Continuing CPS

COS 326
David Walker
Princeton University
Two key ideas:

- **continuation-passing style**
 - you can make functions tail-recursive by bottling up the stuff you might do after returning from a function call as a "continuation"

- sometimes you can't prove the theorem you want directly, because you need a powerful property in the middle of your proof.
- Solution: define and prove a more general lemma. eg:
 - instead of "for all x. property1(x, c)" for a constant c
 - prove "for all x. for all y. property2(x, y)"
 - where for all x. property2(x,d) implies property1(x,c)
 - so you can get the property1, which is what you wanted
Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
| Node (j,left,right) ->
 Node (i+j, incr left i, incr right i)
;;

Hint: It is a little easier to put the continuations in the order in which they are called.
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
| Node (j,left,right) ->
 Node (i+j, incr left i, incr right i)
;;
Challenge: CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
| Node (j,left,right) ->

 Node (i+j, incr left i, incr right i)
;;

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
 match t with
 Leaf -> Leaf
| Node (j,left,right) ->

 let t1 = incr left i in
 let t2 = incr right i in

 Node (i+j, t1, t2)

called A-Normal Form (intermediate computations given names; no function calls as args to other function calls)
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
 match t with
 Leaf -> Leaf
| Node (j,left,right) ->
 let t1 = incr left i in
 let t2 = incr right i in
 Node (i+j, t1, t2)

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
 match t with
 Leaf -> k Leaf
| Node (j,left,right) ->
 let t1 = incr left i in
 let t2 = incr right i in
 Node (i+j, t1, t2)
Challenge: CPS Convert the incr function

```ocaml
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
  match t with
  Leaf -> Leaf
| Node (j,left,right) ->
  let t1 = incr left i in
  let t2 = incr right i in
  Node (i+j, t1, t2)
```

```ocaml
let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
  match t with
  Leaf -> k Leaf
| Node (j,left,right) ->
  incr left i (fun result1 ->
    let t1 = result1 in
    let t2 = incr right i in
    Node (i+j, t1, t2))
```
Challenge: CPS Convert the incr function

```ocaml
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
  match t with
  Leaf -> Leaf
| Node (j,left,right) ->
    incr left i (fun result1 ->
      let t1 = result1 in
      let t2 = incr right i in
      Node (i+j, t1, t2))
```
Challenge: CPS Convert the incr function

```ml
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
  match t with
  | Leaf -> k Leaf
  | Node (j,left,right) ->
    incr left i (fun t1 ->
      let t2 = incr right i in
      Node (i+j, t1, t2))
```

```ml
let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
  match t with
  | Leaf -> k Leaf
  | Node (j,left,right) ->
    incr left i (fun t1 ->
      incr right i (fun t2 ->
        Node (i+j, t1, t2)))
```
type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
 match t with
 Leaf -> k Leaf
| Node (j,left,right) ->
 incr left i (fun t1 ->
 incr right i (fun t2 ->
 Node (i+j, t1, t2)))

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) (k: tree -> tree) : tree =
 match t with
 Leaf -> k Leaf
| Node (j,left,right) ->
 incr left i (fun t1 ->
 incr right i (fun t2 ->
 k (Node (i+j, t1, t2))))
In general

let g input =
 f3 (f2 (f1 input))

let g input k =
 f1 input (fun x1 ->
 f2 x1 (fun x2 ->
 f3 x2 k))

Direct Style

let g input =
 let x1 = f1 input in
 let x2 = f2 x1 in
 f3 x2

A-normal Form

let g input k =
 f1 input (fun x1 ->
 f2 x1 (fun x2 ->
 f3 x2 k))

CPS converted
GENERALIZING A THEOREM
Theorem we tried to prove directly:
for all l:int list,
sum_cont l (fun s -> s) == sum l
Theorem we tried to prove directly:
for all l:int list,
sum_cont l (fun s -> s) == sum l

It didn't work because sum_cont does not call itself recursively using (fun s -> s).

To reason about recursive calls, we need to use the induction hypothesis, but we aren't allowed to here.
Theorem we tried to prove directly:
for all \(l : \text{int list} \),
\[\text{sum} _ \text{cont} \: l \: (\text{fun} \: s \: \rightarrow \: s) = \text{sum} \: l \]

It didn't work because \(\text{sum} _ \text{cont} \) does not call itself recursively using \(\text{(fun s \rightarrow s)} \).

To reason about recursive calls, we need to use the induction hypothesis, but we aren't allowed to here.

Need to come up with IH that characterizes recursive calls
Theorem we tried to prove directly:
for all \(l: \text{int list} \),
\[
\text{sum_cont} \ l \ (\text{fun } s \rightarrow s) = \text{sum} \ l
\]

New Theorem Attempt #1:
for all \(l: \text{int list} \),
for all \(k: \text{int} \rightarrow \text{int} \),
\[
\text{sum_cont} \ l \ k = \text{sum} \ l
\]
type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
 match l with
 [] -> k 0
 | hd::tail -> sum_cont tail (fun s -> k (hd + s))

let rec sum (l:int list) : int =
 match l with
 [] -> 0
 | hd::tail -> hd + sum tail

Theorem we tried to prove directly:
for all l:int list,
 sum_cont l (fun s -> s) == sum l

New Theorem Attempt #1:
for all l:int list,
 sum_cont l (fun s -> s) == sum l

But the theorem is false! :-(
counter-example, choose:
k = (fun x -> x + 1)
sum vs sum_cont

```
type cont = int -> int

let rec sum_cont (l:int list) (k:cont): int =
    match l with
    [] -> k 0
    | hd::tail -> sum_cont tail (fun s -> k (hd + s))
```

```
let rec sum (l:int list) : int =
    match l with
    [] -> 0
    | hd::tail -> hd + sum tail
```

Theorem we tried to prove directly:
for all l:int list,
 sum_cont l (fun s -> s) == sum l

New Theorem Attempt #2:
for all l:int list, for all k:int -> int,
 sum_cont l k == k (sum l)
Success!
A Possible Strategy

Look at the recursive calls made within your function(s).
• If the arguments (other than the one you are doing induction on) are unchanged, you may have success with simple induction

```
let rec f (l:int list) (x: ...) (y:...) : int =
  match l with
  [] -> ...
  | hd::tail -> ... (f tail (complex1) (complex2))
```

• If they are different, you may have to search for a more general theorem that allows you to conclude something useful about those recursive calls.

```
let rec f (l:int list) (x: ...) (y:...) : int =
  match l with
  [] -> ...
  | hd::tail -> ... (f tail x y)
```
Another Example

Theorem:
for all e:exp,
 eval1 e == eval2 e 0
Another Example

let rec eval1 (e:exp) : int =
 match e with
 | Int i -> i
 | Add (e1, e2) -> eval1 e1 + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
 match e with
 | Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Theorem:
for all e:exp,
eval1 e == eval2 e 0
Another Example

let rec eval2 (e:exp) (n:int) : int =
 match e with
 | Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

let rec eval1 (e:exp) : int =
 match e with
 | Int i -> i
 | Add (e1, e2) -> (eval1 e1) + (eval1 e2)

Theorem:
for all e:exp,
 eval1 e == eval2 e 0

What is going to go wrong if we try induction on the structure of e directly?
Another Example

```ocaml
type exp =
    | Int of int
    | Add of exp * exp

let rec eval1 (e:exp) : int =
    match e with
    | Int i -> i
    | Add (e1, e2) -> eval1 e1 + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
    match e with
    | Int i -> i + n
    | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Theorem:
for all e:exp,
 eval1 e == eval2 e 0

In the case when e is Add(e1, e2), we will need to reason that eval2 e1 (eval2 e2 0) == ??? involving eval1

But we won't be able to use IH. We'll have no facts to reason with. No way to make progress.
Another Example

Type definition:

```ocaml
type exp =
    | Int of int
    | Add of exp * exp
```

Recursive functions:

```ocaml
let rec eval1 (e:exp) : int =
    match e with
    | Int i -> i
    | Add (e1, e2) -> eval1 e1 + eval1 e2
```

```ocaml
let rec eval2 (e:exp) (n:int) : int =
    match e with
    | Int i -> i + n
    | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Theorem:

For all e:exp,

\[\text{eval1 } e = \text{eval2 } e 0 \]

Suggestions?
Another Example

```
type exp =
  Int of int
| Add of exp * exp

let rec eval1 (e : exp) : int =
  match e with
  | Int i -> i
  | Add (e1, e2) -> eval1 e1 + eval1 e2

let rec eval2 (e : exp) (n : int) : int =
  match e with
  | Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Theorem:
for all e : exp,
```
eval1 e == eval2 e 0
```

Suggestions?
We will need to reason about `eval2 e1 (...)` and to relate it to `eval1 e1` somehow. What is the relationship?
Another Example

```plaintext
type exp =
  Int of int
| Add of exp * exp

let rec eval1 (e:exp) : int =
  match e with
    Int i -> i
  | Add (e1, e2) -> eval1 e1 + eval1 e2

let rec eval2 (e:exp) (n:int) : int =
  match e with
    Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
  (eval1 e) + n == eval2 e n
```
Another Example

let rec eval2 (e:exp) (n:int) : int =
 match e with
 | Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

let rec eval1 (e:exp) : int =
 match e with
 | Int i -> i
 | Add (e1, e2) -> (eval1 e1) + (eval1 e2)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
 (eval1 e) + n == eval2 e n
Proof: By induction on the structure of e.
Another Example

```ocaml
type exp =
  | Int of int
  | Add of exp * exp

let rec eval1 (e:exp) : int =
  match e with
  | Int i -> i
  | Add (e1, e2) -> eval1 e1 + eval1 e2

let rec eval2 (e:exp) (n:int) : int =
  match e with
  | Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Strategy: Introduce a new Lemma:

for all e:exp, for all n:int

\[(\text{eval1 } e) + n = \text{eval2 } e n\]

Proof: By induction on the structure of e.

case: e = Int i
Another Example

```ocaml
let rec eval1 (e:exp) : int =
  match e with
  Int i -> i
  | Add (e1, e2) -> eval1 e1 + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
  match e with
  Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.

case: e = Int i
```
eval1 (Int i) + n          (LHS)
```
Another Example

```
type exp =
    | Int of int
    | Add of exp * exp

let rec eval1 (e:exp) : int =
    match e with
    | Int i -> i
    | Add (e1, e2) -> eval1 e1 + eval1 e2

let rec eval2 (e:exp) (n:int) : int =
    match e with
    | Int i -> i + n
    | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(\(eval1 e\)) + n == eval2 e n

Proof: By induction on the structure of e.

case: e = Int i
\(eval1 (Int i) + n\) (LHS)
== i + n (by eval of eval1)
== eval2 (Int i) n (by reverse eval of eval2)
Another Example

```
let rec eval2 (e:exp) (n:int) : int =
  match e with
  Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

```
let rec eval1 (e:exp) : int =
  match e with
  Int i -> i
  | Add (e1, e2) -> (eval1 e1) + (eval1 e2)
```

Strategy: Introduce a new Lemma:

for all e:exp, for all n:int

\[(\text{eval1 } e) + n = \text{ eval2 } e n\]

Proof: By induction on the structure of e.

case: e = Add(e1, e2)
Another Example

let rec eval1 (e:exp) : int =
 match e with
 Int i -> i
 | Add (e1, e2) -> eval1 e1 + eval1 e2

let rec eval2 (e:exp) (n:int) : int =
 match e with
 Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
 (eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.
 case: e = Add(e1, e2)
 eval2 (Add(e1, e2)) n (RHS)
Another Example

```ocaml
let rec eval1 (e:exp) : int =
  match e with
  | Int i -> i
  | Add (e1, e2) -> eval1 e1 + eval1 e2

let rec eval2 (e:exp) (n:int) : int =
  match e with
  | Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int

\[(\text{eval1 } e) + n = \text{ eval2 } e n\]

Proof: By induction on the structure of e.

case: e = Add(e1, e2)

\[\text{eval2 } (\text{Add}(e1, e2)) n = \text{ eval2 } e1 \ (\text{eval2 } e2 n)\]
Another Example

```
let rec eval2 (e:exp) (n:int) : int =
  match e with
  Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

```
let rec eval1 (e:exp) : int =
  match e with
  Int i -> i
  | Add (e1, e2) -> (eval1 e1) + (eval1 e2)
```

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
\[(\text{eval1 } e) + n = \text{eval2 } e \ n\]

Proof: By induction on the structure of e.

case: e = Add(e1, e2)
\[
\text{eval2 } (\text{Add } (e1, e2)) \ n \quad \text{(RHS)}
\]
\[
= \text{eval2 } e1 \ (\text{eval2 } e2 \ n) \quad \text{(eval of eval2)}
\]
\[
= \text{eval2 } e1 \ (\text{eval1 } e2 + n) \quad \text{(by IH)}
\]
Another Example

```ocaml
type exp =
  | Int of int
  | Add of exp * exp

let rec eval1 (e:exp) : int =
  match e with
  | Int i -> i
  | Add (e1, e2) -> eval1 e1 + (eval1 e2)

let rec eval2 (e:exp) (n:int) : int =
  match e with
  | Int i -> i + n
  | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Strategy: Introduce a new Lemma:
for all \(e:exp \), for all \(n:int \)

\[
(\text{eval1 } e) + n = \text{eval2 } e n
\]

Proof: By induction on the structure of \(e \).

case: \(e = \text{Add}(e1, e2) \)

\[
\text{eval2 } \text{Add}(e1, e2) n = \text{eval2 } e1 (\text{eval2 } e2 n) \quad \text{(RHS)}
\]

\[
= \text{eval2 } e1 (\text{eval1 } e2 + n) \quad \text{(eval of eval2)}
\]

\[
= \text{eval1 } e1 + (\text{eval1 } e2 + n) \quad \text{(by IH)}
\]

\[
= (\text{eval1 } e1 + \text{eval1 } e2) + n \quad \text{(associativity of +)}
\]

\[
= \text{eval1 } \text{Add}(e1, e2) + n \quad \text{(by eval in reverse)}
\]
Another Example

```ocaml
type exp =
    Int of int
  | Add of exp * exp

let rec eval1 (e:exp) : int =
    match e with
    | Int i -> i
    | Add (e1, e2) -> eval1 e1 + eval1 e2
```

```ocaml
define eval2 =
  let rec eval2 (e:exp) (n:int) : int =
    match e with
    | Int i -> i + n
    | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Strategy: Introduce a new Lemma:
for all e:exp, for all n:int
(eval1 e) + n == eval2 e n

Proof: By induction on the structure of e.

```ocaml
case: e = Add(e1, e2)
    eval2 (Add(e1, e2)) n       (RHS)
== eval2 e1 (eval2 e2 n)      (eval of eval2)
== eval2 e1 (eval1 e2 + n)    (by IH)
== eval1 e1 + (eval1 e2 + n)  (by IH)
== (eval1 e1 + eval1 e2) + n  (associativity of +)
== eval1 (Add (e1, e2)) + n   (by eval in reverse)
```
Another Example

```ocaml
let rec eval2 (e:exp) (n:int) : int = 
    match e with 
    | Int i -> i + n 
    | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

```ocaml
let rec eval1 (e:exp) : int = 
    match e with 
    | Int i -> i 
    | Add (e1, e2) -> (eval1 e1) + (eval1 e2)
```

Back to the Theorem:
for all e:exp,
 eval1 e == eval2 e 0

Proof:

Lemma:
for all e:exp, for all n:int
 (eval1 e) + n == eval2 e n

Proof: Done!
Another Example

```ocaml
let rec eval1 (e:exp) : int = 
    match e with 
    | Int i -> i 
    | Add (e1, e2) -> eval1 e1 + eval1 e2

let rec eval2 (e:exp) (n:int) : int = 
    match e with 
    | Int i -> i + n 
    | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

Back to the Theorem:
for all e:exp,
\[\text{eval1 } e \equiv \text{eval2 } e \ 0 \]

Proof:
Pick any e.
\[\text{eval2 } e \ 0 \quad \text{(RHS)} \]
\[\equiv \text{eval1 } e + 0 \quad \text{(by Lemma, using 0 for n)} \]
\[\equiv \text{eval1 } e \quad \text{(by math)} \]

Lemma:
for all e:exp, for all n:int
\[(\text{eval1 } e) + n \equiv \text{eval2 } e \ n \]

Proof: Done!
let rec eval2 (e:exp) (n:int) : int =
 match e with
 | Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Is eval2 tail recursive?
let rec eval2 (e:exp) (n:int) : int =
 match e with
 Int i -> i + n
 | Add (e1, e2) -> eval2 e1 (eval2 e2 n)

Is eval2 tail recursive?

No! Lot's of stuff happens after the first recursive call to eval2!
let rec eval2 (e:exp) (n:int) : int =
match e with
 Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

continuation of eval2 e2 n
let rec eval2 (e:exp) (n:int) : int =
match e with
 Int i -> i + n
| Add (e1, e2) -> eval2 e1 (eval2 e2 n)

let rec eval2 (e:exp) (n:int) : int =
match e with
 Int i -> i + n
| Add (e1, e2) -> eval2 e1 (____________)

let rec eval2 (e:exp) (n:int) (k: int -> int) : int =
match e with
 Int i -> k (i + n)
| Add (e1, e2) -> eval2 e2 n (fun m -> eval2 e1 m k)
Quick Question

```
let rec eval2 (e:exp) (n:int) : int =
    match e with
    Int i -> i + n
    | Add (e1, e2) -> eval2 e1 (eval2 e2 n)
```

continuation of eval2 e1 is whatever eval2 does when it returns
Summary

Tail-recursive programs:
• do not do any computation after they make a recursive call
• conversion to CPS is one way to make any computation tail-recursive
 • bottle up the stuff you do after the call into a continuation

Proving programs correct can be arbitrarily hard:
• the difficult part comes in finding auxiliary lemmas to prove.
 • these lemmas must be:
 • *strong enough* to imply the theorem you want
 • *weak enough* that they remain true and can be proven
 • insight is needed to find the right middle ground