
Type	Inference	

COS	326	
David	Walker	

Princeton	University	
	

slides	copyright	2017	David	Walker	
permission	granted	to	reuse	these	slides	for	non-commercial	educaFonal	purposes	

	

Midterm	Exam	
	

Wed	Oct	25,	2017		
In	Class	(11:00-12:20)	

Midterm	Week	
	

Be	there	or	be	square!	

2	

TYPE	INFERENCE	

3	

Language	Design	for	Type	Inference	
The	ML	language	and	type	system	is	designed	to	support	a	very	
strong	form	of	type	inference.	
	
	
	
	
	

Language	Design	for	Type	Inference	
The	ML	language	and	type	system	is	designed	to	support	a	very	
strong	form	of	type	inference.	
	
	
	
	
ML	finds	this	type	for	map:	
	
	
	
	

let rec map f l =
 match l with
 [] -> []
 | hd::tl -> f hd :: map f tl

map : ('a -> 'b) -> 'a list -> 'b list

Language	Design	for	Type	Inference	
The	ML	language	and	type	system	is	designed	to	support	a	very	
strong	form	of	type	inference.	
	
	
	
	
ML	finds	this	type	for	map:	
	
	
	
which	is	really	an	abbreviaFon	for	this	type:	
	
	

let rec map f l =
 match l with
 [] -> []
 | hd::tl -> f hd :: map f tl

map : ('a -> 'b) -> 'a list -> 'b list

map : forall 'a,'b.('a -> 'b) -> 'a list -> 'b list

Language	Design	for	Type	Inference	
	
	
	
We	call	this	type	the	principle	type	(scheme)	for	map.	
	
Any	other	ML-style	type	you	can	give	map	is	an	instance	of	this	type,	
meaning	we	can	obtain	the	other	types	via	subs3tu3on	of	types	for	
parameters	from	the	principle	type.	
	
Eg:	
	
	

('a -> 'a) -> 'a list -> 'a list

map : ('a -> 'b) -> 'a list -> 'b list

(bool -> int) -> bool list -> int list

('a -> int) -> 'a list -> int list

Language	Design	for	Type	Inference	
Principle	types	are	great:	
•  the	type	inference	engine	can	make	a	best	choice	for	the	type	to	

give	an	expression	
•  the	engine	doesn't	have	to	guess	(and	won't	have	to	guess	wrong)	

The	fact	that	principle	types	exist	is	surprisingly	briYle.		If	you	change	
ML's	type	system	a	liYle	bit	in	either	direcFon,	it	can	fall	apart.	

Language	Design	for	Type	Inference	
Suppose	we	take	out	polymorphic	types	and	need	a	type	for	id:	
	
	
Then	the	compiler	might	guess	that	id	has	one	(and	only	one)	of	
these	types:	
	
	
	
	
	
	

id : bool -> bool

let id x = x

id : int -> int

Language	Design	for	Type	Inference	
Suppose	we	take	out	polymorphic	types	and	need	a	type	for	id:	
	
	
Then	the	compiler	might	guess	that	id	has	one	(and	only	one)	of	
these	types:	
	
	
	
	
But	later	on,	one	of	the	following	code	snippets	won't	type	check:	
	
	
So	whatever	choice	is	made,	a	different	one	might	have	been	beYer.	
	
	

id true

id : bool -> bool

let id x = x

id : int -> int

id 3

Language	Design	for	Type	Inference	
We	showed	that	removing	types	from	the	language	causes	a	failure	
of	principle	types.	
	
Does	adding	more	types	always	make	type	inference	easier?	
	

Language	Design	for	Type	Inference	
We	showed	that	removing	types	from	the	language	causes	a	failure	
of	principle	types.	
	
Does	adding	more	types	always	make	type	inference	easier?	
	

Language	Design	for	Type	Inference	
OCaml	only	has	universal	types	on	the	outside:	
	
	
	
Consider	this	program:	
	
	
	
It	won't	type	check	in	OCaml.		We	might	want	to	give	it	this	type:	
	
	
NoFce	that	the	universal	quanFfier	appears	under	an	->	
	
.	
	
	

f : (forall a.a->a) -> bool * int

forall 'a,'b. ('a -> 'b) -> 'a list -> 'b list

let f g = (g true, g 3)

Language	Design	for	Type	Inference	
System	F	is	a	lot	like	OCaml,	except	that	it	allows	universal	
quanFfiers	in	any	posiFon.		It	could	type	check	f.	
	
	
	
Unfortunately,	type	inference	in	System	F	is	undecideable.	
	
.	
	
	

f : (forall a.a->a) -> bool * int

let f g = (g true, g 3)

Language	Design	for	Type	Inference	
System	F	is	a	lot	like	OCaml,	except	that	it	allows	universal	
quanFfiers	in	any	posiFon.		It	could	type	check	f.	
	
	
	
Unfortunately,	type	inference	in	System	F	is	undecideable.	
	
Developed	in	1972	by	logician	Jean	Yves-Girard	
who	was	interested	in	the	consistency	
of	a	logic	of	2nd-order	arithemeFc.	
	
Rediscovered	as	programming	language	
by	John	Reynolds	in	1974.	
	
.	
	
	

f : (forall a.a->a) -> bool * int

let f g = (g true, g 3)

Language	Design	for	Type	Inference	
Even	seemingly	small	changes	can	effect	type	inference.	
	
Suppose	"+"	operated	on	both	floats	and	ints.		What	type	for	this?	
	
	
	
	
	
	
	
	

let f x = x + x

Language	Design	for	Type	Inference	
Even	seemingly	small	changes	can	effect	type	inference.	
	
Suppose	"+"	operated	on	both	floats	and	ints.		What	type	for	this?	
	
	
	
	
	
	
	
	

f : int -> int ?

let f x = x + x

f : float -> float ?

Language	Design	for	Type	Inference	
Even	seemingly	small	changes	can	effect	type	inference.	
	
Suppose	"+"	operated	on	both	floats	and	ints.		What	type	for	this?	
	
	
	
	
	
	

f : int -> int ?

let f x = x + x

f : float -> float ?

f : 'a -> 'a ?

Language	Design	for	Type	Inference	
Even	seemingly	small	changes	can	effect	type	inference.	
	
Suppose	"+"	operated	on	both	floats	and	ints.		What	type	for	this?	
	
	
	
	
	
	
	
No	type	in	OCaml's	type	system	works.		In	Haskell:	

f : int -> int ?

let f x = x + x

f : float -> float ?

f : 'a -> 'a ?

f : Num 'a => 'a -> 'a

INFERRING	SIMPLE	TYPES	

20	

Type	Schemes	
A	type	scheme	contains	type	variables	that	may	be	filled	in	
during	type	inference	

	 		
	 	s	::=	a	|	int	|	bool	|	s	->	s	

	
A	term	scheme	is	a	term	that	contains	type	schemes	rather	than	
proper	types.		eg,	for	funcFons:	

	
	 	 	fun	(x:s)	->	e		

	
	 									let	rec	f	(x:s)	:	s	=	e	

The	Generic	Type	Inference	Algorithm	
1)	Add	disFnct	variables	in	all	places	type	schemes	are	needed	
	

22	

The	Generic	Type	Inference	Algorithm	
1)	Add	disFnct	variables	in	all	places	type	schemes	are	needed	
	
2)	Generate	constraints	(equaFons	between	types)	that	must	be	
saFsfied	in	order	for	an	expression	to	type	check	

•  NoFce	the	difference	between	this	and	the	type	checking	
algorithm	from	last	Fme.		Last	Fme,	we	tried	to:	
•  eagerly	deduce	the	concrete	type	when	checking	every	expression		
•  reject	programs	when	types	didn't	match.	eg:	

•  This	Fme,	we'll	collect	up	equaFons	like:	

23	

f	e				--	f's	argument	type	must	equal	e	

a	->	b	=	c	

The	Generic	Type	Inference	Algorithm	
1)	Add	disFnct	variables	in	all	places	type	schemes	are	needed	
	
2)	Generate	constraints	(equaFons	between	types)	that	must	be	
saFsfied	in	order	for	an	expression	to	type	check	

•  NoFce	the	difference	between	this	and	the	type	checking	
algorithm	from	last	Fme.		Last	Fme,	we	tried	to:	
•  eagerly	deduce	the	concrete	type	when	checking	every	expression		
•  reject	programs	when	types	didn't	match.	eg:	

•  This	Fme,	we'll	collect	up	equaFons	like:	

3)	Solve	the	equaFons,	generaFng	subsFtuFons	of	types	for	var's	

24	

f	e				--	f's	argument	type	must	equal	e	

a	->	b	=	c	

Example:		Inferring	types	for	map	

let rec map f l =
 match l with

 [] -> []
 | hd::tl -> f hd :: map f tl

Step	1:		Annotate	

let rec map (f:a) (l:b) : c =
 match l with

 [] -> []
 | hd::tl -> f hd :: map f tl

Step	2:		Generate	Constraints	

let rec map (f:a) (l:b) : c =
 match l with

 [] -> []
 | hd::tl -> f hd :: map f tl b = d list

a = d -> f

...

Step	2:		Generate	Constraints	

let rec map (f:a) (l:b) : c =
 match l with

 [] -> []
 | hd::tl -> f hd :: map f tl

b = b’ list
b = b’’ list

b = b’’’ list

a = a

b = b’’’ list

a = b’’ -> a’

c = c’ list

a’ = c’

d list = c’ list

d list = c

final	constraints:	

Step	3:		Solve	Constraints	

let rec map (f:a) (l:b) : c =
 match l with

 [] -> []
 | hd::tl -> f hd :: map f tl

b = b’ list
b = b’’ list

b = b’’’ list

a = a

b = b’’’ list

a = b’’ -> a’

c = c’ list

a’ = c’

d list = c’ list

d list = c

final	constraints:	
[b' -> c'/a]
[b' list/b]

[c' list/c]

final	soluFon:	

Step	3:		Solve	Constraints	

let rec map (f:a) (l:b) : c =
 match l with

 [] -> []
 | hd::tl -> f hd :: map f tl

[b' -> c'/a]
[b' list/b]

[c' list/c]

final	soluFon:	

let rec map (f:b' -> c') (l:b' list) : c' list =
 match l with

 [] -> []
 | hd::tl -> f hd :: map f tl

Step	3:		Solve	Constraints	

let rec map (f:a) (l:b) : c =
 match l with

 [] -> []
 | hd::tl -> f hd :: map f tl

let rec map (f:a -> b) (l:a list) : b list =
 match l with

 [] -> []
 | hd::tl -> f hd :: map f tl

renaming	type	variables:	

Step	4:		Generate	types	
Generate	types	from	type	schemes	

–  OpFon	1:	pick	an	instance	of	the	most	general	type	when	we	
have	completed	type	inference	on	the	enFre	program	

•  map	:	(int	->	int)	->	int	list	->	int	list	

–  OpFon	2:	generate	polymorphic	types	for	program	parts	and	
conFnue	(polymorphic)	type	inference	

•  map	:	forall	a,b,c.	(a	->	b)	->	a	list	->	b	list	

Type	Inference	Details	
Type	constraints	are	sets	of	equaFons	between	type	schemes	

–  q	::=	{s11	=	s12,	...,	sn1	=	sn2}		

–  eg:	{b	=	b’	list,	a	=	b	->	c}	

Constraint	GeneraFon	
Syntax-directed	constraint	generaFon	

–  our	algorithm	crawls	over	abstract	syntax	of	untyped	
expressions	and	generates	

•  a	term	scheme	
•  a	set	of	constraints	

	
Algorithm	defined	as	set	of	inference	rules:	

–  G	|--	u	=>	e	:	t,	q	

context	
annotated	
expression	unannotated	

expression	

type	(scheme)	

constraints	that	must	be	solved	

gen	:	ctxt	->	exp	->	ann_exp	*	scheme	*	constraints	
in	OCaml:	

Constraint	GeneraFon	
Simple	rules:	

–  G	|--	x	==>	x	:	s,		{	}						(if	G(x)	=	s)	

–  G	|--	3	==>	3	:	int,	{	}				(same	for	other	ints)	

–  G	|--	true	==>	true	:	bool,	{	}	

–  G	|--	false	==>	false	:	bool,	{	}	

Operators	

G |-- u1 ==> e1 : t1, q1 G |-- u2 ==> e2 : t2, q2
--
G |-- u1 + u2 ==> e1 + e2 : int, q1 U q2 U {t1 = int, t2 = int}	

G |-- u1 ==> e1 : t1, q1 G |-- u2 ==> e2 : t2, q2
--
G |-- u1 < u2 ==> e1 + e2 : bool, q1 U q2 U {t1 = int, t2 = int}	

If	statements	

G |-- u1 ==> e1 : t1, q1
G |-- u2 ==> e2 : t2, q2
G |-- u3 ==> e3 : t3, q3
--
G |-- if u1 then u2 else u3 ==> if e1 then e2 else e3

 : a, q1 U q2 U q3 U {t1 = bool, a = t2, a = t3}

FuncFon	ApplicaFon	

G |-- u1 ==> e1 : t1, q1
G |-- u2 ==> e2 : t2, q2 (for a fresh a)
--
G |-- u1 u2==> e1 e2

 : a, q1 U q2 U {t1 = t2 -> a}

FuncFon	DeclaraFon	

G, x : a |-- u ==> e : t, q (for fresh a)
--
G |-- fun x -> e ==> fun (x : a) -> e

 : a -> b, q U {t = b}

FuncFon	DeclaraFon	

G, f : a -> b, x : a |-- u ==> e : t, q (for fresh a,b)

G |-- rec f(x) = u ==> rec f (x : a) : b = e

 : a -> b, q U {t = b}

Solving	Constraints	

A	soluFon	to	a	system	of	type	constraints	is	a	subs3tu3on	S	
–  a	funcFon	from	type	variables	to	types	
–  assume	subsFtuFons	are	defined	on	all	type	variables:	

•  S(a)	=	a					(for	almost	all	variables	a)	
•  S(a)	=	s						(for	some	type	scheme	s)	

–  dom(S)	=	set	of	variables	s.t.	S(a)	≠	a	

Solving	Constraints	

A	soluFon	to	a	system	of	type	constraints	is	a	subs3tu3on	S	
–  a	funcFon	from	type	variables	to	types	
–  assume	subsFtuFons	are	defined	on	all	type	variables:	

•  S(a)	=	a					(for	almost	all	variables	a)	
•  S(a)	=	s						(for	some	type	scheme	s)	

–  dom(S)	=	set	of	variables	s.t.	S(a)	≠	a	

We	can	also	apply	a	subsFtuFon	S	to	a	full	type	scheme	s.	
	
			 						apply:		[int/a,			int->bool/b]			
								
			 												to:		b	->	a	->	b	
	
		 			returns:		(int->bool)	->	int	->	(int->bool)	
	

SubsFtuFons	

We	can	apply	a	subsFtuFon	S	to	a	full	type	scheme:	
	
eg:	apply		[int/a,			int->bool/b]		to			b	->	a	->	b	
	
returns:		(int->bool)	->	int	->	(int->bool)	

SubsFtuFons	

When	is	a	subsFtuFon	S	a	soluFon	to	a	set	of	constraints?	
	
Constraints:		{	s1	=	s2,	s3	=	s4,	s5	=	s6,	...	}	
	
When	the	subsFtuFon	makes	both	sides	of	all	equaFons	the	same.	
	
Eg:	

a	=	b	->	c	
c	=	int	->	bool		

constraints:	

SubsFtuFons	

When	is	a	subsFtuFon	S	a	soluFon	to	a	set	of	constraints?	
	
Constraints:		{	s1	=	s2,	s3	=	s4,	s5	=	s6,	...	}	
	
When	the	subsFtuFon	makes	both	sides	of	all	equaFons	the	same.	
	
Eg:	

a	=	b	->	c	
c	=	int	->	bool		

b	->	(int	->	bool)/a	
int	->	bool/c	
b/b		

constraints:	

soluFon:	

SubsFtuFons	

When	is	a	subsFtuFon	S	a	soluFon	to	a	set	of	constraints?	
	
Constraints:		{	s1	=	s2,	s3	=	s4,	s5	=	s6,	...	}	
	
When	the	subsFtuFon	makes	both	sides	of	all	equaFons	the	same.	
	
Eg:	

a	=	b	->	c	
c	=	int	->	bool		

b	->	(int	->	bool)/a	
int	->	bool/c	
b/b		

b	->	(int	->	bool)						=					b	->	(int	->	bool)	
													int	->	bool				=			int	->	bool	

constraints:	

soluFon:	

constraints	with	soluFon	applied:	

SubsFtuFons	

When	is	a	subsFtuFon	S	a	soluFon	to	a	set	of	constraints?	
	
Constraints:		{	s1	=	s2,	s3	=	s4,	s5	=	s6,	...	}	
	
When	the	subsFtuFon	makes	both	sides	of	all	equaFons	the	same.	
	
A	second	soluFon	

a	=	b	->	c	
c	=	int	->	bool		

b	->	(int	->	bool)/a	
int	->	bool/c	
b/b		

constraints:	

soluFon	1:	

int	->	(int	->	bool)/a	
int	->	bool/c	
int/b		

soluFon	2:	

SubsFtuFons	

When	is	one	soluFon	beYer	than	another	to	a	set	of	constraints?	

a	=	b	->	c	
c	=	int	->	bool		

b	->	(int	->	bool)/a	
int	->	bool/c	
b/b		

constraints:	

soluFon	1:	
int	->	(int	->	bool)/a	
int	->	bool/c	
int/b		

soluFon	2:	

b	->	(int	->	bool)	

type	b	->	c	with	soluFon	applied:	

int	->	(int	->	bool)	

type	b	->	c	with	soluFon	applied:	

SubsFtuFons	

SoluFon	1	is	"more	general"	–	there	is	more	flex.	
SoluFon	2	is	"more	concrete"	
We	prefer	soluFon	1.	

b	->	(int	->	bool)/a	
int	->	bool/c	
b/b		

soluFon	1:	
int	->	(int	->	bool)/a	
int	->	bool/c	
int/b		

soluFon	2:	

b	->	(int	->	bool)	

type	b	->	c	with	soluFon	applied:	

int	->	(int	->	bool)	

type	b	->	c	with	soluFon	applied:	

SubsFtuFons	

SoluFon	1	is	"more	general"	–	there	is	more	flex.	
SoluFon	2	is	"more	concrete"	
We	prefer	the	more	general	(less	concrete)	soluFon	1.	
Technically,	we	prefer	T	to	S	if	there	exists	another	subsFtuFon	U	
and	for	all	types	t,	S	(t)	=	U	(T	(t))	

b	->	(int	->	bool)/a	
int	->	bool/c	
b/b		

soluFon	1:	
int	->	(int	->	bool)/a	
int	->	bool/c	
int/b		

soluFon	2:	

b	->	(int	->	bool)	

type	b	->	c	with	soluFon	applied:	

int	->	(int	->	bool)	

type	b	->	c	with	soluFon	applied:	

SubsFtuFons	

There	is	always	a	best	soluFon,	which	we	can	a	principle	solu3on.	
The	best	soluFon	is	(at	least	as)	preferred	as	any	other	soluFon.	

b	->	(int	->	bool)/a	
int	->	bool/c	
b/b		

soluFon	1:	
int	->	(int	->	bool)/a	
int	->	bool/c	
int/b		

soluFon	2:	

b	->	(int	->	bool)	

type	b	->	c	with	soluFon	applied:	

int	->	(int	->	bool)	

type	b	->	c	with	soluFon	applied:	

Most	General	SoluFons	

S	is	the	principal	(most	general)	soluFon	of	a	constraint	q	if	
–  S	|=	q																										(it	is	a	soluFon)	
–  if	T	|=	q	then	T	<=	S			(it	is	the	most	general	one)	

Lemma:		If	q	has	a	soluFon,	then	it	has	a	most	general	one	
We	care	about	principal	soluFons	since	they	will	give	us	the	most	
general	types	for	terms	

ComposiFon	of	SubsFtuFons	
We	will	need	to	compare	subsFtuFons:		T	<=	S.		eg:	

	
	
–  T	<=	S	if	T	is	“more	specific”/"less general"	than	S	
–  If	there	is	a		

–  Formally:	T	<=	S	if	and	only	if	T	=	U	o	S	for	some	U	

ComposiFon	of	SubsFtuFons	
ComposiFon	(U	o	S)	applies	the	subsFtuFon	S	and	then	applies	
the	subsFtuFon	U:	

–  (U	o	S)(a)	=	U(S(a))	
We	will	need	to	compare	subsFtuFons	

–  T	<=	S	if	T	is	“more	specific”	than	S	
–  T	<=	S	if	T	is	“less	general”	than	S	
–  Formally:	T	<=	S	if	and	only	if	T	=	U	o	S	for	some	U	

ComposiFon	of	SubsFtuFons	
Examples:	

–  example	1:	any	subsFtuFon	is	less	general	than	the	idenFty	
subsFtuFon	I:	

•  S	<=	I	because	S	=	S	o	I	
–  example	2:	

•  S(a)	=	int,	S(b)	=	c	->	c	
•  T(a)	=	int,	T(b)	=	int	->	int	
•  we	conclude:	T	<=	S	
•  if	T(a)	=	int,	T(b)	=	int	->	bool	then	T	is	unrelated	to	S	(neither	more	
nor	less	general)	

Solving	a	Constraint	

S	|=	q	if	S	is	a	soluFon	to	the	constraints	q	

S(s1) = S(s2) S |= q

S |= {s1 = s2} U q

S |= { }

any	subsFtuFon	is	
a	soluFon	for	the	empty	
set	of	constraints	

a	soluFon	to	an	equaFon	
is	a	subsFtuFon	that	makes	
let	and	right	sides	equal	

Examples	
Example	1	

–  q	=	{a=int,	b=a}	
–  principal	soluFon	S:	

Examples	
Example	1	

–  q	=	{a=int,	b=a}	
–  principal	soluFon	S:	

•  S(a)	=	S(b)	=	int	
•  S(c)	=	c				(for	all	c	other	than	a,b)	

Examples	
Example	2	

–  q	=	{a=int,	b=a,	b=bool}	
–  principal	soluFon	S:	

Examples	
Example	2	

–  q	=	{a=int,	b=a,	b=bool}	
–  principal	soluFon	S:	

•  does	not	exist	(there	is	no	soluFon	to	q)	

UnificaFon	
UnificaFon:		An	algorithm	that	provides	the	principal	soluFon	to	
a	set	of	constraints	(if	one	exists)	

–  UnificaFon	systemaFcally	simplifies	a	set	of	constraints,	yielding	
a	subsFtuFon	

•  StarFng	state	of	unificaFon	process:	(I,q)	
•  Final	state	of	unificaFon	process:	(S,	{	})	

UnificaFon	Machine	
We	can	specify	unificaFon	as	a	transiFon	system:	
	
	
	
Base	types	&	simple	variables:	

(S,{bool=bool} U q) -> (S, q)

(S,{a=a} U q) -> (S, q)	

(S,{int=int} U q) -> (S, q)

(S1, q1) -> (S2, q2)

UnificaFon	Machine	
FuncFons:	
	
	
	
	
Variable	definiFons	

(S, {s11 -> s12 = s21 -> s22} U q) ->
(S, {s11 = s21, s12 = s22} U q)	

(S, {a=s} U q) -> ([a=s] o S, [s/a]q)	

(S, {s=a} U q) -> ([a=s] o S, [s/a]q)

when a is not in FreeVars(s)
	

breaks	down	into	
smaller	constraints	

do S and then do [a=b]

Occurs	Check	

Recall	this	program:	
	
	
It	generates	the	the	constraints:		a	->	a	=	a	
	
What	is	the	soluFon	to	{a	=	a	->	a}?	

fun	x	->	x	x		

Occurs	Check	

Recall	this	program:	
	
	
It	generates	the	the	constraints:		a	->	a	=	a	
	
What	is	the	soluFon	to	{a	=	a	->	a}?	
	
There	is	none!	

the	"occurs	check"	

(S, {s=a} U q) -> ([a=s] o S, [s/a]q)

"when a is not in FreeVars(s)"

fun	x	->	x	x		

Irreducible	States	
When	all	the	constraints	have	been	processed,	we	win!	
	
	
	
	
	
But	someFmes	we	get	stuck,	with	an	equaFon	like	this	

–  int	=	bool	
–  s1	->	s2	=	int	
–  s1	->	s2	=	bool	
–  a	=	s														(s	contains	a)	
–  or	is	symmetric	to	one	of	the	above	

Stuck	states	arise	when	constraints	are	unsolvable	&	the	
program	does	not	type	check.	

 (S1, q1)
-> (S2, q2)
-> (S3, q3)
...
-> (Sn, { })

TerminaFon	
We	want	unificaFon	to	terminate	(to	give	us	a	type	
reconstrucFon	algorithm)	
In	other	words,	we	want	to	show	that	there	is	no	infinite	
sequence	of	states	

–  (S1,q1)	->	(S2,q2)	->	...	

TerminaFon	

We	associate	an	ordering	with	constraints	
–  q	<	q’	if	and	only	if		

•  q	contains	fewer	variables	than	q’	
•  q	contains	the	same	number	of	variables	as	q’	but	fewer	type	
constructors	(ie:	fewer	occurrences	of	int,	bool,	or	“->”)	

–  This	is	a	lexacographic	ordering	
•  we	can	prove	(by	contradicFon)	that	there	is	no	infinite	decreasing	
sequence	of	constraints	

TerminaFon	

Lemma:	Every	step	reduces	the	size	of	q	
–  Proof:		By	cases	(ie:	inducFon)	on	the	definiFon	of	the	reducFon	
relaFon.	

(S,{int=int} U q) -> (S, q)

(S,{bool=bool} U q) -> (S, q)

(S,{a=a} U q) -> (S, q)	

--
(S,{s11 -> s12= s21 -> s22} U q) ->
(S, {s11 = s21, s12 = s22} U q)	

------------------------ (a not in FV(s))
(S,{a=s} U q) ->
([a=s] o S, [s/a]q)	

Complete	SoluFons	
A	complete	soluFon	for	(S,q)	is	a	subsFtuFon	T	such	that	

–  T	<=	S	
–  T	|=	q	

ProperFes	of	SoluFons	
Lemma	1:	

–  Every	final	state	(S,	{	})	has	a	complete	soluFon.	
•  It	is	S:	

–  S	<=	S	
–  S	|=	{	}	

ProperFes	of	SoluFons	
Lemma	2	

–  No	stuck	state	has	a	complete	soluFon	(or	any	soluFon	at	all)	
•  it	is	impossible	for	a	subsFtuFon	to	make	the	necessary	equaFons	
equal	

–  int	≠	bool	
–  int	≠	t1	->	t2	
–  ...	

ProperFes	of	SoluFons	
Lemma	3	

–  If	(S,q)	->	(S’,q’)	then		
•  T	is	complete	for	(S,q)	iff	T	is	complete	for	(S’,q’)	
•  proof	by?	
•  in	the	forward	direcFon,	this	is	the	preservaFon	theorem	for	the	
unificaFon	machine!	

Summary:	UnificaFon	
By	terminaFon,	(I,q)	->*	(S,q’)	where	(S,q’)	is	irreducible.		
Moreover:	

–  If	q’	=	{	}	then		
•  (S,q’)	is	final	(by	definiFon)	
•  S	is	a	principal	soluFon	for	q	

–  Consider	any	T	such	that	T	is	a	soluFon	to	q.	
–  Now	noFce,	S	is	complete	for	(S,q’)	(by	lemma	1)	
–  S	is	complete	for	(I,q)	(by	lemma	3)	
–  Since	S	is	complete	for	(I,q),	T	<=	S	and	therefore	S	is	principal.	

Summary:		UnificaFon	(cont.)	
...	Moreover:	

–  If	q’	is	not	{	}	(and	(I,q)	->*	(S,q’)	where	(S,q’)	is	irreducible)	
then		

•  (S,q)	is	stuck.		Consequently,	(S,q)	has	no	complete	soluFon.		By	
lemma	3,	even	(I,q)	has	no	complete	soluFon	and	therefore	q	has	
no	soluFon	at	all.	

MORE	TYPE	INFERENCE	

76	

let	GeneralizaFon	

Where	do	we	introduce	polymorphic	values?	
	
	
	
And	place	x	:	forall	a1,...,an.s	in	the	context.	

let x = v ==> let x : forall a1,..,an.s = v

if v : s and a1,...,an are the variables of s

let	GeneralizaFon	

Where	do	we	introduce	polymorphic	values?	
	
	
	
And	place	x	:	forall	a1,...,an.s	in	the	context.	
	
	
Where	and	how	do	we	use	a	polymorphic	value?	

let x = v ==> let x : forall a1,..,an.s = v

G |- x ==> x : s[b1/a1,...,bn/an), {}

if v : s and a1,...,an are the variables of s

when G(x) = forall a1,...,an.s and b1,...,bn are fresh

What	is	the	cost	of	type	inference?	

In	pracFce?			Linear	in	the	size	of	the	program	
	
In	theory,	DEXPTIME-complete.	
	
Why?		Because	we	can	generate	a	program	that	has	a	type	that	
is	exponenFally	large:	

let f1 x = x f1 : a -> a
let f2 = f1 f1 f2 : (a -> a) -> (a -> a)
let f3 = f2 f2 f3 : ((a -> a) -> (a -> a)) ->

 ((a -> a) -> (a -> a))
let f4 = f3 f3
...

Summary:	Type	Inference	
Given	a	context	G,	and	untyped	term	u:	

–  Find	e,	t,	q	such	that	G	|-	u	==>	e	:	t,	q	

–  Find	principal	soluFon	S	of	q	via	unificaFon	
•  if	no	soluFon	exists,	there	is	no	reconstrucFon	

–  Apply	S	to	e,	ie	our	soluFon	is	S(e)		
•  S(e)	contains	schemaFc	type	variables	a,b,c,	etc	that	may	be	
instanFated	with	any	type	

–  Since	S	is	principal,	S(e)	characterizes	all	reconstrucFons.	

–  If	desired,	use	the	type	checking	algorithm	to	validate	

