An OCaml definition of OCaml evaluation, or,
Implementing OCaml in OCaml
(Part I1)

COS 326
David Walker

Princeton University

slides copyright 2017 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Last Time

Implementing an interpreter:

AST
Result

4

Program parse eval
LN AST
Text >
4 4
type check
Components:

* Evaluator for primitive operations
» Substitution

* Recursive evaluation function for expressions

print
—

Printed
Result

Our Interpreter

exception UnboundVariable of variable

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)

[Our Interpreter

exception UnboundVariable of variable

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)

let rec substitute (v:exp) (x:variable) (e:exp) : exp =
match e with

Int e -> e
Op e(el,op,e2) ->

Op_e(substitute v x el,op,substitute v x e2)
Var e y -> if x = y then v else e
Let e (y,el,e2) ->

Let e (y, substitute v x el,

if x = y then e2 else substitute v x e2)

Our Interpreter] °

Example to interpret: How to interpret a let expression:
let z = 2 in eval (let x = el in e2) ->
let z = 3 + z in eval {substitute (eval el) x e2}

Z

How to substitute v for x into a let expression

substitute v x (let y = el in e2) ==
let y = substitute v x el in
(if x = y then e2 else substitute v x e2)

Our Interpreter] °

Example to interpret: How to interpret a let expression:

eval (let x = el in e2) ->

let z = 2 in
eval {substitute (eval el) x e2}

let z 3 + z in
z

eval { substitute (eval 2) z (let z = 3 + 2z in z) }

How to substitute v for x into a let expression

substitute v x (let y = el in e2) ==
let y = substitute v x el in
(if x = y then e2 else substitute v x e2)

Our Interpreter] ’

Example to interpret: How to interpret a let expression:

eval (let x = el in e2) ->

let z = 2 in
eval {substitute (eval el) x e2}

let z 3 + z in
z

eval { substitute (eval 2) z (let z = 3 + 2z in z) }

eval { substitute 2 z (let z 3 + 2z in z) }

How to substitute v for x into a let expression

substitute v x (let y = el in e2) ==
let y = substitute v x el in

(if x = y then e2 else substitute v x e2)

Our Interpreter] ’

Example to interpret: How to interpret a let expression:

eval (let x = el in e2) ->

let z = 2 in
eval {substitute (eval el) x e2}

let z 3 + z in
z

eval { substitute (eval 2) z (let z = 3 + 2z in z) }

eval { substitute 2 z (let z 3 + z in z) }
/\—'—J

— N\

N
eval { (let z‘;/T;;£stitute 2z (3 + 2)) i;Nz) }

How to substitute v for x into a let expression

substitute v x (let y = el in e2) ==
let y = substitute v x el in
(if x = y then e2 else substitute v x e2)

Our Interpreter] ’

Example to interpret: How to interpret a let expression:

eval (let x = el in e2) ->

let z = 2 in
eval {substitute (eval el) x e2}

let z 3 + z in
z

eval { substitute (eval 2) z (let z = 3 + 2z in z) }

eval { substitute 2 z (let z 3 + z in z) }
/‘_l_’

_— N\

MY
eval { (let z‘;/T;;£stitute 2 z (3 + z)) i;N€3 }

A\

notice we don't
substitute 2 in z here

How to substitute v for x into a let expressioM

substitute v x (let y = el in) ==
let y = substitute X el in
(if x = y then e2"else substitute v x e2)

Our Interpreter] 10

Example to interpret: How to interpret a let expression:

eval (let x = el in e2) ->

let z = 2 in
eval {substitute (eval el) x e2}

let z = 3 + z in

4

eval { substitute (eval 2) z (let z = 3 + 2z in z) }

eval { substitute 2 z (let z = 3 + z in 2) }

eval { (let z = (substitute 2 z (3 + z)) in z) }
/

eval { let z = 3 + 2*15’;”’7 }

How to substitute v for x into a let expression

substitute v x (let y = el in e2) ==
let y = substitute v x el in
(if x = y then e2 else substitute v x e2)

SCALING UP THE LANGUAGE

(MORE FEATURES, MORE FUN)

Scaling up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp
| Fun e of variable * exp | FunCall e of exp * exp

12

Scaling up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp

| Fun e of variable * exp | FunCall e of exp * exp
S

OCaml’s
funx->e
is represented as
Fun_e(x,e)

13

Scaling up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp
| Fun e of variable * exp | FunCall e of exp * exp

A function call
fact 3
is implemented as
FunCall_e (Var_e “fact”, Int_e 3)

14

Scaling up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp
| Fun e of variable * exp | FunCall e of exp * exp

let is value (e:exp) : bool =

Functions are
values!

match e with

| Int e -> true
| Fun e (_,) -> true
| (Op_e (_,_r_)
| Let e (., ,)
| var e
| FunCall e (_,)) -> false

Easy exam question:
What value does the OCaml interpreter produce when you enter

(fun x -> 3) in to the prompt?
Answer: the value produced is (fun x -> 3)

15

Scaling up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp

| Fun_e of variable * exp | FunCall e of exp * exp;;

let is value (e:exp) : bool =

match e with

| Int e -> true
| Fun e (_,) -> true
| (Op_e (_,_r_)
| Let e (., ,)
| var e
| FunCall e (_,)) -> false

N

Function calls are
not values.

16

Scaling up the Language] v

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el, eval e2 with

| Fun e (x,e), v2 -> eval (substitute v2 x e)

| -> raise TypeError)

Scaling up the Language] '8

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->
(match eval el, eval e2 wit
| Fun e (x,e), v2 -> eval (s
| -> raise TypeError)

values (including

functions) always
evaluate to
themselves.

Scaling up the Language

let rec eval (e:exp) : exp =
match e with

Int e i -=> Int e i

Op e(el,op,e2) -> eval op

Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el, eval e2 with

| Fun e (x,e), v2 ->
| -> raise TypeError)

Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x -> raise (UnboundVariable x)

(eval el) op (eval e2)

1l (substitute v2 x e)

To evaluate a

function call, we
first evaluate
both el and e2 to

values.

Scaling up the Language] 20

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el, eval e2 with

| Fun e (x,e), v2 -> eval (substitute v2 x e)

| -> raise TypeError)

el had better

evaluate to a
function value,
else we have a
type error.

Scaling up the Language] ”

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el, eval e2 with

| Fun e (x,e), v2 -> eval (substitute v2 x e)

| _ -> raise Typiﬁiiii%:::::;;;;7¢/

Then we substitute e2’s
value (v2) for xin e and
evaluate the resulting
expression.

Simplifying a little] 2

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el with

| Fun e (x,e) -> eval (substitute (eval e2) x e)

| -> raise TypeEriiil\\//////j:;;;7/

We don’t really need
to pattern-match on e2.
Just evaluate here

Simplifying a little] 73

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (ef,el) ->

(match eval ef with

| Fun e (x,e2) -> eval (substitute (eval el) x e2)

| _ -> raise TypeError) \F\\

This looks like
the case for let!

Let and Lambda
let x = 1 in xt+41 (fun x -> x+41) 1
_> -
o 1+41
——>
- 42
42

In general:

(fun x -> e2) el

== Jet X = el in e2

So we could write:] 2

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (FunCall (Fun e (x,e2), el))
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (ef,e2) ->

(match eval ef with

| Fun e (x,el) -> eval (substitute (eval el) x e2)

| _ -> raise TypeError)

In programming-languages speak: “Let is syntactic sugar for a function call”

Syntactic sugar: A new feature defined by a simple, local transformation.

Recursive definitions] %

type exp = Int e of int | Op e of exp * op * exp

| Var e of variable |
| Fun e of variable *

| Rec_e of variable *

Let e of variable * exp * exp |
exp | FunCall e of exp * exp
variable * exp

(rewrite)
let rec £ x = £ (x+1) in f 3
let £ = (rec £ x —=> £ (x+1)) in (alpha-convert)
f 3
let g = (rec £ x -> £ (xt+1)) in (implement)
g 3

Let_e (ug" ,

)

Rec—e (llfll ’ IIXII .

FunCall e (Var_e “f"”, Op e (Var_e “x", Plus, Int e 1))

) 1

FunCall (Var e “g”, Int e 3)

Recursive definitions

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp |
| Fun e of variable * exp | FunCall e of exp * exp
| Rec_e of variable * variable * exp

let is value (e:exp) : bool =
match e with

Int e -> true

Fun e (_,) -> true

Rec e of (_, ,) -> true

(Op_e (_,_,_) | Let_ e (_,_,_) |

Var e | FunCall e (_,)) -> false

27

Recursive definitions

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp |
| Fun e of variable * exp | FunCall e of exp * exp
| Rec_e of variable * variable * exp

let is value (e:exp) : bool =
match e with
Int e -> true

Fun e (_,) -> true

Rec e o

(Op_e (_
Var e

y) —> true
et e (_,_,_) |

Fun_e (x, body) == Rec_e("unused", x, body)

A better IR would just delete Fun_e — avoid
unnecessary redundancy

28

Interlude: Notation for Substitution

]zg

“Substitute value v for variable x in expression e:” e[v/x]

examples of substitution:

(x +v) [7/y]

(let x=30in lety=40in x +y) [7/y]

(lety=yinlety=yiny+y)[7/y]

IS

IS

IS

(x+7)
(let x=30inlety=40inx+y)

(lety=7inlety=yiny+y)

Evaluating Recursive Functions] 0

Basic evaluation rule for recursive functions:

(recfx=body)arg --> body [arg/x] [rec f x = body/f]

/N

argument value substituted entire function substituted
for parameter for function name

Evaluating Recursive Functions

Start out with
a let bound to
a recursive function:

The Substitution:

The Result:

let g =
rec £ x ->
if x <= 0 then x
else x + £ (x-1)
in g 3

g 3 [rec £ x ->
if x <= 0 then x
else x + £ (x-1) / g]

(rec £ x ->
if x <= 0 then x else x + £ (x-1)) 3

Evaluating Recursive Functions

Recursive (rec £ x ->
Function Call: if x <= 0 then x else x + £ (x-1)) 3

(Lf x <= 0 then x else x + £ (x-1))
[rec £ x ->

The Substitution: if x <= 0 then x
else x + £ (x-1) / £]
[3/ x] .
Substitute argument Substitute entire function
for parameter for function name

(Lf 3 <= 0 then 3 else 3 +

The Result: (rec.f X —=>
if x <= 0 then x

else x + £ (x-1)) (3-1))

Evaluating Recursive Functions

let rec eval (e:exp) : exp =
match e with
| Int e i -=> Int e i
| Op e(el,op,e2) -> eval op (eval el) op (eval e2)
| Let e(x,el,e2) -> eval (substitute (eval el) x e2)
| Var e x -> raise (UnboundVariable x)
| Fun e (x,e) -> Fun e (x,e)
| FunCall e (el,e2) ->

(match eval el with

| Fun e (x,e) -> pattern as x

let v = eval e2 in

eval (substitute v x e match the pattern
and binds x to value

| (Rec_e (f,x,e)) as f val ->
let v = eval e2 in
eval (substitute f val f (substitute v x e))

-> raise TypeError)

More Evaluation

]34

(rec fact n =
——>

if n <= 1 then 1 else n * fact(n-1)) 3

if 3 < 1 then 1 else
3 * (rec fact n = if ... then ... else ...) (3-1)
-——>
3 * (rec fact n = if ..) (3-1)
-——>
3 * (rec fact n = if ..) 2
-—>
3 * (if 2 <=1 then 1 else 2 * (rec fact n = ...)(2-1))
-—>
3 * (2 * (rec fact n = ...)(2-1))
-—>
3 * (2 * (rec fact n = ...)(1))
-—>
3 2 * (if 1 <=1 then 1 else 1 * (rec fact ...)(1-1))
-—>

3 * 2 * 1

35

A MATHEMATICAL DEFINITION*
OF OCAML EVALUATION

*it’s a partial definition and this is a big topic; for more, see COS 510

[From Code to Abstract Specification] 3%

OCaml code can give a language semantics
— advantage: it can be executed, so we can try it out
— advantage: it is amazingly concise
* especially compared to what you would have written in Java

— disadvantage: it is a little ugly to operate over concrete ML datatypes
like “Op_e(el,Plus,e2)” as opposed to “el + e2”

[From Code to Abstract Specification] !

PL researchers have developed their own standard notation for
writing down how programs execute

— it has a mathematical “feel” that makes PL researchers feel special
and gives us goosebumps inside

— it operates over abstract expression syntax like “el + e2”
— it is useful to know this notation if you want to read specifications of

programming language semantics

e e.g.: Standard ML (of which OCaml is a descendent) has a formal
definition given in this notation (and C, and Java; but not OCaml...)

e e.g.: most papers in the conference POPL (ACM Principles of Prog. Lang.)

[Goal] *

Our goal is to explain how an expression e evaluates to a value v.

In other words, we want to define a mathematical relation between
pairs of expressions and values.

[Formal Inference Rules] 39

We define the “evaluates to” relation using a set of (inductive) rules
that allow us to prove that a particular (expression, value) pair is
part of the relation.

A rule looks like this:

premise 1 premise 2 premise 3
conclusion

You read a rule like this:

— “if premise 1 can be proven and premise 2 can be proven and ...
and premise n can be proven then conclusion can be proven”

Some rules have no premises
— this means their conclusions are always true
— we call such rules “axioms” or “base cases”

An example rule

As a rule:
el -->vl e2 -->v2 eval_op (vl, op,v2) ==V
elope2 >V
In English:

“If el evaluates to vl
and e2 evaluates to v2
and eval _op (v1, op, v2) is equal to v’
then
el op e2 evaluates to Vv’

In code:

let rec eval (e:exp) : exp =
match e with
| Op_e(el,op,e2) -> let vl = eval el in
let v2 = eval e2 in

let v/ = eval op vl op v2 in

VI

An example rule

As a rule: / assertsiis
: an integer
K4 &
| -->

In English:

“If the expression is an integer value, it evaluates to itself.”

In code:

let rec eval (e:exp) : exp =
match e with
| Int e i -=> Int e i

An example rule concerning evaluation

As a rule:
el-->vl e2 [vl/x] -->* v2
letx=eline2 --> v2

In English:

“If el evaluates to vl (which is a value)
and e2 with v1 substituted for x evaluates to v2
then let x=el in e2 evaluates to v2.”

In code:

let rec eval (e:exp) : exp =
match e with
| Let e(x,el,e2) -> let vl = eval el in
eval (substitute vl x e2)

An example rule concerning evaluation] “

As a rule: . .
typical “lambda” notation
for a function with

Ax.e --> AX.e argument x, body e

In English:

“A function value evaluates to itself.”

In code:

let rec eval (e:exp) : exp =
match e with

| Fun e (x,e) -> Fun e (x,e)

[An example rule concerning evaluation] “

As a rule:
el --> Ax.e e2 -->v2 e[v2/x] -->v
ele2 -->v

In English:

“if el evaluates to a function with argument x and body e
and e2 evaluates to a value v2
and e with v2 substituted for x evaluates to v
then el applied to e2 evaluates to v”

In code:

let rec eval (e:exp) : exp =
match e with

| FunCall e (el,e2) ->
(match eval el with
| Fun e (x,e) -> eval (substitute (eval e2) x e)

| ...)

An example rule concerning evaluation

]45

As a rule:

el-->recfx=e e2 -->v

e[rec f x = e/f][v/x] --> v2

ele2 --> v2

In English:

In code:

lluggh”

let rec eval (e:exp) : exp
match e with

| (Rec_e (f,x,e)) as £ val ->

let v = eval e2 in

substitute £ val (substitute v x e) g

Comparison: Code vs. Rules] *

complete eval code: complete set of rules:
let rec eval (e:exp) : exp = ic7
match e with =

Int e 1 -=> Int e i

Op_e(el,op,e2) -> eval op (eval el) op (eval e2) el-->vl e2 -->v2 eval op (vl, op, v2)==v
elope2 -->v

Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x -> raise (UnboundVariable x)
el-->vl e2 [vl/x] -->v2

rune (x,€) -> fun_e (x,€) letx=eline2 --> v2

FunCall e (el,e2) ->
(match eval el

| Fun_e (x,e) -> eval (Let_e (x,e2,e)) Ax.e --> Ax.e

| _ -> raise TypeError)
LetRec_e (x,el,e2) -> el --> Ax.e e2 -->v2 e[v2/x] -->v
(Rec_e (f,x,e)) as £ val -> ele2 ->v

let v = eval e2 in

substitute f _val f (substitute v x e) el-->recfx=e e2-->v2 efrecfx=e/f][v2/x]-->v3

ele2 --> v3

Almost isomorphic:

— one rule per pattern-matching clause
— recursive call to eval whenever there is a --> premise in a rule
— what’s the main difference?

Comparison: Code vs. Rules v

complete eval code: complete set of rules:
ie”Z
let rec eval (e:exp) : exp = i o>

match e with
| Int_ e i -> Int e i el-->vl e2 -->v2 eval op (vl, op,Vv2) ==v
elope2 -->v

| Op e(el,op,e2) -> eval op (eval el) op (eval e2)
| Let e(x,el,e2) -> eval (substitute (eval el) x e2)
x¥| Var e x -> raise (UnboundVariable x) el-->vl e2 [vl/x] -->v2
|
|

letx=eline2 --> v2
Fun e (x,e) -> Fun_e (x,e) X ! v

FunCall e (el,e2) ->
(match eval el

Ax.e --> Ax.e

| Fun_e (x,e) -> eval (Let_e (x,e2,e))
__ => raise TypeError) el -->Ax.e e2 -->v2 e[v2/x] -->v
| LetRec_e (x,el,e2) -> ele2 ->v

(Rec_e (f,x,e)) as £ val ->

let v = eval e2 in
substitute f val f (substitute v x e) el-->recfx=e e2 -->v2 e[recfx=e/f][v2/x] -->v3

ele2 --> v3

 There’s no formal rule for handling free variables
* No rule for evaluating function calls when a non-function in the caller position
* Ingeneral, no rule when further evaluation is impossible
— the rules express the legal evaluations and say nothing about what to do in error situations

— the code handles the error situations by raising exceptions
— type theorists prove that well-typed programs don’t run into undefined cases

Summary

]48

 We can reason about OCaml programs using a substitution model.

integers, bools, strings, chars, and functions are values

value rule: values evaluate to themselves

let rule: “let x =elin e2” : substitute el’s value for x into e2

fun call rule: “(fun x -> e2) el”: substitute el’s value for x into e2

rec call rule: “(rec x =el) e2” : like fun call rule, but also substitute
recursive function for name of function

* To unwind: substitute (recx =el) forxinel

 We can make the evaluation model precise by building an interpreter
and using that interpreter as a specification of the language
semantics.

* We can also specify the evaluation model using a set of inference rules
— more on this in COS 510

Some Final Words

The substitution model is only a model.
— it does not accurately model all of OCaml’s features
* |/0O, exceptions, mutation, concurrency, ...

* we can build models of these things, but they aren’t as simple.
e even substitution is tricky to formalize!

It’s useful for reasoning about higher-order functions,
correctness of algorithms, and optimizations.
— we can use it to formally prove that, for instance:
 map f (map g xs) == map (comp f g) xs

* proof: by induction on the length of the list xs, using the
definitions of the substitution model.

— we often model complicated systems (e.g., protocols) using a
small functional language and substitution-based evaluation.

It is not useful for reasoning about execution time or space
— more complex models needed there

Some Final Words

e even substitution was tricky to formalize!

You can say that again!
| got it wrong the first
time | tried, in 1932.
Fixed the bug by 1934,
though.

Alonzo Church,
1903-1995
Princeton Professor,
1929-1967

Church's mistake] o

substitute:

fun xs -> map (+) xs

for fin:

funys ->
let map xs = 0::xs in
f (map ys)

and if you don't watch out, you will get:

funys ->
let map xs = 0::xs in
(fun xs§map (+) xs) (map ys)

Church's mistake] 2

substitute:

fun xs -> map (+) xs

the problem was that the

for fin: value you substituted in
had a free variable (map) in
fun ys -> it that was
_ captured.
let map xs = 0::xs in
f (map ys)

and if you don't watch out, you will get:

funys ->
let map xs = 0::xs in
(fun xs -> map (+) xs) (map ys)

Church's mistake] o3

substitute:

fun xs -> map (+) xs

for fin:

funys ->
let map xs = 0::xs in
f (map ys)

to do it right, you rename (alpha-convert) some variables:

funys ->
let z xs = 0::xs in
(fun xs -> map (+) xs) (z ys)

ASSIGNMENT #4

Two Parts

Part 1: Build your own interpreter
— More features: booleans, pairs, lists, match
— Different model: environment-based vs substitution-based

* The abstract syntax tree Fun_e(_,) is no longer a value
— a Fun_e is not a result of a computation

* There is one more computation step to do:
— creation of a closure from a Fun_e expression

Part 2: Prove facts about programs using equational reasoning
— we already saw a bit of equational reasoning today:

e ifel-->e2thenel==e2

— more next week

FUNCTION CLOSURES

Closures

Consider the following program:

let choose (arg:bool * int * int)

let (b, x, y) = arg in
if b then

(fun n -> n + X)
else

(fun n -> n + vy)

choose (true, 1, 2)

: int —-> int

Closures

Consider the following program:

let choose (arg:bool * int * int)

let (b, x, y) = arg in
if b then

(fun n -> n + X)
else

(fun n -> n + vy)

choose (true, 1, 2)

: int —-> int

Its execution behavior according to the substitution model:

choose (true, 1, 2)

Closures

Consider the following program:

let choose (arg:bool * int * int) : int -> int =
let (b, x, y) = arg in
if b then
(fun n -> n + X)
else

(fun n -> n + vy)

choose (true, 1, 2)

Its execution behavior according to the substitution model:

choose (true, 1, 2)

let (b, x, y) = (true, 1, 2) in
if b then (fun n -> n + X)
else (fun n -> n + vy)

Closures

Consider the following program:

let choose (arg:bool * int * int)

let (b, x, y) = arg in
if b then

(fun n -> n + X)
else

(fun n -> n + vy)

choose (true, 1, 2)

: int —-> int

Its execution behavior according to the substitution model:

choose (true, 1, 2)

——>
let (b, x, y) = (true, 1, 2)
if b then (fun n -> n + X)
else (fun n -> n + vy)

if true then (fun n -> n + 1)
else (fun n -> n + 2)

in

Closures

Consider the following program:

let choose (arg:bool * int * int)

let (b, x, y) = arg in
if b then

(fun n -> n + X)
else

(fun n -> n + vy)

choose (true, 1, 2)

: int —-> int

Its execution behavior according to the substitution model:

choose (true, 1, 2)

——>
let (b, x, y) = (true, 1, 2)
if b then (fun n -> n + X)
else (fun n -> n + vy)

if true then (fun n -> n + 1)
else (fun n -> n + 2)

(fun n -=> n + 1)

in

[Substitution and Compiled Code] &

let choose arg =
let (b, x, V)
if b then
(fun n -=> n + Xx)
else
(fun n -> n + vy)

Il
Q
]

Q
-
3

choose (true, 1, 2)

[Substitution and Compi

ed Code

let choose arg =

let (b, x, y) = arg in
if b then

(fun n -=> n + Xx)
else

(fun n -> n + y)

choose (true, 1, 2)

compile

v

choose:
mov rb r argl[O]
mov rx r arqg([4]
mov ry r arg[8]
compare rb 0
Jmp ret

main:

Jmp choose

Substitution and Compiled Code

let choose arg = choose:
let (b, x, y) = arg in mov rb r argl[O]
if b then mov rx r argl[4]
(fun n -> n + x) mov ry r argl[8]
else] compare rb 0
(fun n -> n + vy) compile > ...
Jmp ret
choose (true, 1, 2) main:
execute with jmp choose
substitution
4
let (b, x, y) = (true, 1, 2) in
if b then
(fun n -=> n + Xx)
else
(fun n -> n + vy)

Substitution and Compiled Code

let choose arg = choose:
let (b, x, y) = arg in mov rb r argl[O]
if b then mov rx r argl[4]
(fun n -> n + X) mov ry r argl[8]
else] compare rb 0
(fun n -> n + y) compile > o
Jmp ret
choose (true, 1, 2) main:
execute with jmp choose
substitution
/ execute with substitution
let (b, x, y) = (true, 1, 2) in ==
if b then generate new code block with
(fun n -> n + Xx) parameters replaced by arguments
else v
(fun n -> n + vy)

Substitution and Compi

ed Code

let choose arg =
let (b, x, y) =
if b then
(fun n -=> n + Xx)
else

arg in

compile

choose:
mov rb r argl[O]
mov rx r arqg([4]
mov ry r argl[8]
compare rb 0

parameters replaced by arguments

OxF8:

0

|_\

(fun n -> n + vy) > .
Jmp ret
choose (true, 1, 2) main:
execute with jmp choose
substitution
/ execute with substitution
let (b, x, y) = (true, 1, 2) in ==
if b then generate new code block with
(fun n -=> n + Xx)
else v
(fun n -> n + vy) choose :
MoVE TG choose subst:
ARONY et mov rb O0xF8[0]
ARy IEY mov rx OxF8[4]
T mov ry O0xF8[8]
jmp re 0

main:

Jjmp

ch

compare rb

Jjmp ret

O0SC

Substitution and Compi

ed Code

let choose arg
let (b, x, V)
if b then

(fun n -=> n + Xx)

else

= arg in

compile

choose:

mov rb r argl[O]
mov rx r arqg([4]
mov ry r argl[8]
compare rb 0

(fun n -> n + vy) > oo c
Jmp ret
choose (true, 1, 2) main:
execute with jmp choose
substitution
/ execute with substitution
let (b, x, y) = (true, 1, 2) in ==
if b then generate new code block with
(fun n -> n + x) parameters replaced by arguments
else v
(fun n -> n + V) choose:
|
execute with MoVE TG choose subst: 0xF8: 0
substitution MoV Xl mov rb 0xF8[0] :
mov ry no 1
_ choose subst2:
if true then coe mo compgre 1 0
(fun n -> n + 1) Jmp- e co
else . fﬁé o
(fun n -=> n + 2) Mmaln: Jm J
Jjmp choose I

What we aren’t going to do

* The substitution model of evaluation is just a model. It says
that we generate new code at each step of a computation.
We don’t do that in reality. Too expensive!

* The substitution model is a faithful model for reasoning about
the relationship between inputs and outputs of a function but
it doesn’t tell us much about the resources that are used
along the way.

* I’'m going to tell you a little bit about how ML programs are
compiled so you can understand how much space your
programs will use. Understanding the space consumption of
your programs is an important component in making these
programs more efficient.

[Compiling functions] 6o

General tactic: Reduce the problem of compiling ML-like functions to the
problem of compiling C-like functions.

Some functions are already C-like:

argument in rl
return address in r0

let add (x:int*int) : int =
let (y,z) = x in add:
y t z - 1d r2, rl[0] # v in r2
1d r3, rl[4] # z in r3
add r4, r2, r3 # sum in r4

Jmp r0

[But what about nested, higher-order functions?] 70

let choose arg =
let (b, x, y) = arg in
if b then
? £1
else
let choose arg = £
let (b, x, y) = arg in
if b then
(fun n -=> n + x)
else

let f1 n = n + x

(fun n => n + vy)

let £f2 n = n + y

[But what about nested, higher-order functions?] &

let choose arg =
let (b, x, y) = arg in
if b then
? £1
else
let choose arg = £
let (b, x, y) = arg in
if b then
(fun n -> n + X)

else
(fun n => n + vy)

let f1 n = n + x

letf2n=n+y

Darn! Doesn’t work naively. Nested functions contain free variables.
Simple unnesting leaves them undefined.

[But what about nested, higher-order functions?] &

 We can’t execute a function like the following:

let f2 n=n + vy

* But we can execute a closure which is a pair of some code and
an environment:

N

let £2 (n,env) = {y = 1}
n + env.y

code - environment

closure

Closure Conversion] 73

Closure conversion (also called lambda lifting) converts open,
nested functions into closed, top-level functions.

let choose arg =

let (b, x, y) = arg in
if b then

(fun n -=> n + x + V)
else

(fun n -> n + vy)

Closure Conversion

]74

Closure conversion (also called lambda lifting) converts open,
nested functions in to closed, top-level functions.

let choose arg

let (b, x, y) = arg in
if b then

(fun n -=> n + x + V)
else

(fun n -> n + vy)

\\

add environment

) parameter
let choose (arg,env) =
let (b, x, y) = arg in
if b then
(£f1l, {xe=x; ye=y})<$\\
else —___ Create
(£2, {ye=y})<— | closures
let f1 (n,env) =
n + env.xe + env.ye |
use
environment
variables
let f2 (n,eﬂzg/i>////// instead of
n + env.ye

free variables

Closure Conversion

75

Closure conversion converts open, nested functions in to closed,

top-level functions.

add environment

, parameter
let choose arg = let choose (arg,env) =
let (b, x, y) = arg in \ let (b, x, y) = arg in
if b then if b then
(fun n -> n + x + V) (f1, {xe=x; ye:y})<\
else else Ccreate
(fun n -> n + vy) (f2, {ye=y})<— | closures
let £f1 (n,env) =
n + env.xe + env.ye e
use
environment
" = variables
e (n, em;/ instead of
n + env.ye .
(choose (true,1,2)) 3 free variables
A4
let c_closure = (choose, ()) in (* create closure *)
let (c _code, c cenv) = c closure in (* extract code, env *)
let f closure = c code ((true,1,2), c env) in (* call choose code, extract f code, env *)
let (f code, f env) = f closure in (* extract code, env ¥*)
(*

f code (3, £ env)

.
4

.
4

call £ code *)

Closure Conversion

76

Closure conversion converts open, nested functions in to closed,

top-level functions.

add environment

, parameter
let choose arg = let choose (arg,env) =
let (b, x, y) = arg in \ let (b, x, y) = arg in
if b then if b then
(fun n -> n + x + V) (f1, {xe=x; ye:y})<\
else else Ccreate
(fun n -> n + vy) (f2, {ye=y})<— | closures
let £f1 (n,env) =
n + env.xe + env.ye e
use
environment
" = variables
e (n, em;/ instead of
n + env.ye .
(choose (true,1,2)) 3 free variables
A4
let c closure = (choose, ()) in (* create closure *)
let (c_code, c_cenv) = c_closure in (* extract code, env ¥*)
let f closure = c code ((true,1,2), c env) in (* call choose code, extract f code, env *)
let (f code, f env) = f closure in (* extract code, env ¥*)
(*

f code

(3,

f env)

call £ code *)

Closure Conversion

77

Closure conversion converts open, nested functions in to closed,

top-level functions.

£

let choose arg =

(fun n -> n + vy)

let (b, x, y) = arg in
if b then

(fun n -=> n + x + V)
else

\\\\\\\s>

=

(choose (true,1,2)) 3

let choose (arg,env) =
let (b, x, y) = arg in
if b then
(f1, {xe=x; ye:y})<\
else
(£2, {ye=y})<— |
let £f1 (n,env) =

n + env.xe + env.ye e

let £f2 (n,enz&/j>//////
n + env.ye

add environment
parameter

create
closures

use
environment
variables
instead of
free variables

A4
let c closure = (choose, ()) in (* create closure *)
let (c _code, c cenv) = c closure in (* extract code, env *)
let £ closure = c_code ((true,l,2), c_env) in (* call choose code, extract f code, env *)
let (f code, f env) = f closure in (* extract code, env *)

f code (3, £ env)

(* call £ code *)

Closure Conversion

78

Closure conversion converts open, nested functions in to closed,

top-level functions.

£

let choose arg =

let (b, x, y) = arg
if b then

(fun n -=> n + x +
else

(fun n -> n + vy)

let choose (arg,env) =
in \ let (b, %, y) = arg in
if b then
) (£f1l, {xe=x; ye=y})<$\\
else
(£2, {ye=y})<—
let £f1 (n,env) =

n + env.xe + env.ye e

(choose (true,1,2)) 3

let £2

(n, en\%
n + env.ye

add environment
parameter

create
closures

use
environment
variables
instead of
free variables

A4
let c closure (choose, ()) in (* create closure *)
let (c _code, c cenv) = c closure in (* extract code, env *)
let f closure = c code ((true,1,2), c env) in (* call choose code, extract f code, env *)
let (f code, f env) = f closure in (* extract code, env ¥*)
(

f code (3, £ env)

*

call £ code ¥*)

Summary: Assignment #4

* In environment-based evaluator, values are drawn from an
environment

* Inorder to implement, nested, higher-order functions, one
needs to perform closure conversion, which is the process of
implementing functions using a data structure: a pair of code
plus an environment that gives values to the (previously) free
variables in the code (making that code "closed")

* You have two weeks for assignment #4

— Why? because last year student found understanding and
writing the evaluator pretty tough!

— Don't wait until next week to start!
— Putin a full week's worth of work this week

