Two key ideas:

- \textit{continuation-passing style}

 - you can make functions tail-recursive by bottling up the stuff you might do after returning from a function call as a "continuation"

- sometimes you can't prove the theorem you want directly, because you need a powerful property in the middle of your proof.

- Solution: define and prove \textit{a more general lemma}. eg:

 - instead of "for all x. property1(x, c)" for a constant c
 - prove "for all x. \textit{for all } y. \textit{property2} (x,y)"

 - where for all x. \textit{property2} (x,d) implies \textit{property1} (x,c)

 - so you can get the property1, which is what you wanted
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
| Node (j,left,right) ->
 Node (i+j, incr left i, incr right i) ;;

Hint: It is a little easier to put the continuations in the order in which they are called.
Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
 | Node (j,left,right) ->
 Node (i+j, incr left i, incr right i)
 ;;
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
 | Node (j, left, right) ->
 Node (i+j, incr left i, incr right i)
;;

called A-Normal Form
(intermediate computations given names; no function calls as args to other function calls)
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
| Node (j,left,right) ->
 let t1 = incr left i in
 let t2 = incr right i in
 Node (i+j, t1, t2)

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
 match t with
 Leaf -> k Leaf
| Node (j,left,right) ->
 let t1 = incr left i in
 let t2 = incr right i in
 Node (i+j, t1, t2)
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
 | Node (j,left,right) ->
 let t1 = incr left i in
 let t2 = incr right i in
 Node (i+j, t1, t2)

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
 match t with
 Leaf -> k Leaf
 | Node (j,left,right) ->
 incr left i (fun result1 ->
 let t1 = result1 in
 let t2 = incr right i in
 Node (i+j, t1, t2))
Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
| Node (j,left,right) ->
 incr left i (fun result1 ->
 let t1 = result1 in
 let t2 = incr right i in
 Node (i+j, t1, t2))
Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
 match t with
 Leaf -> k Leaf
| Node (j,left,right) ->
 incr left i (fun t1 ->
 let t2 = incr right i in
 Node (i+j, t1, t2))
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
 match t with
 Leaf -> k Leaf
| Node (j,left,right) ->
 incr left i (fun t1 ->
 incr right i (fun t2 ->
 Node (i+j, t1, t2)))

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
 match t with
 Leaf -> k Leaf
| Node (j,left,right) ->
 incr left i (fun t1 ->
 incr right i (fun t2 ->
 Node (i+j, t1, t2)))
In general

let g input =
 f3 (f2 (f1 input))

let g input =
 let x1 = f1 input in
 let x2 = f2 x1 in
 f3 x2

let g input k =
 f1 input (fun x1 ->
 f2 x1 (fun x2 ->
 f3 x2 k))
GENERALIZING A THEOREM
type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s))

let rec sum (l:int list) : int =
 match l with
 [] -> 0
 | hd::tail -> hd + sum tail

Theorem we tried to prove directly:
for all l:int list,
 sum_cont l (fun s -> s) == sum l
Theorem we tried to prove directly:
for all l:int list,
 sum_cont l (fun s -> s) == sum l

It didn't work because sum_cont does not call itself recursively using (fun s -> s).

To reason about recursive calls, we need to use the induction hypothesis, but we aren't allowed to here.
sum vs sum_cont

```ocaml
type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =  
  match l with  
  [] -> k 0  
  | hd::tail -> sum_cont tail (fun s -> k (hd + s))

let rec sum (l:int list) : int =  
  match l with  
  [] -> 0  
  | hd::tail -> hd + sum tail
```

Theorem we tried to prove directly:
for all l:int list,
 sum_cont l (fun s -> s) == sum l

It didn't work because sum_cont does not call itself recursively using (fun s -> s).

To reason about recursive calls, we need to use the induction hypothesis, but we aren't allowed to here.

Need to come up with IH that characterizes recursive calls
sum vs sum_cont

```
type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
  match l with
  [] -> k 0
| hd::tail -> sum_cont tail (fun s -> k (hd + s))
```

let rec sum (l:int list) : int =
 match l with
 [] -> 0
| hd::tail -> hd + sum tail

Theorem we tried to prove directly:
for all l:int list,
```
sum_cont l (fun s -> s) == sum l
```

New Theorem Attempt #1:
for all l:int list,
for all k:int -> int,
```
sum_cont l k == sum l
```
Theorem we tried to prove directly:
for all \(l: \text{int list} \),
\[\text{sum_cont} \ l \ (\text{fun} \ s \rightarrow s) = \text{sum} \ l \]

New Theorem Attempt #1:
for all \(l: \text{int list} \),
for all \(k: \text{int} \rightarrow \text{int} \),
\[\text{sum_cont} \ l \ k = \text{sum} \ l \]

now an instance of this theorem
(for the value of \(k' = (\text{fun} \ s \rightarrow k \ (hd + s)) \))
can be used to reason about the recursive call!
Theorem we tried to prove directly:
for all l:int list,
 sum_cont l (fun s -> s) == sum l

New Theorem Attempt #1:
for all l:int list,
 for all k:int -> int,
 sum_cont l k == sum l
Theorem we tried to prove directly:
for all \(l : \text{int list} \),
\[\text{sum}_\text{cont} \; l \; (\text{fun} \; s \Rightarrow s) \]
\(== \)
\[\text{sum} \; l \]

New Theorem Attempt #1:
for all \(l : \text{int list} \),
\[\text{sum}_\text{cont} \; l \; k \]
\(== \)
\[\text{sum} \; l \]

But the theorem is false! :-(
counter-example, choose:
k = (fun x -> x + 1)
Theorem we tried to prove directly:
for all \(l : \text{int list} \),
\[
\text{sum_cont} \ l \ (\text{fun} \ s \rightarrow s) \ == \ \text{sum} \ l
\]

New Theorem Attempt #2:
for all \(l : \text{int list} \),
for all \(k : \text{int} \rightarrow \text{int} \),
\[
\text{sum_cont} \ l \ k \ == \ k \ (\text{sum} \ l)
\]
Success!
A Possible Strategy

Look at the recursive calls made within your function(s).

- If the arguments (other than the one you are doing induction on) are unchanged, you may have success with simple induction

```plaintext
let rec f (l:int list) (x: ...) (y:...) : int =
  match l with
  [] -> ...
  | hd::tail -> ... (f tail x y)
```

- If they are different, you may have to search for a more general theorem that allows you to conclude something useful about those recursive calls.

```plaintext
let rec f (l:int list) (x: ...) (y:...) : int =
  match l with
  [] -> ...
  | hd::tail -> ... (f tail (complex1) (complex2))
```
Another Example

```ocaml
let rec eval2 (e:exp) (n:int) : int = 
    match e with
    Int i -> i + n
    | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

let rec eval1 (e:exp) : int = 
    match e with
    Int i -> i
    | Add (e1, e2) -> (eval1 e1) + (eval1 e2)

Theorem:
for all e:exp,
    eval1 e == eval2 e 0
```
Another Example

```ocaml
let rec eval2 (e:exp) (n:int) : int =
    match e with
    | Int i -> i + n
    | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

let rec eval1 (e:exp) : int =
    match e with
    | Int i -> i
    | Add (e1, e2) -> (eval1 e1) + (eval1 e2)
```

Theorem:
for all e:exp,

```
    eval1 e == eval2 e 0
```
type exp =
 Int of int
 | Add of exp * exp

let rec eval1 (e:exp) : int =
 match e with
 Int i -> i
 | Add (e1, e2) -> (eval1 e1) + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
 match e with
 Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Theorem:
for all e:exp,
 eval1 e == eval2 e 0

What is going to go wrong if we try induction on the structure of e directly?
type exp =
 | Int of int
 | Add of exp * exp

let rec eval1 (e:exp) : int =
 match e with
 | Int i -> i
 | Add (e1, e2) -> eval1 e1 + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
 match e with
 | Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Theorem:
for all e:exp,
 eval1 e == eval2 e 0

In the case when e is Add(e1, e2), we will need to
reason that eval2 e1 (eval2 e2 0) == ??? involving eval1

But we won't be able to use IH. We'll have no facts
to reason with. No way to make progress.
type exp =
 Int of int
 | Add of exp * exp

let rec eval1 (e:exp) : int =
 match e with
 Int i -> i
 | Add (e1, e2) -> eval1 e1 + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
 match e with
 Int i -> i + n
 | Add (e1, e2) -> eval2 el (eval2 e2 n)

Theorem:
for all e:exp,
 eval1 e == eval2 e 0

Suggestions?
Another Example

```ocaml
type exp =
    | Int of int
    | Add of exp * exp

let rec eval1 (e:exp) : int =
    match e with
    | Int i -> i
    | Add (e1, e2) -> eval1 e1 + eval1 e2

let rec eval2 (e:exp) (n:int) : int =
    match e with
    | Int i -> i + n
    | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Theorem:
for all e:exp,
 eval1 e == eval2 e 0

Suggestions?

We will need to reason about eval2 e1 (...) and to relate it to eval1 e1 somehow. What is the relationship?
Another Example

type exp =
 Int of int
| Add of exp * exp

let rec eval1 (e:exp) : int =
match e with
 Int i -> i
| Add (e1, e2) -> eval1 e1 + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
match e with
 Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n
Another Example

```ocaml
let rec eval2 (e:exp) (n:int) : int =
  match e with
  | Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

```ocaml
let rec eval1 (e:exp) : int =
  match e with
  | Int i -> i
  | Add (e1, e2) -> (eval1 e1) + (eval1 e2)
```

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
Another Example

```
let rec eval2 (e:exp) (n:int) : int =
  match e with
  Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

```
let rec eval1 (e:exp) : int =
  match e with
  Int i -> i
  | Add (e1, e2) -> (eval1 e1) + (eval1 e2)
```

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
 (eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
 case: e = int i
type exp =
 Int of int
 | Add of exp * exp

let rec eval1 (e:exp) : int =
 match e with
 Int i -> i
 | Add (e1, e2) -> eval1 e1 + eval1 e2

let rec eval2 (e:exp) (n:int) : int =
 match e with
 Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int

\((\text{eval1 } e) + n == \text{eval2 } e \ n)\)

Proof: By induction on the structure of e.

case: e = Int i

```
  eval1 (Int i) + n        (LHS)
```
Another Example

```plaintext
let rec eval2 (e:exp) (n:int) : int =
  match e with
  | Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

```plaintext
let rec eval1 (e:exp) : int =
  match e with
  | Int i -> i
  | Add (e1, e2) -> (eval1 e1) + (eval1 e2)
```

Strategy: Introduce a new Lemma:

for all e:exp, for all n:int

\[(\text{eval1 } e) + n == \text{eval2 } e \ n\]

Proof: By induction on the structure of e.

case: e = int i

\[\text{eval1 } (\text{Int } i) + n == \text{eval2 } (\text{Int } i) n\]

(LHS)

== i + n (by eval of eval1)

== eval2 (Int i) n (by reverse eval of eval2)
Another Example

```
let rec eval2 (e:exp) (n:int) : int = 
  match e with
  Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

```
let rec eval1 (e:exp) : int = 
  match e with
  Int i -> i
| Add (e1, e2) -> (eval1 e1) + (eval1 e2)
```

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
 (eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
 case: e = Add(e1, e2)
Another Example

```ocaml
let rec eval2 (e:exp) (n:int) : int = 
  match e with 
    Int i -> i + n 
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

```ocaml
let rec eval1 (e:exp) : int = 
  match e with 
    Int i -> i 
  | Add (e1, e2) -> (eval1 e1) + (eval1 e2)
```

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
 (eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
```plaintext
case: e = Add(e1, e2) 
  eval2 (Add(e1, e2)) n  (RHS)
```
Another Example

```ocaml
let rec eval1 (e:exp) : int =
  match e with
  | Int i -> i
  | Add (e1, e2) -> eval1 e1 + eval1 e2

let rec eval2 (e:exp) (n:int) : int =
  match e with
  | Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
\[(\text{eval1 } e) + n = \text{eval2 } e \ n\]

Proof: By induction on the structure of e.

case: e = Add(e1, e2)
- \[\text{eval2 } (\text{Add}(e1, e2)) \ n = \text{eval2 } e1 \ (\text{eval2 } e2 \ n)\] (RHS)
 (eval of eval2)
Another Example

```haskell
let rec eval1 (e:exp) : int = 
  match e with 
    Int i -> i 
  | Add (e1, e2) -> eval1 e1 + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int = 
  match e with 
    Int i -> i + n 
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.

case: e = Add(e1, e2)

- `eval2 (Add(e1, e2)) n` (RHS)
- `== eval2 e1 (eval2 e2 n)` (eval of eval2)
- `== eval2 e1 (eval1 e2 + n)` (by IH)
Another Example

```ocaml
type exp =
    Int of int
  | Add of exp * exp

let rec eval1 (e:exp) : int =
    match e with
    Int i -> i
  | Add (e1, e2) -> eval1 e1 + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
    match e with
    Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Strategy: Introduce a new Lemma:

for all e:exp, for all n:int

\[(\text{eval1 } e) + n = \text{eval2 } e \cdot n\]

Proof: By induction on the structure of e.

case: e = Add(e1, e2)

\[
\text{eval2 } (\text{Add } (e1, e2)) \cdot n = \text{eval2 } e1 \cdot (\text{eval2 } e2 \cdot n) \quad \text{(RHS)}
\]

\[
= \text{eval2 } e1 \cdot (\text{eval2 } e2 \cdot n) \quad \text{(eval of eval2)}
\]

\[
= \text{eval2 } e1 \cdot (\text{eval1 } e2 + n) \quad \text{(by IH)}
\]

\[
= \text{eval1 } e1 + (\text{eval1 } e2 + n) \quad \text{(by IH)}
\]

\[
= (\text{eval1 } e1 + \text{eval2 } e2) + n \quad \text{(associativity of +)}
\]

\[
= \text{eval1 } (\text{Add } (e1, e2)) + n \quad \text{(by eval in reverse)}
\]
Another Example

```ocaml
let rec eval2 (e:exp) (n:int) : int =
  match e with
  | Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

let rec eval1 (e:exp) : int =
  match e with
  | Int i -> i
  | Add (e1, e2) -> (eval1 e1) + (eval1 e2)
```

Strategy: Introduce a new Lemma:

for all e:exp, for all n:int

$$(\text{eval1 } e) + n = \text{eval2 } e \ n$$

Proof: By induction on the structure of e.

case: $e = \text{Add}(e1, e2)$

$$\begin{align*}
\text{eval2 } (\text{Add}(e1, e2)) \ n \quad &\text{(RHS)} \\
\text{eval2 } e1 \ (\text{eval2 } e2 \ n) \quad &\text{(eval of eval2)} \\
\text{eval2 } e1 \ (\text{eval1 } e2 + n) \quad &\text{(by IH)} \\
\text{eval1 } e1 + (\text{eval1 } e2 + n) \quad &\text{(by IH)} \\
(\text{eval1 } e1 + \text{eval2 } e2) + n \quad &\text{(associativity of +)} \\
\text{eval1 } (\text{Add } (e1, e2)) + n \quad &\text{(by eval in reverse)}
\end{align*}$$
Another Example

```ocaml
type exp =
  | Int of int
  | Add of exp * exp

let rec eval1 (e:exp) : int =
  match e with
  | Int i -> i
  | Add (e1, e2) -> eval1 e1 + eval1 e2

let rec eval2 (e:exp) (n:int) : int =
  match e with
  | Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: Done!

Back to the Theorem:
for all e:exp,
 eval1 e == eval2 e 0

Proof:
Another Example

```ocaml
let rec eval1 (e:exp) : int = 
    match e with 
    | Int i -> i 
    | Add (e1, e2) -> eval1 e1 + eval1 e2
```

```ocaml
let rec eval2 (e:exp) (n:int) : int = 
    match e with 
    | Int i -> i + n 
    | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Back to the Theorem:
for all e:exp,
```
    eval1 e == eval2 e 0
```

Proof:
Pick any e.
```
eval2 e 0 (RHS) 
== eval1 e + 0 (by Lemma, using 0 for n) 
== eval1 e (by math)
```

Lemma:
for all e:exp, for all n:int
```
    (eval1 e) + n == eval2 e n
```

Proof: Done!
let rec eval2 (e:exp) (n:int) : int =
 match e with
 | Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Is eval2 tail recursive?
Quick Question

```ocaml
let rec eval2 (e:exp) (n:int) : int =
  match e with
  | Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Is eval2 tail recursive?

No! Lot's of stuff happens after the first recursive call to eval2!
let rec eval2 (e:exp) (n:int) : int =
 match e with
 | Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
let rec eval2 (e:exp) (n:int) : int =
 match e with
 | Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

let rec eval2 (e:exp) (n:int) : int =
 match e with
 | Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

let rec eval2 (e:exp) (n:int) (k: int -> int) : int =
 match e with
 | Int i -> k (i + n)
 | Add (e1, e2) -> eval2 e2 n (fun m -> eval2 e1 m k)
let rec eval2 (e:exp) (n:int) : int =
 match e with
 | Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

continuation of eval2 e1 is whatever eval2 does when it returns

let rec eval2 (e:exp) (n:int) (k: int -> int) : int =
 match e with
 | Int i -> k (i + n)
 | Add (e1, e2) -> eval2 e2 n (fun m -> eval2 e1 m k)
Tail-recursive programs:
• do not do any computation after they make a recursive call
• conversion to CPS is one way to make any computation tail-recursive
 • bottle up the stuff you do after the call into a continuation

Proving programs correct can be arbitrarily hard:
• the difficult part comes in finding auxiliary lemmas to prove.
• these lemmas must be:
 • *strong enough* to imply the theorem you want
 • *weak enough* that they remain true and can be proven
 • insight is needed to find the right middle ground