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Because	Halloween	draws	nigh:	
	

Serial	killer	or	programming	languages	researcher?	
	

hMp://www.malevole.com/mv/misc/killerquiz/	
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Space	
Understanding	the	space	complexity	of	func'onal	programs	

–  At	least	two	interes'ng	components:	
•  the	amount	of	live	space	at	any	instant	in	'me	
•  the	rate	of	alloca.on	

–  a	func'on	call	may	not	change	the	amount	of	live	space	by	
much	but	may	allocate	at	a	substan'al	rate	

–  because	func'onal	programs	act	by	genera'ng	new	data	
structures	and	discarding	old	ones,	they	oUen	allocate	a	lot	
»  OCaml	garbage	collector	is	op'mized	with	this	in	mind	
»  interes'ng	fact:		at	the	assembly	level,	the	number	of	
writes	by	a	func'onal	program	is	roughly	the	same	as	the	
number	of	writes	by	an	impera've	program	
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writes	by	a	func'onal	program	is	roughly	the	same	as	the	
number	of	writes	by	an	impera've	program	

–  What	takes	up	space?	
•  conven'onal	first-order	data:		tuples,	lists,	strings,	datatypes	
•  func'on	representa'ons	(closures)	
•  the	call	stack	
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CONVENTIONAL	DATA	
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OCaml	Representa'ons	for	Data	Structures	
Type:	
	
	
	
	
Representa'on:	

type triple = int * char * int 

3	 'a'	 17	(3,	'a',	17)	



OCaml	Representa'ons	for	Data	Structures	
Type:	
	
	
	
	
Representa'on:	

type mylist = int list 

3	0	

[	]	 [3;	4;	5]	
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Type:	
	
	
	
	
Representa'on:	

Space	Model	

Node	
0	

3	 leU	 right	

Leaf	 Node(3,	leU,	right)	

type tree = Leaf | Node of int * tree * tree 
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Alloca'ng	space	
In	C,	you	allocate	when	you	call	“malloc”	
	
In	Java,	you	allocate	when	you	call	“new”	
	
What	about	ML?	
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Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) = 
  match t with 
    Leaf -> Node (i, Leaf, Leaf) 
  | Node (j, left, right) ->  
      if i <= j then 
        Node (j, insert left i, right) 
      else 
        Node (j, left, insert right i) 
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9 

15 

t	

Consider:	
	
insert	t	21	
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Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	
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      if i <= j then 
        Node (j, insert left i, right) 
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9 

15 

3 

9 

15 

21 

Total	space	allocated	is	
propor'onal	to	the	
height	of	the	tree.	
	
~	log	n,	if	tree	with	n		
nodes	is	balanced	

t	
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Net	space	allocated	
The	garbage	collector	reclaims	
unreachable	data	structures	on	the	heap.	

John	McCarthy	
	invented	g.c.	

	1960	

let fiddle (t: tree) = 
  insert t 21   

3 

9 

15 

3 

9 

15 

21 

t	
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Net	space	allocated	
The	garbage	collector	reclaims		
unreachable	data	structures	on	the	heap.	

let fiddle (t: tree) = 
  insert t 21   

3 

9 

15 

3 

9 

15 

21 

t	

If	t	is	dead	(unreachable),	

Then	all	these	nodes	
will	be	reclaimed!	
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Net	space	allocated	
The	garbage	collector	reclaims		
unreachable	data	structures	on	the	heap.	

let fiddle (t: tree) = 
  insert t 21   

3 

9 

15 

3 

9 

15 

21 

t	

Net	new	space	allocated:	
1	node	

	
(just	like	“impera've”	version	

	of	binary	search	trees)	
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Net	space	allocated	
But	what	if	you	want	to	keep	the	old	tree?	

let faddle (t: tree) = 
  (t, insert t 21)   

3 

9 

15 

3 

9 

15 

21 

t	

faddle(t)	
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Net	space	allocated	
But	what	if	you	want	to	keep	the	old	tree?	

let faddle (t: tree) = 
  (t, insert t 21)   

3 

9 

15 

3 

9 

15 

21 

t	

faddle(t)	

Net	new	space	allocated:	
log(N)	nodes	

	
but	note:	“impera've”	version	
would	have	to	copy	the	old	tree,	
space	cost	N	new	nodes!	
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Compare	

let check_option (o:int option) : int option = 
  match o with 
    Some _ -> o 
  | None -> failwith “found none” 
       

let check_option (o:int option) : int option = 
  match o with 
    Some j -> Some j 
  | None -> failwith “found none”   
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Compare	

let check_option (o:int option) : int option = 
  match o with 
    Some _ -> o 
  | None -> failwith “found none” 
       

let check_option (o:int option) : int option = 
  match o with 
    Some j -> Some j 
  | None -> failwith “found none” 
       

allocates	nothing		
when	arg	is	Some	i	

allocates	an	op'on	
when	arg	is	Some	i	
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Compare	

let double (c1:int*int) : int*int = 
  let c2 = c1 in 
  cadd c1 c2 
 
       

let cadd (c1:int*int) (c2:int*int) : int*int = 
  let (x1,y1) = c1 in 
  let (x2,y2) = c2 in 
  (x1+x2, y1+y2) 
 
       

let double (c1:int*int) : int*int = 
  cadd c1 c1 
 
       

let double (c1:int*int) : int*int = 
  let (x1,y1) = c1 in 
  cadd (x1,y1) (x1,y1) 
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c1 c2 
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Compare	

let double (c1:int*int) : int*int = 
  let c2 = c1 in 
  cadd c1 c2 
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c1 

1 2 

arg1 

1 2 

arg2 

29	



Compare	

let double (c1:int*int) : int*int = 
  let c2 = c1 in 
  cadd c1 c2 
 
       

no	alloca'on	

let cadd (c1:int*int) (c2:int*int) : int*int = 
  let (x1,y1) = c1 in 
  let (x2,y2) = c2 in 
  (x1+x2, y1+y2) 
 
       

let double (c1:int*int) : int*int = 
  cadd c1 c1 
 
       

let double (c1:int*int) : int*int = 
  let (x1,y1) = c1 in 
  cadd (x1,y1) (x1,y1) 
 
       

no	alloca'on	

allocates	2	pairs	
	(unless	the	compiler	
happens	to	op'mize…)	
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Compare	

let double (c1:int*int) : int*int = 
  let (x1,y1) = c1 in 
  cadd c1 c1 
 
       

double	does	not	
allocate	

let cadd (c1:int*int) (c2:int*int) : int*int = 
  let (x1,y1) = c1 in 
  let (x2,y2) = c2 in 
  (x1+x2, y1+y2) 
 
       

extracts	components:		it	is	a	read	
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FUNCTION	CLOSURES	
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Closures	(A	reminder)	
Nested	func'ons	like	bar	oUen	contain	free	variables:	
	
	
	
Here's	bar	on	its	own:	
	
	
	
	
	
	
To	implement	bar,	the	compiler	creates	a	closure,	which	is	a	pair	of	
code	for	the	func'on	plus	an	environment	holding	the	free	variables.	

let foo y = 
  let bar x = x + y in 
  bar 
   

33	

let bar x = x + y 
   

y	is	free	in	the	
defini'on	of	bar	



But	what	about	nested,	higher-order	func'ons?	
bar	again:	
	
	
	
bar's	representa'on:	

let bar x = x + y 

let f2 (n, env) =  
  n + env.y 

{y = 1} 

environment	code	

closure	

34	



But	what	about	nested,	higher-order	func'ons?	
To	es'mate	the	(heap)	space	used	by	a	program,	we	oUen	
need	to	es'mate	the	(heap)	space	used	by	its	closures.	
	
	
	
	
	
	
Our	es'mate	will	include	the	cost	of	the	pair:	
•  two	pointers	=	two	4-byte	values	=	8	bytes	total	+		
•  the	cost	of	the	environment	(4	bytes	in	this	case).	
	

let f2 (n, env) =  
  n + env.y 

{y = 1} 

environment	code	
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Space	Model	Summary	
Understanding	space	consump'on	in	FP	involves:	

•  understanding	the	difference	between	
•  live	space	
•  rate	of	alloca'on	

•  understanding	where	alloca'on	occurs	
•  any	'me	a	constructor	is	used	
•  whenever	closures	are	created	

•  understanding	the	costs	of	
•  data	types	(fairly	similar	to	Java)	
•  costs	of	closures	(pair	+	environment)	
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