
Type	Checking	

COS	326	
David	Walker	

Princeton	University	
	

slides	copyright	2017	David	Walker	
permission	granted	to	reuse	these	slides	for	non-commercial	educaEonal	purposes	

	

ImplemenEng	an	Interpreter	

let	x	=	3	in	
x	+	x	

Let	(“x”,		
		Num	3,		
		Binop(Plus,	Var	“x”,	Var	“x”))	

	Num	6		

	6		

Parsing	

EvaluaEon	

PreTy	
PrinEng	

2	

ImplemenEng	an	Interpreter	

let	x	=	3	in	
x	+	x	

Let	(“x”,		
		Num	3,		
		Binop(Plus,	Var	“x”,	Var	“x”))	

	Num	6		

	6		

Parsing	

EvaluaEon	

PreTy	
PrinEng	

3	

Type	Checking	

Language	Syntax	

type	t	=	IntT	|	BoolT	|	ArrT	of	t	*	t	
	
	
	
	
type	x	=	string			(*	variables	*)	
type	c	=	Int	of	int	|	Bool	of	bool		
type	o	=	Plus	|	Minus	|	LessThan		
	
type	e	=		
				Const	of	c	
		|	Op	of	e	*	o	*	e	
		|	Var	of	x	
		|	If	of	e	*	e	*	e	
		|	Fun	of	x	*	typ	*	e	
		|	Call	of	e	*	e	
		|	Let	of	x	*	e	*	e	

Language	Syntax	

type	t	=	IntT	|	BoolT	|	ArrT	of	t	*	t	
	
	
	
	
type	x	=	string			(*	variables	*)	
type	c	=	Int	of	int	|	Bool	of	bool		
type	o	=	Plus	|	Minus	|	LessThan		
	
type	e	=		
				Const	of	c	
		|	Op	of	e	*	o	*	e	
		|	Var	of	x	
		|	If	of	e	*	e	*	e	
		|	Fun	of	x	*	typ	*	e	
		|	Call	of	e	*	e	
		|	Let	of	x	*	e	*	e	

NoEce	that	we	require	
a	type	annotaEon	here.	
	
We'll	see	why	this	is	required	
for	our	type	checking	algorithm	later.	

Language	Syntax	(BNF	DefiniEon)	

t	::=	int	|	bool	|	t	->	t	
	
b							--	ranges	over	booleans	
n							--	ranges	over	integers	
	
x								--	ranges	over	variable	names	
c	::=	n	|	b	
o	::=	+	|	-	|	<		
	
e	::=	
		c	
|	e	o	e	
|	x	
|	if	e	then	e	else	e	
|	λx:t.e	
|	e	e	
|	let	x	=	e	in	e	

type	t	=	IntT	|	BoolT	|	ArrT	of	t	*	t	
	
	
	
	
type	x	=	string			(*	variables	*)	
type	c	=	Int	of	int	|	Bool	of	bool		
type	o	=	Plus	|	Minus	|	LessThan		
	
type	e	=		
				Const	of	c	
		|	Op	of	e	*	o	*	e	
		|	Var	of	x	
		|	If	of	e	*	e	*	e	
		|	Fun	of	x	*	typ	*	e	
		|	Call	of	e	*	e	
		|	Let	of	x	*	e	*	e	

Recall	Inference	Rule	NotaEon	
When	defining	how	evaluaEon	worked,	we	used	this	notaEon:	

e1	-->	λx.e											e2	-->	v2										e[v2/x]	-->	v	
																											e1	e2		-->		v	

“if	e1	evaluates	to	a	funcEon	with	argument	x	and	body	e	
		and	e2	evaluates	to	a	value	v2	
		and	e	with	v2	subsEtuted	for	x	evaluates	to	v	
		then	e1	applied	to	e2	evaluates	to	v”	

In	English:	

And	we	were	also	able	to	translate	each	rule	into	1	case	of	
a	funcEon	in	OCaml.		Together	all	the	rules	formed	the	basis	
for	an	interpreter	for	the	language.	

The	evaluaEon	judgement	
This	notaEon:	
	
	
was	read	in	English	as	"e	evaluates	to	v."			
	
It	described	a	relaEon	between	two	things	–	an	expression	e	and	
a	value	v.		(And	e	was	related	to	v	whenever	e	evaluated	to	v.)	
	
Note	also	that	we	usually	thought	of	e	on	the	lej	as	"given"	and	
the	v	on	the	right	as	computed	from	e	(according	to	the	rules).	
	

e	-->	v	

The	typing	judgement	
This	notaEon:	
	
	
is	read	in	English	as	"e	has	type	t	in	context	G."		It	is	going	to	
define	how	type	checking	works.			
	
It	describes	a	relaEon	between	three	things	–	a	type	checking	
context	G,	an	expression	e,	and	a	type	t.	
	
We	are	going	to	think	of	G	and	e	as	given,	and	we	are	going	to	
compute	t.		The	typing	rules	are	going	to	tell	us	how.	
	

G	|-	e	:	t	

Typing	Contexts	

What	is	the	type	checking	context		G?	
	
Technically,	I'm	going	to	treat	G	as	if	it	were	a	(parEal)	funcEon	
that	maps	variable	names	to	types.		NotaEon:	
	
G(x)	 	--	look	up	x's	type	in	G	
G,x:t	 	--	extend	G	so	that	x	maps	to	t	
	
When	G	is	empty,	I'm	just	going	to	omit	it.		So	I'll	someEmes	just	
write:						|-	e	:	t	

Example	Typing	Contexts	
Here's	an	example	context:	
	
																																x:int,	y:bool,	z:int	
	
Think	of	a	context	as	an	"assumpEon"	or	"hypothesis"	
	
Read	it	as	the	assumpEon	that	"x	has	type	int,	y	has	type	bool	
and	z	has	type	int"	
	
In	the	subsituEon	model,	if	you	assumed	x	has	type	int,	that	
means	that	when	you	run	the	code,	you	had	beTer	actually	wind	
up	subsEtuEng	an	integer	for	x.	

Typing	Contexts	and	Free	Variables	
One	more	bit	of	intuiEon:	
	
If	an	expression	e	contains	free	variables	x,	y,	and	z	then	we	
need	to	supply	a	context	G	that	contains	types	for	at	least	x,	y	
and	z.		If	we	don't,	we	won't	be	able	to	type	check	e.		
	
	
	
	

Type	Checking	Rules	

t	::=	int	|	bool	|	t	->	t	
	
c	::=	n	|	b	
o	::=	+	|	-	|	<		
	
e	::=	
		c	
|	e	o	e	
|	x	
|	if	e	then	e	else	e	
|	λx:t.e	
|	e	e	
|	let	x	=	e	in	e	

Goal:		Give	rules	that	define	
the	relaEon	"G	|-	e	:	t".	
	
To	do	that,	we	are	going	to	give	
one	rule	for	every	sort	of	expression.	
	
(We	can	turn	each	rule	into	
a	case	of	a	recursive	funcEon	that	
takes	an	expression	as	an	input	and	
implement	rules	preTy	directly.)	

Typing	Contexts	and	Free	Variables	

t	::=	int	|	bool	|	t	->	t	
	
c	::=	n	|	b	
o	::=	+	|	-	|	<		
	
e	::=	
		c	
|	e	o	e	
|	x	
|	if	e	then	e	else	e	
|	λx:t.e	
|	e	e	
|	let	x	=	e	in	e	

	
					G	|-	b	:	bool	

“boolean	constants	b	always	have	type	bool,	
	no	maTer	what	the	context	G	is"	

English:	

Rule	for	constant	booleans:	

Typing	Contexts	and	Free	Variables	

t	::=	int	|	bool	|	t	->	t	
	
c	::=	n	|	b	
o	::=	+	|	-	|	<		
	
e	::=	
		c	
|	e	o	e	
|	x	
|	if	e	then	e	else	e	
|	λx:t.e	
|	e	e	
|	let	x	=	e	in	e	

	
					G	|-	n	:	int	

“integer	constants	n	always	have	type	int,	
	no	maTer	what	the	context	G	is"	

English:	

Rule	for	constant	integers:	

Typing	Contexts	and	Free	Variables	

t	::=	int	|	bool	|	t	->	t	
	
c	::=	n	|	b	
o	::=	+	|	-	|	<		
	
e	::=	
		c	
|	e	o	e	
|	x	
|	if	e	then	e	else	e	
|	λx:t.e	
|	e	e	
|	let	x	=	e	in	e	

G	|-	e1	:	t1						G	|-	e2	:	t2						optype(o)	=	(t1,	t2,	t3)	
																									G	|-	e1	o	e2	:	t3	

“e1	o	e2	has	type	t3,	if	e1	has	type	t1,	e2	has	type	t2	
and	o	is	an	operator	that	takes	arguments	of	
type	t1	and	t2	and	returns	a	value	of	type	t3"	

where	

Rule	for	constant	integers:	

optype	(+)	=	(int,	int,	int)	
optype	(-)	=	(int,	int,	int)	
optype	(<)	=	(int,	int,	bool)	

English:	

Typing	Contexts	and	Free	Variables	

t	::=	int	|	bool	|	t	->	t	
	
c	::=	n	|	b	
o	::=	+	|	-	|	<		
	
e	::=	
		c	
|	e	o	e	
|	x	
|	if	e	then	e	else	e	
|	λx:t.e	
|	e	e	
|	let	x	=	e	in	e	

G(x)	=	t	
G	|-	x	:	t	

“variable	x	has	the	type	given	by	the	context"	

Rule	for	variables:	

English:	

Note:	this	is	rule	explains	(part)	of	why	the	
context	needs	to	provide	types	for	all	of	
the	free	variables	in	an	expression	

Typing	Contexts	and	Free	Variables	

t	::=	int	|	bool	|	t	->	t	
	
c	::=	n	|	b	
o	::=	+	|	-	|	<		
	
e	::=	
		c	
|	e	o	e	
|	x	
|	if	e	then	e	else	e	
|	λx:t.e	
|	e	e	
|	let	x	=	e	in	e	

G	|-	e1	:	bool					G	|-	e2	:	t									G	|-	e3	:	t	
G	|-	if	e1	then	e2	else	e3	:	t	

“if	e1	has	type	bool	
and	e2	has	type	t	
and	e3	has	(the	same)	type	t	
then	e1	then	e2	else	e3	has	type	t	"	

Rule	for	if:	

English:	

Typing	Contexts	and	Free	Variables	

t	::=	int	|	bool	|	t	->	t	
	
c	::=	n	|	b	
o	::=	+	|	-	|	<		
	
e	::=	
		c	
|	e	o	e	
|	x	
|	if	e	then	e	else	e	
|	λx:t.e	
|	e	e	
|	let	x	=	e	in	e	

G,	x:t	|-	e	:	t2	
G	|-	λx:t.e	:	t	->	t2	

“if	G	extended	with	x:t	proves	e	has	type	t2	
then	λx:t.e		has	type	t	->	t2	"	

Rule	for	funcEons:	

English:	

Typing	Contexts	and	Free	Variables	

t	::=	int	|	bool	|	t	->	t	
	
c	::=	n	|	b	
o	::=	+	|	-	|	<		
	
e	::=	
		c	
|	e	o	e	
|	x	
|	if	e	then	e	else	e	
|	λx:t.e	
|	e	e	
|	let	x	=	e	in	e	

G	|-	e1	:	t1	->	t2										G	|-	e2	:	t1	
G	|-	e1	e2	:	t2	

“if	G	extended	with	x:t	proves	e	has	type	t2	
then	λx:t.e		has	type	t	->	t2	"	

Rule	for	funcEon	call:	

English:	

Typing	Contexts	and	Free	Variables	

t	::=	int	|	bool	|	t	->	t	
	
c	::=	n	|	b	
o	::=	+	|	-	|	<		
	
e	::=	
		c	
|	e	o	e	
|	x	
|	if	e	then	e	else	e	
|	λx:t.e	
|	e	e	
|	let	x	=	e	in	e	

G	|-	e1	:	t1										G,x:t1	|-	e2	:	t2	
G	|-	let	x	=	e1	in	e2	:	t2	

“if	e1	has	type	t1		
and	G	extended	with	x:t1	proves	e2	has	type	t2	
then	let	x	=	e1	in	e2	has	type	t2	"	

Rule	for	let:	

English:	

A	Typing	DerivaEon	
A	typing	derivaEon	is	a	"proof"	that	an	expression	is	well-typed	
in	a	parEcular	context.		
	
Such	proofs	consist	of	a	tree	of	valid	rules,	with	no	obligaEons	
lej	unfulfilled	at	the	top	of	the	tree.		(ie:	no	axioms	lej	over).	

G,x:int(x)	=	int	
G,	x:int	|-	x	:	int											G,x:int	|-	2	:	int	
G,	x:int	|-	x	+	2	:	int		
G	|-	λx:int.	x	+	2	:	int	->	int	

Key	ProperEes	
Good	type	systems	are	sound.	
	
In	other	words,	if	the	type	system	says	that	e	has	type	t	then	e	
should	have	"well-defined"	evaluaEon	(ie,	our	interpreter	should	
not	raise	an	excepEon	part-way	through	because	it	doesn't	know	
how	to	conEnue	evaluaEon).			
	
Also,	if	e	has	type	t	and	it	terminates	and	produces	a	value,	then	
it	should	produce	a	value	of	that	type.		eg,	if	t	is	int,	then	it	
should	produce	a	value	with	type	int.	

Soundness	=	Progress	+	PreservaEon	
Proving	soundness	boils	down	to	two	theorems:	
	
Progress	Theorem:	
If	|-	e	:	t	then	either:	
(1)	e	is	a	value,	or	
(2)	e	-->	e'	
	
Preserva.on	Theorem:	
If	|-	e	:	t	and	e	-->	e'	then	|-	e'	:	t	
	
See	COS	510	for	proofs	of	these	theorems.	
But	you	have	most	of	the	necessary	techniques:	
Proof	by	inducEon	on	the	structure	of	...	various	inducEve	data	
types.	:-)	

The	typing	rules	also	define	an	algorithm	for		
...	type	checking	...	

