A Functional Space Model

COS 326
David Walker
Princeton University

slides copyright 2017 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Because Halloween draws nigh:

Serial killer or programming languages researcher?

http://www.malevole.com/mv/misc/killerquiz/

Space

Understanding the space complexity of functional programs

— At |least two interesting components:
* the amount of /ive space at any instant in time
* the rate of allocation

— a function call may not change the amount of live space by
much but may allocate at a substantial rate

— because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot

» OCaml garbage collector is optimized with this in mind

» interesting fact: at the assembly level, the number of
writes by a functional program is roughly the same as the
number of writes by an imperative program

Space

Understanding the space complexity of functional programs

— At |least two interesting components:
* the amount of /ive space at any instant in time
* the rate of allocation

— a function call may not change the amount of live space by
much but may allocate at a substantial rate

— because functional programs act by generating new data
structures and discarding old ones, they often allocate a lot

» OCaml garbage collector is optimized with this in mind

» interesting fact: at the assembly level, the number of
writes by a functional program is roughly the same as the
number of writes by an imperative program

— What takes up space?
» conventional first-order data: tuples, lists, strings, datatypes
* function representations (closures)
* the call stack

CONVENTIONAL DATA

OCaml Representations for Data Structures

Type:
type triple = int * char * int
Representation:
3, a', 17) \

OCaml Representations for Data Structures

Type:

type mylist = int list

Representation:

[] [3; 4; 5]

Space Model

Type:

type tree = Leaf | Node of int * tree * tree

Representation:

Leaf

Node(3, left, right)

hN

Node

=

left

right

Allocating space

In C, you allocate when you call “malloc”

In Java, you allocate when you call “new”

What about ML?

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if i <= j then
Node (Jj, insert left i, right)
else
Node (3, left, insert right 1)

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1i)

t\

-

)
by

15 e e

Consider:

insertt 21

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)
else
Node (3j, left, insert right 1i)

t\

-

)
7%

15 e e

Consider:

insertt 21

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1i)

t\

-

)
by

15 e e

Consider:

insertt 21

2100

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1)

t\

-

)
by

15 e e

Consider:

insertt 21

150\

2100

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1)

t\

-

o o o o o o 15 e e

Consider:

insertt 21

150\

2100

Allocating space

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) =
match t with
Leaf -> Node (i, Leaf, Leaf)
| Node (j, left, right) ->
if i <= j then
Node (j, insert left i, right)
else
Node (3, left, insert right 1i)

Consider:

insertt 21

o o o o o o 15 e e

150\

2100

Allocating space]

Whenever you use a constructor, space is allocated:

let rec insert (t:tree) (i:int) = 'Totalspgceza”ocatedls
match t with proportional to the

Leaf -> Node (i, Leaf, Leaf) height ofthe tree
| Node (j, left, right) -> ’

if i <= j then

Node (j, insert left i, right) ~ |og n, if tree with n
else

Node (j, left, insert right i) nodes is balanced

’C\\\\\\A 3 \

’ !

7 \
!
150\
y
21 ® @

o o o o o o 15 e e

Net space allocated

The garbage collector reclaims

unreachable data structures on the heap.

let fiddle (t:

insert t 21

tree) =

o o o o 15 e e

John McCarthy
invented g.c.

2100

1960

Net space allocated

The garbage collector reclaims
unreachable data structures on the heap.

let fiddle (t: tree) = (unreachable),

If t 1s dead
insert t 21

2100

o o o o o o 15 e e

Net space allocated

]zo

The garbage collector reclaims

unreachable data structures on the heap.

let fiddle (t: tree) =
insert t 21

If t is dead (unreachable), }

Then all these nodes
t \._ will be reclaimed! \

Net space allocated

]21

The garbage collector reclaims

unreachable data structures on the hean

et fiddle (t:

insert t 21

tree)

o

Net new space allocated: A
1 node
(just like “imperative” version
of binary search trees) y

Net space allocated

But what if you want to keep the old tree?

let faddle (t: tree) =
(t, insert t 21)

faddle(t)

[

2100

o o o o o o 15 e e

Net space allocated

]23

But what if you want to keep the old tree?

let faddle (t: tree) =
(t, insert t 21)

faddle(t)

e

Net new space allocated:
log(N) nodes

but note: “imperative” version

would have to copy the old tree,
K space cost N new nodes! /

N

~

T

15 e e

2100

Compare

let check option (o:int option)

match o with
some -> O
| None -> failwith

“found none”

int option

let check option (o:int option)

match o with
Some j —-> Some j
| None -> failwith

“found none”

int option

24

Compare

]25

let check option
match o with
some -> O

| None -> failwith

(o:int option)

int option =

“found none”

let check option
match o with

(o:int option)

Some j —-> Some j

| None -> failwith

int option =

“found none”

allocates nothing
when arg is Some i

allocates an option
when arg is Some |

Compare

let cadd (cl:int*int) (c2:int*int) : int*int =
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)
let double (cl:int*int) int*int =
let ¢2 = ¢l in
cadd cl c2
let double (cl:int*int) int*int =
cadd cl cl
let double (cl:int*int) int*int =

let (x1,yl) = cl in
cadd (x1,yl) (x1,vy1l)

26

Compare

cl

c?

let cadd (cl:int*int) (c2:int*int) : int*int =
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)
let double (cl:int*int) int*int =
let ¢2 = ¢l in
cadd cl c2
let double (cl:int*int) int*int =
cadd cl cl
let double (cl:int*int) int*int =

let (x1,yl) = cl in
cadd (x1,yl) (x1,vy1l)

27

Compare

let cadd (cl:int*int) (c2:int*int) : int*int =
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)
let double (cl:int*int) int*int =
let ¢2 = ¢l in
cadd cl c2
let double (cl:int*int) int*int =
cadd cl cl
let double (cl:int*int) int*int =

let (x1,yl) = cl in
cadd (x1,yl) (x1,vy1l)

28

Compare

let cadd (cl:int*int)
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

(c2:int*int)

int*int =

let double (cl:int*int) int*int =
let ¢2 = ¢l in
cadd cl c2

let double (cl:int*int) int*int =
cadd cl cl

let double (cl:int*int) int*int =

let (x1,yl) = cl in
cadd (x1,yl) (x1,vy1l)

]
Q

]
Q

|_\

'_\

29

Compare]

let cadd (cl:int*int) (c2:int*int) : int*int =
let (x1,yl) = cl in
let (x2,y2) = c2 in

(x1+x2, yl+y2)

let double (cl:int*int) : int*int =
let cz = cl in _ no allocation
cadd cl c2
let double (cl:int*int) : int*int =
Sl WA et _ no allocation
let double (cl:int*int) : int*int =
let (x1,yl) = cl in _ allocates 2 pairs
cadd (x1,yl) (x1,vy1l) .
(unless the compiler

happens to optimize...)

]31

let cadd (cl:int*int) (c2:int*int) : int*int =
let (x1,yl) = cl in
let (x2,y2) = c2 in
(x1+x2, yl+y2)

let double (cl:int*int) : int*int =

let (x1,yl) = cl in

cadd cl1 cl R\\\

extracts components:

it is a read

_ double does not
allocate

FUNCTION CLOSURES

[Closures (A reminder)]

Nested functions like bar often contain free variables:

let foo vy
let bar
bar

X

= x + y in

Here's bar on its own:

let bar

X

y is free in the
definition of bar

To implement bar, the compiler creates a closure, which is a pair of
code for the function plus an environment holding the free variables.

[But what about nested, higher-order functions?]

bar again:

let bar x = x + y

bar's representation:

N

let £f2 (n, env) = {y = 1}
n + env.y

code - environment

closure

[But what about nested, higher-order functions?]

To estimate the (heap) space used by a program, we often
need to estimate the (heap) space used by its closures.

RN

let £f2 (n, env) = {y = 1}
n + env.y

code - environment

Our estimate will include the cost of the pair:
* two pointers = two 4-byte values = 8 bytes total +
e the cost of the environment (4 bytes in this case).

Space Model Summary

]36

Understanding space consumption in FP involves:

* understanding the difference between
* live space
* rate of allocation

* understanding where allocation occurs
* any time a constructor is used
* whenever closures are created

* understanding the costs of

» data types (fairly similar to Java)
* costs of closures (pair + environment)

