Continuation-Passing Style

COS 326
David Walker
Princeton University

slides copyright 2017 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Midterm Exam

Wed Oct 25, 2017
In Class (11:00-12:20)
Midterm Week

Be there or be square!

Some Innocuous Code

Let’s try it.

(Go to tail.ml)

(* sum of 0..n *)

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else 0

°
rs

let big int = 1000000; ;

sum big int;;

Some Other Code

Four functions: Green works on big inputs; Red doesn’t.

let sum to2 (n: int) int =
let rec aux (n:int) (a:int) int =
if n > 0 then
aux (n-1) (a+n)
else a
in
S let rec sum2 (l:int 1list) int =
match 1 with
[] => 0
| hd::tail -> hd + sum2 tail
let rec sum to (n:int) int =
if n > 0 then
n + sum to (n-1)

else 0

let sum (l:int list) int =

let rec aux (l:int list) (a:int)
match 1 with
[] -> a
| hd::tail -> aux tail (a+hd)
in
aux 1 0

int

Some Other Code

Four functions: Green works on big inputs; Red doesn’t.

let sum to2 (n: int) int =
let rec aux (n:int) (a:int) int =
if n > 0 then
aux (n-1) (a+n)
else a
in
S let rec sum2 (l:int 1list) int =
match 1 with
[] => 0
| hd::tail -> hd + sum2 tail
let rec sum to (n:int) int =
if n > 0 then
n + sum to (n-1)

else O

let sum (l:int list) int =

code that works:
no computation after
recursive function call

let rec aux (l:int list) (a:int)
match 1 with
[] -> a
| hd::tail -> aux tail (a+hd)
in
aux 1 0

int

[Tail Recursion] °

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

sum to 1000000 (* sum of 0..n *)
let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else 0

let big int = 1000000;;

sum big int

Tail Recursion

]7

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

—-=>

sum to 1000000

1000000 + sum to 99999

(* sum of O0..n

let rec sum to

*)

(n:int)

if n > 0 then

n + sum to
else 0

let big int =

sum big int;;

(n-1)

10000005 ;

: int

Tail Recursion

]8

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

—-=>

—=>

sum to 1000000
1000000 + sum to 99999

1000000 + 99999 + sum to 99998

(* sum of O0..n *)

let rec sum to (n:int) : int
if n > 0 then
n + sum to (n-1)
else O

let big int = 1000000;;

sum big int;;

expression size grows
at every recursive call ...

lots of adding to do after
the call returns”

Tail Recursion

]9

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

—-=>

—=>

-=>

——>

sum to 1000000
1000000 + sum to 99999

1000000 + 99999 + sum to 99998

1000000 + 99999 + 99998 + ...

+ sum to 0

(* sum of O0..n

let rec sum to

*)

(n:int)

if n > 0 then

n + sum to
else 0

let big int =

sum big int;;

(n-1)

10000005 ;

: int

Tail Recursion

]m

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

—-=>

sum to 1000000
1000000 + sum to 99999

1000000 + 99999 + sum to 99998

1000000 + 99999 + 99998 + ...

1000000 + 99999 + 99998 + ...

+ sum to 0

|

0

(* sum of 0..n *)
let rec sum to (n:int)
if n > 0 then

n + sum to
else O

(n—-1)
let big int = 1000000;;

sum big int;;

: int

-

recursion
finally bottoms out

Tail Recursion

]11

A tail-recursive function does no work after it calls itself recursively.

Not tail-recursive, the substitution model:

sum to 1000000

1000000 + sum to 99999

1000000 + 99999 + sum to 99998

1000000 + 99999 + 99998 + ...
1000000 + 99999 + 99998 + ...

. add it all back up ...

+ sum to 0

let rec sum to
if n > 0 then
n + sum to
else O

o o
r s

let big int

(* sum of O0..n *)

(n:int)

(n-1)

= 1000000; ;

+ 0 sum big int;;

: int

do a long series
of additions to get
back an int

Non-tail recursive

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

stack

sum to 10000

Non-tail recursive]13

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

stack

sum to 9999

10000 +

Non-tail recursive]

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

stack sum_ to 9998
9999 +

10000 +

Non-tail recursive

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

sum _to 0

stack 9998 +
9999 +

10000 +

Non-tail recursive

let rec sum to (n:int)
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

: int

stack 9998 +
9999 +

10000 +

Non-tail recursive

let rec sum to (n:int)
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

: int

stack n

9999 +

10000 +

Non-tail recursive

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 10000

stack

m

10000 +

Non-tail recursive

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)
else
0

°
r s

sum to 100

stack

result

Data Needed on Return Saved on Stack

]zo

sum to 10000

10000 + 9999 + 9998 + 9997 + ...

/

|

—

9996
9997
9998
2999
10000

the stack

!

not much space left!
will run out soon!

every non-tail call puts the data from the calling context on the stack

Memory is partitioned: Stack and Heap]

heap space (big!)

stack space
(smallt!)

Tail Recursion

]22

A tail-recursive function is a function that does no work after it

calls itself recursively.

Tail-recursive:

sum to2 1000000

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
0 AimE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0

o o
r s

Tail Recursion

]23

A tail-recursive function is a function that does no work after it

calls itself recursively.

Tail-recursive:

sum to2 1000000
===
aux 1000000 O

(* sum of O0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
0 AimE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0

o o
r s

Tail Recursion

]24

A tail-recursive function is a function that does no work after it

calls itself recursively.

Tail-recursive:

sum to2 1000000
—-=>

aux 1000000 O
-=>

aux 99999 1000000

(* sum of O0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
0 AimE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0

o o
r s

Tail Recursion

]25

A tail-recursive function is a function that does no work after it

calls itself recursively.

Tail-recursive:

sum to2 1000000
__> o

aux 1000000 O
-=>

aux 99999 1000000
—=>

aux 99998 1999999

(* sum of O0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
0 AimE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0

o o
r s

Tail Recursion

]26

A tail-recursive function is a function that does no work after it
calls itself recursively.

Tail-recursive:

sum to2 1000000

aux

aux

aux

aux

1000000 O

99999 1000000

99998 1999999

-363189984

(* sum of O0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
0 AimE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0

o o
r s

363189984vLiiiiiiiiiiiiiiiiii\\\\

(addmon overflow occurred
at some point)

constant size expression
in the substitution model

Tail Recursion

]27

A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
2 AmiE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0O

o
rs

stack

aux 10000 O

Tail Recursion

]28

A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
2 AmiE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0O

o
rs

stack

aux 9999 10000

Tail Recursion

]29

A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
2 AmiE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0O

o
rs

stack

aux 9998 19999

Tail Recursion

]30

A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
2 AmiE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0O

o
rs

stack

aux 9997 29998

Tail Recursion

]31

A tail-recursive function is a function that does no work after it
calls itself recursively.

(* sum of 0..n *)

let sum to2 (n: int) : int =
let rec aux (n:int) (a:int)
2 AmiE =

if n > 0 then
aux (n-1) (a+n)
else a
in
aux n 0O

o
rs

stack

aux 0 BigNum

[Question]

We used human ingenuity to do the tail-call transform.

Is there a mechanical procedure to transform any recursive
function in to a tail-recursive one?

let rec sum to (n: int) : int =
if n > 0 then

not only is sum?2 n + sum to (n-1)
tail-recursive else

. 0
but it reimplements »
an algorithm that human
took linear space Ingenuity
(On the StaCk) let sum to2 (n: int) : int =
using an algorithm let rec aux (n:int) (a:int) : int =
that executes in E T e

| aux (n-1) (a+n)

constant space! clse a

in
aux n O

o o
r7s

CONTINUATION-PASSING STYLE
CPS!

CPS

]34

CPS:
— Short for Continuation-Passing Style

— Every function takes a continuation (a function) as an argument
that expresses "what to do next"

— CPS functions only call other functions as the last thing they do
— Al CPS functions are tail-recursive

Goal:
— Find a mechanical way to translate any function in to CPS

Serial Killer or PL Researcher?]36

Gordon Plotkin Robert Garrow
Programming languages researcher Serial Killer
Invented CPS conversion.

Killed a teenager at a campsite
Call-by-Name, Call-by Value in the Adirondacks in 1974.
and the Lambda Calculus. TCS, 1975. Confessed to 3 other killings.

Serial Killer or PL Researcher?]37

Gordon Plotkin Robert Garrow
Programming languages researcher Serial Killer
Invented CPS conversion.

Killed a teenager at a campsite
Call-by-Name, Call-by Value in the Adirondacks in 1974.
and the Lambda Calculus. TCS, 1975. Confessed to 3 other killings.

Question

]38

Can any non-tail-recursive function be transformed in to a tail-
recursive one? Yes, if we can capture the differential between a
tail-recursive function and a non-tail-recursive one.

let rec sum (l:int list) : int =
match 1 with
[] => 0
| hd::tail -> hd + sum tail

°
r s

Idea: Focus on what happens after the recursive call.

Question]

Can any non-tail-recursive function be transformed in to a tail-
recursive one? Yes, if we can capture the differential between a
tail-recursive function and a non-tail-recursive one.

let rec sum (l:int list) : int =

match 1 with
[] => 0

| hd::tail -> hd +|sum tail

o L__t::;_—_____*“‘*‘*_-———————~—___>.mﬁmthappens

next

Idea: Focus on what happens after the recursive call.
Extracting that piece:

hd + <

T result of recursive

call gets plugged in
here

How do we capture it?

Question

]40

How do we capture that computation?

hd +

\

A4

fun s -> hd +

result of recursive
call gets plugged in
here

Question

]41

How do we capture that computation?

fun s -> hd +

let rec sum (l:int list) : int =
match 1 with
[1 >0
| hd::tail -> hd +|sum tail
r Y
type cont = int -> int;;
let rec sum cont (l:int list) (k:cont): int =

match 1 with
[] >k O
| hd::tail -> sum cont tail

(fun s => 2?2?) ;;

4

Question

]42

How do we capture that computation?

fun s -> hd +

let rec sum (l:int list) : int =
match 1 with
[1 >0
| hd::tail -> hd +|sum tail
r Y
type cont = int -> int;;
let rec sum cont (l:int list) (k:cont): int =

match 1 with
[] >k O
| hd::tail -> sum cont tail

(fun s -> k (hd + s))

.
’

.
’

Question

]43

How do we capture that computation?

hd +

fun s -> hd +|s |

let sum (l:int 1list) int = 272

let rec sum (l:int list) int =
match 1 with
[] > 0
hd::tail -> hd +|sum tail
. (S
type cont = int -> int;;
let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

Question

How do we capture that computation?

hd +

44

let sum (l:int 1list) int =

sum cont 1

(fun s -> 9)

let rec sum (l:int list) int =
— match 1 with
[1 >0
fun 5 -> hd t}s | hd::tail -> hd + sum tail
. (S
type cont = int -> int;;
let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

Execution

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]

Execution

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s))

let sum (l:int list) : int = sum cont 1 (fun s -> s)

.
4

.
4

sum [1;2]
-—>
sum cont [1;2] (fun s -> s)

46

Execution

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]
sum cont [1;2] (fun s -> s)

sum _cont [2] (fun s -> (fun s -> s) (1 + s));;

47

Execution

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)
sum [1;2]
-—>
sum cont [1;2] (fun s -> s)
__> o
sum_cont [2] (fun s -> (fun s -> s) (1 + s8));;
-—>

sum cont [] (fun s -> (fun s -> (fun s -> s) (1 + s))

(2 + s))

48

Execution

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)
sum [1;2]
-——>
sum cont [1;2] (fun s -> s)
-——>
sum cont [2] (fun s -> (fun s -> s) (1 + s));;
-——>
sum cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 s))
-——>

(fun s => (fun s -> (fun s -> s) (1 + s)) (2 + s))

0

49

Execution

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)

sum [1;2]
-—>

sum cont [1;2] (fun s -> s)
-—>

sum cont [2] (fun s -> (fun s -> s) (1 + s));;
-——>

sum _cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-—>

(fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) O
-—>

(fun s => (fun s -> s) (1 + s)) (2 + 0))

Execution ?!

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)
sum [1;2]
-—>
sum cont [1;2] (fun s -> s)
o sum cont [2] (fun s -> (fun s -> s) (1 + s));;
__> sum _cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
__> (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) O
o (fun s => (fun s -> s) (1 + s)) (2 + 0))
__> (fun s => s) (1 + (2 + 0))

Execution

type cont = int -> int;;

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)
sum [1;2]
-—>
sum cont [1;2] (fun s -> s)
-—>
sum cont [2] (fun s -> (fun s -> s) (1 + s));;
-——>
sum _cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-—>
(fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s)) O
-—>
(fun s => (fun s -> s) (1 + s)) (2 + 0))
-—>
(fun s -> s) (1 + (2 + 0))
-—>
1 + (2 + 0)
——>

Question

type cont = int -> int;;

let rec sum cont (l:int list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum (l:int list) : int = sum cont 1 (fun s -> s)
sum [1;2]
-——>
sum cont [1;2] (fun s -> s)
-——>
sum cont [2] (fun s -> (fun s -> s) (1 + s));;
-——>
sum _cont [] (fun s -> (fun s -> (fun s -> s) (1 + s)) (2 + s))
-——>
—-——>
3

Where did the stack space go?

54

sum cont []
(fun s3 ->
(fun s2 ->
(fun sl -> sl1) (hdl + s2)

) (hd2 + s3)
)
function inside each function - stack of
function inside is a closure; locures on
function inside :V,\ points to the :D
. . the heap
expression closure inside it

N

function inside sum_cont [l 55

. . . (fun s3 ->
function inside a stack of (fun s2 ->

function inside :> cLosEres on (fun sl -> sl) (hdl + s2)
: the heap) (hd2 + s3)
expression |
1 2

stack
sum cont o

D2

(fun s3 ->
(fun s2 ->
(fun sl1 -> sl) (hdl + s2)
) (hd2 + s3)

)

~— heap

function inside sum_cont [] 1

. . . (fun s3 ->
function inside a stack of (fun s2 ->

function inside :> closures on (fun sl -> s1) (hdl + s2)
expression the heap)> (hd2 + s3)

1 2
stack

sum cont

fun s env -> hd2 = 2
env.k (env.h2 + s)

— heap

fun s env -> hdl = 1
env.k (env.hdl + s)

fun s env -> s

Continuation-passing style

]57

let rec sum cont
match 1 with
[] —> k O
| hd::tail ->

(l:int list)

sum cont tail

(k:cont): int =

(fun s -> k

(hd + s))

o o
r s

stack
sum_ to cont k

fun s env -> s

heap

heap

[Continuation-passing style

stack
sum to cont k2
fun s env -> n = 100
env.k (env.n + s)
k = \
— heap

fun s env }ézltlt]

Continuation-passing style

]59

sum to cont 100 (fun s -> s)

(n+s))

let rec sum to cont (n:int) (k:int->int)
if n > 0 then
sum to cont (n-1) (fun s -> k
else
k0 ;;

: int

stack
sum_to cont 100 k

A

fun s env -> s

heap

[Continuation-passing style

let rec sum to cont (n:int) (k:int->int) : int =
if n > 0 then
sum to cont (n-1) (fun s -> k (n+s))
else
k0 ;;
sum to cont 100 (fun s -> s)

stack
sum to cont k2

b \

fun s env -> n = 100
env.k (env.n + s)

k:
N\ — heap

fun s env -> s

[Continuation-passing style]61

let rec sum to cont (n:int) (k:int->int) : int =
if n > 0 then
sum to cont (n-1) (fun s -> k (n+s))
else
k0 ;;
sum to 100 (fun s -> s)

stack
sum_ to cont 98 k3

fun s env -> n = 99
env.k (env.n + s)

— heap

fun s env -> n = 100
env.k (env.n + s)

fun s env -> s

Back to stacks

]62

stack

sum_ to 98

99 +

100 +

function
that called
sum to

let rec sum to (n:int)
if n > 0 then
n + sum to (n-1)
else
0

o o
r s

sum to 100

: int

Back to stacks

]63

stack

sum_ to 98

99 + 4

100 +

function
that called
sum to

let rec sum to (n:int)
if n > 0 then
n + sum to (n-1)
else
0

o o
r s

sum to 100

int =

but how do you really implement that?

Back to stacks

]64

stack

let rec sum to (n:int) : int
if n > 0 then
n + sum to (n-1)
else
0

o o
r s

sum to 100

but how do you really implement that?

sum_to 98

99 + e

100 + S

—— thereis two bits of information here:

function
that called

(1) some state (n=100) we had to remember

sum to

(2) some code we have to run later

Back to stacks]65

stack

let rec sum to (n:int) : int =
if n > 0 then
n + sum to (n-1)

else
0
sum to 100
with reality added
code we have to
run next
sum_ to 98
\
— return address
sum_ to 98 n = 99 \\\\\\\A
99 + return address ~J fun s stack ->
stack - — ™
100 + — 100 return (stack.n + s)
(i —
function return address fun S StaCk ->
that called state return (stack.n + s)
sum to

stack

sum_to cont 98 k3

sum_to 98

v

return address

n = 99

.

66

return address

n = 100

return address
state

fun s stack —>
return (stack.n+s)

\

fun s stack —>
return (stack.n+s)

fun s env ->

env.k (env.n + s)

fun s env ->
env.k (env.n + 38)

with the heap

n = 100

fun s env -> s

with the stack

CPS

stack

sum_to cont 98 k3

fun s env ->

env.k (env.n + s)

sum_to 98

Vv
return address
n = 99

.

67

return address

n = 100

fun s stack —>
return (stack.n+s)

\

return address
state

fun s stack —>
return (stack.n+s)

=,

fun s env ->
env.k (env.n + 38)

n = 100

with the heap

with the stack

fun s env -> s

Why CPS? &

Continuation-passing style is inevitable.

It does not matter whether you program in Java or C or OCaml --
there’s code around that tells you “what to do next”

— If you explicitly CPS-convert your code, “what to do next” is
stored on the heap

— If you don’t, it’s stored on the stack

If you take a conventional compilers class, the continuation will
be called a return address (but you’ll know what it really is!)

The idea of a continuation is much more general!

[Standard ML of New Jersey]69

Compiling with
Continuations

Andrew W. Appel

Your compiler can put all the continuations in
the heap so you don’t have to (and you don’t
run out of stack space)!

Other pros:
* light-weight concurrent threads
Some cons:

* hardware architectures optimized to use a
stack

* need tight integration with a good garbage
collector

see

Empirical and Analytic Study of Stack versus

Heap Cost for Languages with Closures. Shao &

Appel

Call-backs: Another use of continuations]

Call-backs:

request url : url -> (html -> 'a) -> 'a

request url "http://www.s.com/i.html" (fun html -> process html)
1

continuation

[

Overall Summary

]71

We developed techniques for reasoning about the space costs of
functional programs

— the cost of manipulating data types like tuples and trees
— the cost of allocating and using function closures
— the cost of tail-recursive and non-tail-recursive functions

We also talked about some important program transformations:

— closure conversion makes nested functions with free variables in to
pairs of closed code and environment

— the continuation-passing style (CPS) transformation turns non-tail-
recursive functions in to tail-recursive ones that use no stack space
* the stack gets moved in to the function closure
— since stack space is often small compared with heap space, it is
often necessary to use continuations and tail recursion
* but full CPS-converted programs are unreadable: use judgement

Challenge: CPS Convert the incr function

]72

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) -> Node (i+j, incr left i, incr right 1i)

Hint 1: introduce one let expression for each function call:
let x =incrleftiin ...

Hint 2: you will need two continuations

CPS Convert the incr function

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) -> Node (i+j, incr left i, incr right 1i)

type cont = tree -> tree ;;

let rec incr cps (t:tree) (i:int) (k:cont) : tree =
match t with
Leaf -> k Leaf
| Node (j,left,right) ->

73

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) -> Node (i+j, incr left i, incr right 1i)

first continuation: Node (i+3j, , incr right i)

second continuation: | nNode (i+j, left done,)

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf
| Node (j,left,right) -> Node (i+j, incr i left, incr i right)

first continuation: fun left done -> Node (i+j, left done , incr right 1i)

second continuation: fun right done -> k (Node (i+j, left done, right done))

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree)
match t with
Leaf -> Leaf

(i:int) tree =

| Node (j,left,right) -> Node (i+j, incr left i,

incr right 1)

76

second continuation
inside
first continuation:

fun left done ->
let k2 =

(fun right done ->

)
in
incr right i k2

k (Node (i+j, left done, right done))

type tree = Leaf | Node of int * tree * tree ;;

let rec incr (t:tree) (i:int) : tree =
match t with
Leaf -> Leaf

| Node (j,left,right) -> Node (i+j, incr left i, incr right 1i)

77

type cont = tree -> tree ;;

let rec incr cps (t:tree) (i:int) (k:cont) : tree =
match t with
Leaf -> k Leaf
| Node (j,left,right) ->
let k1 = (fun left done ->
let k2 = (fun right done ->

k (Node (i+j, left done, right done)))

in
incr cps right 1 k2
)
in
incr cps left i kil

let incr tail (t:tree) (i:int) : tree = incr cps t i

(fun t -> t);;

CORRECTNESS OF A CPS
TRANSFORM

[Are the two functions the same?

type cont = int -> int;;

let rec sum cont (l:int 1list) (k:cont): int =
match 1 with
[] > k O
| hd::tail -> sum cont tail (fun s -> k (hd + s)) ;;

let sum2 (l:int list) : int = sum cont 1 (fun s -> s)

let rec sum (l:int list) : int =
match 1 with
[] => 0
| hd::tail -> hd + sum tail

° o
r s

Here, it is really pretty tricky to be sure you've done it right if
you don't prove it. Let's try to prove this theorem and see what

happens:

for all 1l:int 1list,
sum _cont 1 (fun x -> x) == sum 1

Attempting a Proof

]80

for all 1l:int list, sum cont 1 (fun s -> s) == sum 1

Proof: By induction on the structure of the list 1.

case 1 = []

case: hd::tail
IH: sum cont tail (fun s -> s) == sum tail

Attempting a Proof

81

for all 1l:int list, sum cont 1 (fun s -> s) == sum 1

Proof: By induction on the structure of the list 1.

case 1 = []

case: hd::tail
IH: sum cont tail (fun s -> s) == sum tail

sum cont (hd::tail) (fun s -> s)

Attempting a Proof

82

for all 1l:int list, sum cont 1 (fun s -> s) == sum 1
Proof: By induction on the structure of the list 1.
case 1 = []
case: hd::tail

IH: sum cont tail (fun s -> s) == sum tail

sum cont (hd::tail) (fun s -> s)
== sum cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)

Attempting a Proof

83

for all 1l:int list, sum cont 1 (fun s -> s) == sum 1
Proof: By induction on the structure of the list 1.

case 1 = []

case: hd::tail

IH: sum cont tail (fun s -> s) == sum tail
sum cont (hd::tail) (fun s -> s)
== sum cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)

== sum cont tail (fn s' -> hd + s') (eval)

Need to Generalize the Theorem and IH

]84

o

<&

for all 1l:int list, sum cont 1 (fun s -> s) == sum 1

Proof: By induction on the structure of the list 1.

case 1 = []

case: hd::tail

IH: sum cont tail (fun s -> s) == sum tail
sum cont (hd::tail) (fun s -> s)
== sum cont tail (fn s' -> (fn s -> s) (hd + s')) (eval)
== sum_ cont tail 6fn s' -> hd + s'% (eval)
i
== darn! $\\ ﬁk\\\\\\\\\\
we'd like to use the IH, but we can't! not the identity continuation
we might like: (fun s -> s) like the IH requires

sum_cont tail (fn s' -> hd + s') == sum tail

... but that's not even true

Need to Generalize the Theorem and IH]

for all 1l:int 1list,
for all k:int->int, sum cont 1 k == k (sum 1)

Need to Generalize the Theorem and IH

]86

for all 1l:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = []

must prove: for all k:int->int, sum cont [] k == k (sum [])

Need to Generalize the Theorem and IH

]87

for all 1l:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = []
must prove: for all k:int->int, sum cont [] k == k (sum [])

pick an arbitrary k:

Need to Generalize the Theorem and IH

]88

for all 1l:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.

case 1 = []
must prove: for all k:int->int, sum cont [] k == k (sum [])
pick an arbitrary k:

sum cont [] k

Need to Generalize the Theorem and IH

]89

for all 1l:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = []
must prove: for all k:int->int, sum cont [] k == k (sum [])
pick an arbitrary k:
sum cont [] k

== match [] with [] -> k 0 | hd::tail -> ... (eval)
== k 0 (eval)

Need to Generalize the Theorem and IH

]90

for all 1l:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = []
must prove: for all k:int->int, sum cont [] k == k (sum [])

pick an arbitrary k:

sum cont [] k
== match [] with [] -> k 0 | hd::tail -> ... (eval)
== k 0 (eval)

== (sum [])

Need to Generalize the Theorem and IH

]91

for all 1l:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.

case 1 = []
must prove: for all k:int->int, sum cont [] k == k (sum [])

pick an arbitrary k:

sum cont [] k
== match [] with [] -> k 0 | hd::tail -> ... (eval)
== k 0 (eval)
== k (0) (eval, reverse)
== k (match [] with [] -> 0 | hd::tail -> ...) (eval, reverse)
== k (sum [])

case done!

Need to Generalize the Theorem and IH]

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = [] ===> done!
case 1 = hd::tail
IH: for all k':int->int, sum cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))

Need to Generalize the Theorem and IH

]93

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = [] ===> done!
case 1 = hd::tail

IH: for all k':int->int, sum cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum cont (hd::tail) k

Need to Generalize the Theorem and IH

]94

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.

case 1 = [] ===> done!

case 1 = hd::tail
IH: for all k':int->int, sum cont tail k' == k' (sum tail)
Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
Pick an arbitrary k,

sum cont (hd::tail) k
== sum cont tail (fun s -> k (hd + s)) (eval)

Need to Generalize the Theorem and IH

95

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = [] ===> done!
case 1 = hd::tail

IH: for all k':int->int, sum cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum cont (hd::tail) k
== sum cont tail (fun s -> k (hd + s)) (eval)

== (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'
replaced with (fun s -> k

(hd+s))

Need to Generalize the Theorem and IH

96

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.
case 1 = [] ===> done!
case 1 = hd::tail

IH: for all k':int->int, sum cont tail k' == k' (sum tail)

Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))

Pick an arbitrary k,

sum cont (hd::tail) k
== sum cont tail (fun s -> k (hd + s)) (eval)

== (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'

replaced with (fun s -> k (hd+s))

== k (hd + (sum tail)) (eval, since sum total and
and sum tail valuable)

Need to Generalize the Theorem and IH

for all 1:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

Proof: By induction on the structure of the list 1.

case 1 = [] ===> done!

case 1 = hd::tail
IH: for all k':int->int, sum cont tail k' == k' (sum tail)
Must prove: for all k:int->int, sum cont (hd::tail) k == k (sum (hd::tail))
Pick an arbitrary k,

sum cont (hd::tail) k

== sum cont tail (fun s -> k (hd + s)) (eval)
== (fun s -> k (hd + s)) (sum tail) (IH with IH quantifier k'
replaced with (fun s -> k (hd+s))
== k (hd + (sum tail)) (eval, since sum total and
and sum tail valuable)
== (sum (hd::tail)) (eval sum, reverse)

case done!
QED!

Finishing Up

]98

Ok, now what we have is a proof of this theorem:

for all 1l:int 1list,
for all k:int->int, sum cont 1 k == (sum 1)

We can use that general theorem to get what we really want:

for all 1l:int 1list,

sumz2 1
== sum cont 1 (fun s -> s) (by eval sum2)
== (fun s -> s) (sum 1) (by theorem, instantiating k with (fun s -> s)
== sum 1 (by eval, since sum 1 valuable)

So, we've show that the function sum2, which is tail-recursive, is
functionally equivalent to the non-tail-recursive function sum.

SUMMARY

CPS

CPS is interesting and important:

unavoidable

e assembly language is continuation-passing
theoretical ramifications

* fixes evaluation order

e call-by-value evaluation == call-by-name evaluation
efficiency

e generic way to create tail-recursive functions

* Appel's SML/NJ compiler based on this style
continuation-based programming

* call-backs

e programming with "what to do next"

implementation-technique for concurrency

[Summary of the CPS Proof]‘

We tried to prove the specific theorem we wanted:

for all 1l:int list, sum cont 1 (fun s -> s) == sum 1

But it didn't work because in the middle of the proof, the IH didn't
apply -- inside our function we had the wrong kind of continuation
-- not (fun s -> s) like our IH required. So we had to prove a more
general theorem about all continuations.

for all 1l:int 1list,
for all k:int->int, sum cont 1 k == k (sum 1)

This is a common occurrence -- generalizing the induction
hypothesis -- and it requires human ingenuity. It's why proving
theorems is hard. It's also why writing programs is hard -- you
have to make the proofs and programs work more generally,
around every iteration of a loop.

[

Overall Summary

]m

We developed techniques for reasoning about the space costs of
functional programs

— the cost of manipulating data types like tuples and trees
— the cost of allocating and using function closures
— the cost of tail-recursive and non-tail-recursive functions

We also talked about some important program transformations:

— closure conversion makes nested functions with free variables into
pairs of closed code and environment

— the continuation-passing style (CPS) transformation turns non-tail-
recursive functions in to tail-recursive ones that use no stack space
* the stack gets moved in to the function closure
— since stack space is often small compared with heap space, it is
often necessary to use continuations and tail recursion
* but full CPS-converted programs are unreadable: use judgement

