
A	Func'onal	Space	Model	

COS	326	
David	Walker	

Princeton	University	
	

slides	copyright	2017	David	Walker	
permission	granted	to	reuse	these	slides	for	non-commercial	educa'onal	purposes	

	

Because	Halloween	draws	nigh:	
	

Serial	killer	or	programming	languages	researcher?	
	

hMp://www.malevole.com/mv/misc/killerquiz/	

2	

Space	
Understanding	the	space	complexity	of	func'onal	programs	

–  At	least	two	interes'ng	components:	
•  the	amount	of	live	space	at	any	instant	in	'me	
•  the	rate	of	alloca.on	

–  a	func'on	call	may	not	change	the	amount	of	live	space	by	
much	but	may	allocate	at	a	substan'al	rate	

–  because	func'onal	programs	act	by	genera'ng	new	data	
structures	and	discarding	old	ones,	they	oUen	allocate	a	lot	
»  OCaml	garbage	collector	is	op'mized	with	this	in	mind	
»  interes'ng	fact:		at	the	assembly	level,	the	number	of	
writes	by	a	func'onal	program	is	roughly	the	same	as	the	
number	of	writes	by	an	impera've	program	

3	

Space	
Understanding	the	space	complexity	of	func'onal	programs	

–  At	least	two	interes'ng	components:	
•  the	amount	of	live	space	at	any	instant	in	'me	
•  the	rate	of	alloca.on	

–  a	func'on	call	may	not	change	the	amount	of	live	space	by	
much	but	may	allocate	at	a	substan'al	rate	

–  because	func'onal	programs	act	by	genera'ng	new	data	
structures	and	discarding	old	ones,	they	oUen	allocate	a	lot	
»  OCaml	garbage	collector	is	op'mized	with	this	in	mind	
»  interes'ng	fact:		at	the	assembly	level,	the	number	of	
writes	by	a	func'onal	program	is	roughly	the	same	as	the	
number	of	writes	by	an	impera've	program	

–  What	takes	up	space?	
•  conven'onal	first-order	data:		tuples,	lists,	strings,	datatypes	
•  func'on	representa'ons	(closures)	
•  the	call	stack	

4	

CONVENTIONAL	DATA	

5	

OCaml	Representa'ons	for	Data	Structures	
Type:	
	
	
	
	
Representa'on:	

type triple = int * char * int

3	 'a'	 17	(3,	'a',	17)	

OCaml	Representa'ons	for	Data	Structures	
Type:	
	
	
	
	
Representa'on:	

type mylist = int list

3	0	

[]	 [3;	4;	5]	

4	 5	 0	

Type:	
	
	
	
	
Representa'on:	

Space	Model	

Node	
0	

3	 leU	 right	

Leaf	 Node(3,	leU,	right)	

type tree = Leaf | Node of int * tree * tree

8	

Alloca'ng	space	
In	C,	you	allocate	when	you	call	“malloc”	
	
In	Java,	you	allocate	when	you	call	“new”	
	
What	about	ML?	

9	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

10	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

t	

Consider:	
	
insert	t	21	

11	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

t	

Consider:	
	
insert	t	21	

12	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

21

Consider:	
	
insert	t	21	

t	

13	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

15

21

Consider:	
	
insert	t	21	

t	

14	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

9

15

21

Consider:	
	
insert	t	21	

t	

15	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

3

9

15

21

Consider:	
	
insert	t	21	

t	

16	

Alloca'ng	space	
Whenever	you	use	a	constructor,	space	is	allocated:	

let rec insert (t:tree) (i:int) =
 match t with
 Leaf -> Node (i, Leaf, Leaf)
 | Node (j, left, right) ->
 if i <= j then
 Node (j, insert left i, right)
 else
 Node (j, left, insert right i)

3

9

15

3

9

15

21

Total	space	allocated	is	
propor'onal	to	the	
height	of	the	tree.	
	
~	log	n,	if	tree	with	n		
nodes	is	balanced	

t	

17	

Net	space	allocated	
The	garbage	collector	reclaims	
unreachable	data	structures	on	the	heap.	

John	McCarthy	
	invented	g.c.	

	1960	

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t	

18	

Net	space	allocated	
The	garbage	collector	reclaims		
unreachable	data	structures	on	the	heap.	

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t	

If t is dead
(unreachable),

19	

Net	space	allocated	
The	garbage	collector	reclaims		
unreachable	data	structures	on	the	heap.	

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t	

If	t	is	dead	(unreachable),	

Then	all	these	nodes	
will	be	reclaimed!	

20	

Net	space	allocated	
The	garbage	collector	reclaims		
unreachable	data	structures	on	the	heap.	

let fiddle (t: tree) =
 insert t 21

3

9

15

3

9

15

21

t	

Net	new	space	allocated:	
1	node	

	
(just	like	“impera've”	version	

	of	binary	search	trees)	

21	

Net	space	allocated	
But	what	if	you	want	to	keep	the	old	tree?	

let faddle (t: tree) =
 (t, insert t 21)

3

9

15

3

9

15

21

t	

faddle(t)	

22	

Net	space	allocated	
But	what	if	you	want	to	keep	the	old	tree?	

let faddle (t: tree) =
 (t, insert t 21)

3

9

15

3

9

15

21

t	

faddle(t)	

Net	new	space	allocated:	
log(N)	nodes	

	
but	note:	“impera've”	version	
would	have	to	copy	the	old	tree,	
space	cost	N	new	nodes!	

23	

Compare	

let check_option (o:int option) : int option =
 match o with
 Some _ -> o
 | None -> failwith “found none”

let check_option (o:int option) : int option =
 match o with
 Some j -> Some j
 | None -> failwith “found none”

24	

Compare	

let check_option (o:int option) : int option =
 match o with
 Some _ -> o
 | None -> failwith “found none”

let check_option (o:int option) : int option =
 match o with
 Some j -> Some j
 | None -> failwith “found none”

allocates	nothing		
when	arg	is	Some	i	

allocates	an	op'on	
when	arg	is	Some	i	

25	

Compare	

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

let double (c1:int*int) : int*int =
 cadd c1 c1

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)

26	

Compare	

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

let double (c1:int*int) : int*int =
 cadd c1 c1

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)

1 2

c1 c2

27	

Compare	

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

let double (c1:int*int) : int*int =
 cadd c1 c1

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)

1 2

c1

28	

Compare	

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

let double (c1:int*int) : int*int =
 cadd c1 c1

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)

 1 2

c1

1 2

arg1

1 2

arg2

29	

Compare	

let double (c1:int*int) : int*int =
 let c2 = c1 in
 cadd c1 c2

no	alloca'on	

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

let double (c1:int*int) : int*int =
 cadd c1 c1

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd (x1,y1) (x1,y1)

no	alloca'on	

allocates	2	pairs	
	(unless	the	compiler	
happens	to	op'mize…)	

30	

Compare	

let double (c1:int*int) : int*int =
 let (x1,y1) = c1 in
 cadd c1 c1

double	does	not	
allocate	

let cadd (c1:int*int) (c2:int*int) : int*int =
 let (x1,y1) = c1 in
 let (x2,y2) = c2 in
 (x1+x2, y1+y2)

extracts	components:		it	is	a	read	

31	

FUNCTION	CLOSURES	

32	

Closures	(A	reminder)	
Nested	func'ons	like	bar	oUen	contain	free	variables:	
	
	
	
Here's	bar	on	its	own:	
	
	
	
	
	
	
To	implement	bar,	the	compiler	creates	a	closure,	which	is	a	pair	of	
code	for	the	func'on	plus	an	environment	holding	the	free	variables.	

let foo y =
 let bar x = x + y in
 bar

33	

let bar x = x + y

y	is	free	in	the	
defini'on	of	bar	

But	what	about	nested,	higher-order	func'ons?	
bar	again:	
	
	
	
bar's	representa'on:	

let bar x = x + y

let f2 (n, env) =
 n + env.y

{y = 1}

environment	code	

closure	

34	

But	what	about	nested,	higher-order	func'ons?	
To	es'mate	the	(heap)	space	used	by	a	program,	we	oUen	
need	to	es'mate	the	(heap)	space	used	by	its	closures.	
	
	
	
	
	
	
Our	es'mate	will	include	the	cost	of	the	pair:	
•  two	pointers	=	two	4-byte	values	=	8	bytes	total	+		
•  the	cost	of	the	environment	(4	bytes	in	this	case).	
	

let f2 (n, env) =
 n + env.y

{y = 1}

environment	code	

35	

Space	Model	Summary	
Understanding	space	consump'on	in	FP	involves:	

•  understanding	the	difference	between	
•  live	space	
•  rate	of	alloca'on	

•  understanding	where	alloca'on	occurs	
•  any	'me	a	constructor	is	used	
•  whenever	closures	are	created	

•  understanding	the	costs	of	
•  data	types	(fairly	similar	to	Java)	
•  costs	of	closures	(pair	+	environment)	

36	

