: An algorithm that provides the principal solution to
a set of constraints (if one exists)
— Unification systematically simplifies a set of constraints, yielding
a substitution
» Starting state of unification process: (I,q9)
* Final state of unification process: (S, { })

Unification Machine

We can specify unification as a transition system:

(Sll ql) -> (SZI C|2)

Base types & simple variables:

(S,{bool=bool} U gq) -> (S, q)

(S{int=int} U q) -> (S, q)

(Sl{a=a} U q) -> (SI q)

[Unification Machine]

Functions:

(S, {s1l1->s12 = s21->s22}Uq) ->
/7 (S, {s11 = s21, s12 =s22} U Q)

breaks down into
smaller constraints

Variable definitions when a is not in FreeVars(s)

/

(S, {a=s} Uq)->([a=s] 0 S, [s/a]q)

(S, {s=a} UQq)->([a=s] 0 S, [s/a]q)

/

do S and then do [a=b]

Occurs Check

Recall this program:

fun x -> x X

It generates the the constraints: a->a=a

What is the solution to {a = a -> a}?

Occurs Check]

Recall this program:

fun x -> x X

It generates the the constraints: a->a=a

What is the solution to {a = a -> a}?

There is nonel (S, {s=a} Uq)-> ([a=s] 0 S, [s/a]q)

"when a is not in FreeVars(s)"

N\

the "occurs check"

Irreducible States

When all the constraints have been processed, we win!

(51, q1)
-> (Szl C|2)
-> (S3, g3)

> (Sn, { })

But sometimes we get stuck, with an equation like this
— int = bool
— sl1->s2=int
— s1->s2 =bool
—a=s (s contains a)
— or is symmetric to one of the above

Stuck states arise when constraints are unsolvable & the
program does not type check.

Termination

We want unification to terminate (to give us a type
reconstruction)

In other words, we want to show that there is no infinite
sequence of states

— (S1,91) -> (S2,92) -> ...

Termination

We associate an ordering with constraints
— q<gq ifandonlyif

* q contains fewer variables than g’

* g contains the same number of variables as q' but fewer type
constructors (ie: fewer occurrences of int, bool, or “->”)

— This is a lexacographic ordering

* we can prove (by contradiction) that there is no infinite decreasing
sequence of constraints

Termination

Lemma: Every step reduces the size of q

— Proof: By cases (ie: induction) on the definition of the reduction
relation.

(S{int=int} U q) -> (5, q) (5,{s11 -> s12=15s21->s22} Uq) ->
(S, {s11 =s21,s12 =s22} U Qq)

________________________ (a not in FV(s))

----------------------------- (S{a=s}yUq)->
(S{a=a} Uq)-> (S, q) ([a=s] oS, [s/alq)

Complete Solutions

A complete solution for (S,q) is a substitution T such that
— T<=5
- T|=qg

Properties of Solutions

Lemma 1:
— Every final state (S, { }) has a complete solution.
* |tisS:
—S<=S
=S |={}

Properties of Solutions

Lemma 2
— No stuck state has a complete solution (or any solution at all)

* itisimpossible for a substitution to make the necessary equations
equal

— int = bool
—int=tl->12

Properties of Solutions

Lemma 3
— If(S,q) -> (S’ ,q’) then
« Tis complete for (S,q) iff T is complete for (S’ ,q’)
e proof by?

* in the forward direction, this is the preservation theorem for the
unification machine!

Summary: Unification

By termination, (I,9) ->* (S,q") where (S,q’) is irreducible.
Moreover:
— Ifq’ ={}then
 (S,q") is final (by definition)
e Sis a principal solution for g
— Consider any T such that T is a solution to q.
— Now notice, S is complete for (S,q) (by lemma 1)
— S is complete for (I,q) (by lemma 3)
— Since S is complete for (I,q), T <= S and therefore S is principal.

Summary: Unification (cont.)

.. Moreover:

— If g’ isnot{}(and (I,q) ->* (S,q”) where (S,q’) is irreducible)
then

* (S,q) is stuck. Consequently, (S,q) has no complete solution. By
lemma 3, even (l,q) has no complete solution and therefore g has
no solution at all.

MORE TYPE INFERENCE

let Generalization

Where do we introduce polymorphic values?

letx = v => let x : forall a1,..,an.s = v
if v:sandal,...,an are the variables of s

And place x : forall al,...,an.s in the context.

let Generalization

Where do we introduce polymorphic values?

letx = v => let x : forall a1,..,an.s = v

if v:sandal,...,an are the variables of s

And place x : forall al,...,an.s in the context.

Where and how do we use a polymorphic value?

G |-x==>x:9g[bl/al,....bn/an), {}

when G(x) = forall al,...,an.s and bl,...,bn are fresh

What is the cost of type inference?

In practice? Linear in the size of the program

In theory, DEXPTIME-complete.

Why? Because we can generate a program that has a type that
is exponentially large:

let f1 x = x fl: a->a
let f2 = f1 f1 f2:(@a->a)->(a->a)
let f3 = f2 f2 f3:((@->a)->(a->a))->

((a->a)->(a->a))
let f4 = 3 f3

Summary: Type Inference

Given a context G, and untyped term u:
— Find e, t,gsuchthat G |-u==>e:t,q

— Find principal solution S of g via unification
* if no solution exists, there is no reconstruction

— Apply S to e, ie our solution is S(e)

* S(e) contains schematic type variables a,b,c, etc that may be
instantiated with any type

— Since S is principal, S(e) characterizes all reconstructions.

— |If desired, use the type checking algorithm to validate

