An OCaml definition of OCaml evaluation, or,

Implementing OCaml in OCaml

COS 326
David Walker

Princeton University

slides copyright 2017 David Walker
permission granted to reuse these slides for non-commercial educational purposes

Implementing an Interpreter] :

text file containing program
as a sequence of characters

let x =3 in
X + X

N\

Parsing

data structure representing program

data structure representing

result of evaluation

Num

Let (”X”,
Num 3,

Binop(Plus, Var “x”, Var “x”))

the data type
//and evaluator
/ Evaluation tell us a lot
6 \

about program
semantics

Pretty [

Printing

text file/stdout
containing formatted output

Making These Ideas Precise

We can define a datatype for simple OCaml expressions:

type variable = string

type op = Plus | Minus | Times |

type exp =
| Int e of int
| Op e of exp * op * exp
| Var e of variable
| Let e of variable * exp * exp

type value = exp

Making These Ideas Precise

We can define a datatype for simple OCaml expressions:

| Var
| Let

let el

type variable = string
type op = Plus | Minus | Times |
type exp =

| Int e of int

| Op e of exp * op * exp

e of variable
e of variable * exp * exp
type value = exp

= Int e 3

Making These Ideas Precise

We can define a datatype for simple OCaml expressions:

type variable = string
type op = Plus | Minus | Times |
type exp =

| Int e of int

| Op e of exp * op * exp

| Var e of variable

| Let e of variable * exp * exp
type value = exp

let el = Int e 3
let e2 = Int e 17

Making These Ideas Precise

We can define a datatype for simple OCaml expressions:

type variable = string
type op = Plus | Minus | Times |
type exp =

| Int e of int

| Op e of exp * op * exp

| Var e of variable

| Let e of variable * exp * exp
type value = exp

let el = Int e 3
let e2 = Int e 17
let e3 = Op e (el, Plus, e2)

represents “3 +17”

[Making These Ideas Precise] 7

We can represent the OCaml program:
This is called

let x = 30 1in __ concrete syntax
let y = -« (concrete syntax pertains to parsing)
(let z = 3 in
z*4)
b This is called an
v+y abstract syntax tree (AST)

as an exp value: /

Let e (“x”, Int e 30, z///

Let e (Vy”,
Let e(“z”, Int e 3,
Op e(Var e ™
Op e(Var e “y”, Plus, Var e

144

z”, Times, Int e 4)),
\\y//)

ASTs as ... Trees

Let e("x”,Int e 30,
Let e(“y”,Let e(%“z”,Int e 3,
Op_e(Var e “z”, Times, Int e 4)),
Op e(Var e “y”, Plus, Var e “y”)

let

Notice how the

X 30 let OCaml expression

/ can be drawn as a tree

y let +

[Binding Occurrences] ’

An occurrence of a variable where we are defining it via let is said to
be a binding occurrence of the variable.

let

. a 30 let
let a = 30 1in
. (let a = 3 1n a*4) 5 let +
in
a+a /% /\
a a
a 3 -

[Free Occurrences

A non-binding occurrence of a variable is a use of a variable as
opposed to a definition.

let

. a 30 let
let a = 30 1in
. (let a = 3 1n a*4) = let N
in
at+a /% /\
a
a 3 *

Abstract Syntax Trees

]11

Given a variable occurrence, we can find where it is bound by ...

let a
let a

(let a

in
ata

30 in

= 3 in a*4)

30

let

Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

let a
let a

(let a

in
ata

30 in

= 3 in a*4)

30

let

Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

let a
let a

(let a

in
ata

30 in

= 3 in a*4)

30

let

let

let

Abstract Syntax Trees

crawling up the tree to the nearest enclosing let...

let a
let a

(let a

in
ata

30 in

= 3 in a*4)

30

let

let

let

Abstract Syntax Trees

]15

and checking if the “let” binds the variable — if so, we’ve found
the nearest enclosing definition. If not, we keep going up.

let a
let a

(let a

in
ata

30 in

= 3 in a*4)

30

let

let

let

Abstract Syntax Trees

]16

Now we can also systematically rename the variables so that it’s
not so confusing. Systematic renaming is called alpha-conversion

let a
let a

(let a

in
ata

30 in

= 3 in a*4)

30

let

Abstract Syntax Trees

Start with a let, and pick a fresh variable name, say “x”

let a
let a

(let a

in
ata

30 in

= 3 in a*4)

30

let

Abstract Syntax Trees

Rename the binding occurrence from

ou_n

a’ to “x".

o _”n

let x
let a

(let a

in
ata

30 in

= 3 in a*4)

30

let

Abstract Syntax Trees

]19

Then rename all of the occurrences of the variables that this let

binds.
let x = 30 in
let a =
(let a = 3 in a*4)
in
at+a

30

let

Abstract Syntax Trees] 20

There are none in this case!

These a’s are
bound by
this let.

let

let x 30 in
let a

(let a = 3 in a*4)

in
d d

Abstract Syntax Trees] 7

There are none in this case!

This a is
bound by
let this let

30 in

X 30 let
let x //
let a

(let a = 3 in a*4) = let ; +

in
ata z/r\\\\s

Abstract Syntax Trees

Let’s do another let, renaming

ou_n”n

a” to “y”.

o, .7

let x
let a

(let a

in
ata

30 in

= 3 in a*4)

30

let

let

let

Abstract Syntax Trees

Let’s do another let, renaming

ou_n”n

a” to “y”.

o, .7

let x
let vy

(let a

in
yty

30 in

= 3 in a*4)

30

let

let

let

Abstract Syntax Trees

“u_n,
Z .

And if we rename the other let to

let

X 30 let
let x = 30 in
let v =
.n(let z = 3 1n z*4) y lot
i
yty
a 3 *

Abstract Syntax Trees

“u_n,
Z .

And if we rename the other let to

let

X 30 let
let x = 30 in
let v =
.n(let z = 3 1n z*4) y lot
i
yty
Z 3 *

Free vs Bound Variables

let

let x = 30 in
X+y

Free vs Bound Variables

let

e
» X+y

30 in

this use of x is bound here

Free vs Bound Variables

let

let x
X+y

30 in

this use of y is free

we say: "y is a free variable in this expression"

Other Examples

fun z -> z + y

~~—

match x with
(y,z2) >y + z +w

S~

let rec £ x =
match x with

[]1 > ¥
| hd:tl -> hd::f tl

z is bound
y is a free variable

X, W are free variables
y, Z are bound

y is a free variable
f, x, hd, tl are all bound

Evaluation

recall, we write:

el --> e2

to indicate that el evaluates to e2 in a single step

for example:

Evaluation

let x
let vy
X+y

30 in
20 + x in

Evaluation
let x = 30 in | 20 + 30 3
let y = 20 + x in > et y in
30+y
X+y

Notice: we do a step of evaluation by substituting the

value 30 for all the uses of x

Evaluation
let x = 30 in 1 — 20 + 30 i
let y = 20 + x in > 33: Y = .
X+y Y
> let y = 50 in

30+y

In this step, we just evaluated the right-hand side of the
let. We now have a value (50) on the right-hand side.

Evaluation
let x = 30 in 1 — 20 + 30 i
let y = 20 + x in > 333 Y = ln
X+y Y
> let y = 50 in
30+y
--> 30+50

substitution again

Evaluation
let x = 30 in | 0o 4 30 1
let y = 20 + x in > et y = in
30+y
X+y

> let Y = 50 in
30+y

> 30+50

—> 80

evaluation complete: we have produced a value

Evaluation

let x = 30 in
let y = 20 in
X+y
let
X 30 let
y 20

Evaluation via Substitution

let x = 30 in
let y = 20 in
X+y
let
X 30 let
y 20

let vy
30+y

20 in

20

let

30

[Binding occurrences versus applied occurrences] ’

type exp =
Int_e of int This is a use of a variable
Op_ e of exp * op * exp

Var e of variable
Let e of variable * exp * exp

S

This is a binding occurrence
of a variable

A Useful Auxiliary Function] 3

nested “|” pattern
(can’t use variables)

-

let is value (e:exp) : bool =
match e with

| Int e -> true
| (Op_e _
| Let e
| var e) -> false

Recall: A value is a successful result of a computation.
Once we have computed a value, there is no more work to be done.

Integers (3), strings ("hi"), functions ("fun x -> x + 2") are values.

Operations ("x + 2"), function calls ("f x"), match statements are not value.

Two Other Auxiliary Functions] 0

(* eval op vl o v2:
apply o to vl and v2 ¥*)
eval op : value -> op -> value -> exp

(* substitute v x e:
replace free occurrences of x with v in e ¥*)
substitute : value -> variable -> exp -> exp

A Simple Evaluator] “

is value : exp -> bool
eval op : value -> op -> value -> value
substitute : value -> variable -> exp -> exp

let rec eval (e:exp) : exp =

(* Goal: evaluate e; return resulting value ¥*)

A Simple Evaluator] *

is value : exp -> bool
eval op : value -> op -> value -> value
substitute : value -> variable -> exp -> exp

let rec eval (e:exp) : exp =
match e with
| Int e 1 >
| Op e(el,op,e2) ->

| Let e(x,el,e2) ->

A Simple Evaluator] “

is value : exp -> bool
eval op : value -> op -> value -> value
substitute : value -> variable -> exp -> exp

let rec eval (e:exp) : exp =
match e with
| Int e i => Int e 1
| Op e(el,op,e2) ->

| Let e(x,el,e2) ->

A Simple Evaluator] “

is value : exp -> bool
eval op : value -> op -> value -> value
substitute : value -> variable -> exp -> exp

let rec eval (e:exp) : exp =

match e with

| Int e i -=> Int e i

| Op e(el,op,e2) ->
let vl = eval el in
let v2 = eval e2 in
eval op vl op v2

| Let e(x,el,e2) ->

A Simple Evaluator] *

is value : exp -> bool
eval op : value -> op -> value -> value
substitute : value -> variable -> exp -> exp

let rec eval (e:exp) : exp =

match e with

| Int e i -=> Int e i

| Op e(el,op,e2) ->
let vl = eval el in
let v2 = eval e2 in
eval op vl op v2

| Let e(x,el,e2) ->
let vl = eval el in
let e2’' = substitute vl x e2 in
eval e2’

Shorter but Dangerous

is value : exp -> bool
eval op : value -> op -> value -> value
substitute : value -> variable -> exp -> exp

let rec eval (e:exp) : exp =
match e with
Int e 1 -> Int e 1
Op e(el,op,e2) ->
eval op (eval el) op (eval e2)
Let e(x,el,e2) ->
eval (substitute (eval el) x e2)

Why?

Simpler but Dangerous

is value : exp -> bool
eval op : value -> op -> value -> value
substitute : value -> variable -> exp -> exp

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i
Op e(el,op,e2) ->
eval op (eval el) op (eval e2)
Let e(x,el,e2) ->¢
eval (substifjute (ev el) x e2)

%

Which gets evaluated first?
Does OCaml use left-to-right eval order or right-to-left?

Always use OCaml let if you want to specify evaluation order.

Simpler but Dangerous

is value : exp -> bool
eval op : value -> op -> value -> value
substitute : value -> variable -> exp -> exp

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i
Op e(el,op,e2) ->
eval op (eval el) op (eval e2)
Let e(x,el,e2) ->¢
eval (substifjute (ev el) x e2)

%

Since the language we are interpreting is pure (no effects),
it won’t matter which expression gets evaluated first.
We'll produce the same answer in either case.

Limitations of metacircular interpreters] *

is value : exp -> bool
eval op : value -> op -> value -> value
substitute : value -> variak > exp > ¢
Which gets evaluated first,
let rec eval (e:exp) : exp = (eval e1) or (eval e2) ? f
match e with Seems obvious, right?
| Int e i => Int e i But that’s because we assume

OCaml has call-by-value

->
| Op_e(el,op,e2) evaluation! If it were

let vl =leval ellin call-by-name, then this

let v2 =|eval e2jin ordering of lets would

eval op vl op v2 not guarantee order
| Let e(x,el,e2) -> of evaluation.

let vl = eval el =

let e2’ = substit Moral: using a language to define its

own semantics can have limitations.
eval e2’

Back to the eval function...] 0

let eval op vl op v2
let substitute v x e = ..

let rec eval (e:exp) : exp =
match e with
| Int e i -> Int e i
| Op_e(el,op,e2) -> eval op (eval el) op (eval e2)
| Let e(x,el,e2) -> eval (substitute (eval el) x e2)

(same as the one a couple of slides ago)

Simpler but Dangerous] 8

1s value : exp -> bool
eval op : value -> op -> value -> value
substitute : value -> variable -> exp -> exp

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i
Op e(el,op,e2) ->
eval op (eval el) op (eval e2)
Let e(x,el,e2) ->
eval (substitute (eval el) x e2)

Quick question:
Do you notice anything else suspicious here about this code?
Anything OCaml| might flag?

Oops! We Missed a Case:] 5

let eval op vl op v2
let substitute v x e = ..

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x => 2?27

If we start out with an expression with no free variables, we will never run into
a free variable when we evaluate.
Every variable gets replaced by a value as we compute, via substitution.

Theorem: Well-typed programs have no free variables.

We could leave out the case for variables, but that will create a mess of Ocaml
warnings — bad style. (Bad for debugging.)

We Could Use Options:] 3

let eval op vl op v2
let substitute v x e = ..

let rec eval (e:exp) : exp option =
match e with
Int e 1 -> Some(Int e 1)
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x -> None

But this isn’t quite right — we need to match on the recursive calls
to eval to make sure we get Some value!

Exceptions

exception UnboundVariable of variable

let rec eval (e:exp) : exp =
match e with
Int e 1 -> Int e 1
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

vVar e x -> raise (UnboundVariable x)

Instead, we can throw an exception.

Exceptions

exception UnboundVariable of variable

let rec eval (e:exp) : exp =
match e with
Int e 1 -> Int e 1
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

vVar e x -> raise (UnboundVariable x)

Note that an exception declaration is a lot like a datatype
declaration. Really, we are extending one big datatype (exn) with a

new constructor (UnboundVariable).

Later on, we’ll see how to catch an exception.

Exception or option?

In a previous lecture, | railed against Java for all of the null
pointer exceptions it raised. Should we use options or exns?

‘ "Do | contradict AP
I Vuy well s, | costradict .myul{.
N ’m&agt; | contain madlitides.”

""" Watt Wiitonas.

There are some rules; there is some taste involved.

* For errors/circumstances that will occur, use options (eg,
because the input might be ill formatted).

 For errors that cannot occur (unless the program itself
has a bug) and for which there are few "entry
points" (few places checks needed) use exceptions

* Java objects may be null everywhere

AUXILIARY FUNCTIONS

Evaluating the Primitive Operations] >

let eval op (vl:exp) (op:operand) (v2:exp) : exp =
match v1l, op, v2 with

Int e i, Plus, 1Int e j -> Int e (i+j)

Int e i, Minus, Int e j -> Int e (i-3J)

Int e i, Times, Int e j -> Int e (i*J)

_ ,(Plus | Minus | Times), ->
if is value vl && is value v2 then raise TypeError

else raise NotValue

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x -> raise (UnboundVariable x)

Substitution]

Want to replace x
(and only x) with v.

let substitute (v:exp) (x:variable) (e:exp) : exp =

59

Substitution

let substitute (v:exp) (x:variable) (e:exp)
let rec subst (e:exp) : exp =
match e with
Int e ->
Op e(el,op,e2) ->
Var e y => 50 ¢
Let e (y,el,e2) -> ... use Xx

use X

in
subst e

exp

60

Substitution

let substitute (v:exp) (x:variable) (e:exp)

let rec subst (e:exp) : exp =
match e with

in
subst e

Int e -> e
Op e(el,op,e2) ->
Var e y ->

Let e (y,el,e2) ->

exp

61

Substitution

let substitute (v:exp) (x:variable) (e:exp)

exp =

let rec subst (e:exp) : exp =
match e with

in
subst e

Int e -> e

Op e(el,op,e2) -> Op e(subst el,op,subst e2)

Var e y ->
Let e (y,el,e2) ->

62

Substitution

let substitute (v:exp) (x:variable)

(ezexp) : exp =

let rec subst (e:exp) : exp =
match e with

in
subst e

Int e -> e

Op e(el,op,e2) -> Op e(subst el,op,subst e2)
Var e y -> if x = y then v else e

Let e (y,el,e2) ->

63

Substitution

let substitute (v:exp)

(x:variable) (e:exp) : exp =

let rec subst (e:exp) : exp =
match e with

in
subst e

Int e -> e

Op e(el,op,e2) -> Op e(subst el,op,subst e2)

Var e y -> 1if x
Let e (y,el,e2)
Let e (y,
subst
subst

= y then v else e
->

el,
e2)

N

WRONG!

64

Substitution

let substitute (v:exp) (x:variable) (e:exp) : exp =
let rec subst (e:exp) : exp =
match e with
Int e -> e
Op e(el,op,e2) -> Op e(subst el,op,subst e2)
Var e y -> if x = y then v else e
Let e (y,el,e2) ->

Let e (y,

if x y then el else subst el,

if x = y then e2 else subst e2)
in

subst e

N

wrong

65

Substitution]

let substitute (v:exp) (x:variable) (e:exp) exp =

let rec subst (e:exp) : exp =
match e with
Int e -> e

Op e(el,op,e2) -> Op e(subst el,op,subst e2)
Var e y -> if x = y then v else e

Let e (y,el,e2) ->

Let e (y,
subst el,
if x = y then e2 else subst e2)

in
subst e

o o
rrs

\ 66

evaluation/subsitution must implement our variable scoping rules correctly

Substitution

let substitute (v:exp) (x:variable) (e:exp) exp =

let rec subst (e:exp) : exp =
match e with
Int e -> e

Op e(el,op,e2) -> Op e(subst el,op,subst e2)
Var e y -> if x = y then v else e

Let e (y,el,e2) ->

Let e (y,
subst el,
if x = y then e2 else subst e2)

in
subst e
If xand y are

o o
rrs

the same

variable, theny
shadows x.

67

SCALING UP THE LANGUAGE

(MORE FEATURES, MORE FUN)

68

Scaling up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp
| Fun e of variable * exp | FunCall e of exp * exp

69

Scaling up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp

| Fun e of variable * exp | FunCall e of exp * exp
S

OCaml’s
funx->e
is represented as
Fun_e(x,e)

70

Scaling up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp
| Fun e of variable * exp | FunCall e of exp * exp

A function call
fact 3
is implemented as
FunCall_e (Var_e “fact”, Int_e 3)

71

Scaling up the Language

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp
| Fun e of variable * exp | FunCall e of exp * exp

let is value (e:exp) : bool =

Functions are
values!

match e with

| Int e -> true
| Fun e (_,) -> true
| (Op_e (_,_r_)
| Let e (., ,)
| var e
| FunCall e (_,)) -> false

Easy exam question:
What value does the OCaml interpreter produce when you enter

(fun x -> 3) in to the prompt?
Answer: the value produced is (fun x -> 3)

72

Scaling up the Language:

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp

| Fun_e of variable * exp | FunCall e of exp * exp;;

let is value (e:exp) : bool =

match e with

| Int e -> true
| Fun e (_,) -> true
| (Op_e (_,_r_)
| Let e (., ,)
| var e
| FunCall e (_,)) -> false

N

Function calls are
not values.

73

Scaling up the Language:] 7

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el, eval e2 with

| Fun e (x,e), v2 -> eval (substitute v2 x e)

| -> raise TypeError)

Scaling up the Language:] s

let rec eval (e:exp) : exp =
match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->
(match eval el, eval e2 wit
| Fun e (x,e), v2 -> eval (s
| -> raise TypeError)

values (including

functions) always
evaluate to
themselves.

Scaling up the Language:

let rec eval (e:exp) : exp =
match e with

Int e i -=> Int e i

Op e(el,op,e2) -> eval op

Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el, eval e2 with

| Fun e (x,e), v2 ->
| -> raise TypeError)

Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x -> raise (UnboundVariable x)

(eval el) op (eval e2)

1l (substitute v2 x e)

To evaluate a

function call, we
first evaluate
both el and e2 to

values.

Scaling up the Language] 7

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el, eval e2 with

| Fun e (x,e), v2 -> eval (substitute v2 x e)

| -> raise TypeError)

el had better

evaluate to a
function value,
else we have a
type error.

Scaling up the Language] 78

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el, eval e2 with

| Fun e (x,e), v2 -> eval (substitute v2 x e)

| _ -> raise Typiﬁiiii%:::::;;;;7¢/

Then we substitute e2’s
value (v2) for xin e and
evaluate the resulting
expression.

Simplifying a little] 7

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (el,e2) ->

(match eval el

| Fun e (x,e) -> eval (substitute (eval e2) x e)

| -> raise TypeEriiil\\//////j:;;;7/

We don’t really need
to pattern-match on e2.
Just evaluate here

Simplifying a little] 0

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (substitute (eval el) x e2)
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (ef,el) ->

(match eval ef with

| Fun e (x,e2) -> eval (substitute (eval el) x e2)

| _ -> raise TypeError) \F\\

This looks like
the case for let!

Let and Lambda
let x = 1 in xt+41 (fun x -> x+41) 1
_> -
o 1+41
——>
- 42
42

In general:

(fun x -> e2) el

== Jet X = el in e2

So we could write:] &2

let rec eval (e:exp) : exp =

match e with
Int e i -=> Int e i
Op e(el,op,e2) -> eval op (eval el) op (eval e2)
Let e(x,el,e2) -> eval (FunCall (Fun e (x,e2), el))
Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun e (x,e)
FunCall e (ef,e2) ->

(match eval ef with

| Fun e (x,el) -> eval (substitute (eval el) x e2)

| _ -> raise TypeError)

In programming-languages speak: “Let is syntactic sugar for a function call”

Syntactic sugar: A new feature defined by a simple, local transformation.

Recursive definitions] B

type exp = Int e of int | Op e of exp * op * exp

| Var e of variable |
| Fun e of variable *

| Rec_e of variable *

Let e of variable * exp * exp |
exp | FunCall e of exp * exp
variable * exp

(rewrite)
let rec £ x = £ (x+1) in f 3
let £ = (rec £ x -=> £ (x+1)) in (alpha-convert)
f 3
let g = (rec £ x -> £ (xt+1)) in (implement)
g 3
Let e (“g,

)

Rec—e (llfll ’ IIXII .

FunCall e (Var_e “f"”, Op e (Var_e “x", Plus, Int e 1))

) 1

FunCall (Var e “g”, Int e 3)

Recursive definitions

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp |
| Fun e of variable * exp | FunCall e of exp * exp
| Rec_e of variable * variable * exp

let is value (e:exp) : bool =
match e with

Int e -> true

Fun e (_,) -> true

Rec e of (_, ,) -> true

(Op_e (_,_,_) | Let_ e (_,_,_) |

Var e | FunCall e (_,)) -> false

84

Recursive definitions

type exp = Int e of int | Op e of exp * op * exp
| Var e of variable | Let e of variable * exp * exp |
| Fun e of variable * exp | FunCall e of exp * exp
| Rec_e of variable * variable * exp

let is value (e:exp) : bool =
match e with
Int e -> true

Fun e (_,) -> true

Rec e o

(Op_e (_
Var e

y) —> true
et e (_,_,_) |

Fun_e (x, body) == Rec_e("unused", x, body)

A better IR would just delete Fun_e — avoid
unnecessary redundancy

85

Interlude: Notation for Substitution

]86

“Substitute value v for variable x in expression e:” e[v/x]

examples of substitution:

(x +v) [7/y]

(let x=30in lety=40in x +y) [7/y]

(lety=yinlety=yiny+y)[7/y]

IS

IS

IS

(x+7)
(let x=30inlety=40inx+y)

(lety=7inlety=yiny+y)

Evaluating Recursive Functions] ¥

Basic evaluation rule for recursive functions:

(recfx=body)arg --> body [arg/x] [rec f x = body/f]

/N

argument value substituted entire function substituted
for parameter for function name

Evaluating Recursive Functions

Start out with
a let bound to
a recursive function:

The Substitution:

The Result:

let g =
rec £ x ->
if x <= 0 then x
else x + £ (x-1)
in g 3

g 3 [rec £ x ->
if x <= 0 then x
else x + £ (x-1) / g]

(rec £ x ->
if x <= 0 then x else x + £ (x-1)) 3

Evaluating Recursive Functions

Recursive (rec £ x ->
Function Call: if x <= 0 then x else x + £ (x-1)) 3

(Lf x <= 0 then x else x + £ (x-1))
[rec £ x ->

The Substitution: if x <= 0 then x
else x + £ (x-1) / £]
[3/ x] .
Substitute argument Substitute entire function
for parameter for function name

(Lf 3 <= 0 then 3 else 3 +

The Result: (rec.f X —=>
if x <= 0 then x

else x + £ (x-1)) (3-1))

Evaluating Recursive Functions

]90

let rec eval (e:exp) : exp =

match e with

| Int e i -=> Int e i

| Op e(el,op,e2) -> eval op (eval el) op (eval e2)

| Let e(x,el,e2) -> eval (substitute (eval el) x e2)
| Var e x -> raise (UnboundVariable x)
| Fun e (x,e) -> Fun e (x,e)
| FunCall e (el,e2) ->

(match eval el with

| Fun e (x,e) -> pattern as x

let v = eval e2 in

substitute e x v match the pattern
and binds x to value

| (Rec_e (f,x,e)) as f val ->
let v = eval e2 in
substitute £ val f (substitute v x e)

-> raise TypeError)

More Evaluation

]91

(rec fact n =
——>

if n <= 1 then 1 else n * fact(n-1)) 3

if 3 < 1 then 1 else
3 * (rec fact n = if ... then ... else ...) (3-1)
-——>
3 * (rec fact n = if ..) (3-1)
-——>
3 * (rec fact n = if ...) 2
-—>
3 * (if 2 <=1 then 1 else 2 * (rec fact n = ...)(2-1))
-—>
3 * (2 * (rec fact n = ...)(2-1))
-—>
3 * (2 * (rec fact n = ...)(1))
-—>
3 *2 * (if 1 <=1 then 1 else 1 * (rec fact ...)(1-1))
-—>

3 * 2 * 1

A MATHEMATICAL DEFINITION*
OF OCAML EVALUATION

*it’s a partial definition and this is a big topic; for more, see COS 510

[From Code to Abstract Specification] 03

OCaml code can give a language semantics
— advantage: it can be executed, so we can try it out
— advantage: it is amazingly concise
* especially compared to what you would have written in Java

— disadvantage: it is a little ugly to operate over concrete ML datatypes
like “Op_e(el,Plus,e2)” as opposed to “el + e2”

[From Code to Abstract Specification])

PL researchers have developed their own standard notation for
writing down how programs execute

— it has a mathematical “feel” that makes PL researchers feel special
and gives us goosebumps inside

— it operates over abstract expression syntax like “el + e2”
— it is useful to know this notation if you want to read specifications of

programming language semantics

e e.g.: Standard ML (of which OCaml is a descendent) has a formal
definition given in this notation (and C, and Java; but not OCaml...)

e e.g.: most papers in the conference POPL (ACM Principles of Prog. Lang.)

[Goal] >

Our goal is to explain how an expression e evaluates to a value v.

In other words, we want to define a mathematical relation between
pairs of expressions and values.

[Formal Inference Rules] 96

We define the “evaluates to” relation using a set of (inductive) rules
that allow us to prove that a particular (expression, value) pair is
part of the relation.

A rule looks like this:

premise 1 premise 2 premise 3
conclusion

You read a rule like this:

— “if premise 1 can be proven and premise 2 can be proven and ...
and premise n can be proven then conclusion can be proven”

Some rules have no premises
— this means their conclusions are always true
— we call such rules “axioms” or “base cases”

An example rule

As a rule:
el -->vl e2 -->v2 eval_op (vl, op,v2) ==V
elope2 >V
In English:

“If el evaluates to vl
and e2 evaluates to v2
and eval _op (v1, op, v2) is equal to v’
then
el op e2 evaluates to Vv’

In code:

let rec eval (e:exp) : exp =
match e with
| Op_e(el,op,e2) -> let vl = eval el in
let v2 = eval e2 in

let v/ = eval op vl op v2 in

VI

An example rule

As a rule: / assertsiis
: an integer
K4 &
| -->

In English:

“If the expression is an integer value, it evaluates to itself.”

In code:

let rec eval (e:exp) : exp =
match e with
| Int e i -=> Int e i

An example rule concerning evaluation

As a rule:
el-->vl e2 [vl/x] -->v2
letx=eline2 --> v2

In English:

“If el evaluates to vl (which is a value)
and e2 with v1 substituted for x evaluates to v2
then let x=el in e2 evaluates to v2.”

In code:

let rec eval (e:exp) : exp =
match e with
| Let e(x,el,e2) -> let vl = eval el in
eval (substitute vl x e2)

An example rule concerning evaluation]

As a rule: . .
typical “lambda” notation
for a function with

Ax.e --> AX.e argument x, body e

In English:

“A function value evaluates to itself.”

In code:

let rec eval (e:exp) : exp =
match e with

| Fun e (x,e) -> Fun e (x,e)

[An example rule concerning evaluation]

As a rule:
el --> Ax.e e2 -->v2 e[v2/x] -->v
ele2 -->v

In English:

“if el evaluates to a function with argument x and body e
and e2 evaluates to a value v2
and e with v2 substituted for x evaluates to v
then el applied to e2 evaluates to v”

In code:

let rec eval (e:exp) : exp =
match e with

| FunCall e (el,e2) ->
(match eval el with
| Fun e (x,e) -> eval (substitute (eval e2) x e)

| ...)

An example rule concerning evaluation

] 102

As a rule:

el-->recfx=e e2 -->v

e[rec f x = e/f][v/x] --> v2

ele2 --> v2

In English:

In code:

lluggh”

let rec eval (e:exp) : exp
match e with

| (Rec_e (f,x,e)) as £ val ->

let v = eval e2 in

substitute £ val (substitute v x e) g

Comparison: Code vs. Rules]

complete eval code: complete set of rules:
let rec eval (e:exp) : exp = ic7
match e with =

Int e 1 -=> Int e i

Op_e(el,op,e2) -> eval op (eval el) op (eval e2) el-->vl e2 -->v2 eval op (vl, op, v2)==v
elope2 -->v

Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x -> raise (UnboundVariable x)
el-->vl e2 [vl/x] -->v2

rune (x,€) -> fun_e (x,€) letx=eline2 --> v2

FunCall e (el,e2) ->
(match eval el

| Fun_e (x,e) -> eval (Let_e (x,e2,e)) Ax.e --> Ax.e

| _ -> raise TypeError)
LetRec_e (x,el,e2) -> el --> Ax.e e2 -->v2 e[v2/x] -->v
(Rec_e (f,x,e)) as £ val -> ele2 ->v

let v = eval e2 in

substitute f _val f (substitute v x e) el-->recfx=e e2-->v2 efrecfx=e/f][v2/x]-->v3

ele2 --> v3

Almost isomorphic:

— one rule per pattern-matching clause
— recursive call to eval whenever there is a --> premise in a rule
— what’s the main difference?

Comparison:

Code vs. Rules

complete eval code:

let rec eval (e:exp) : exp =

match e with

|
.
|
|

Int e 1 -=> Int e i

Op e(el,op,e2) -> eval op (eval el) op (eval e2)

complete set of rules:
ie”Z

i -->i

el-->vl e2 -->v2 eval_op (vl, op,v2) ==v
elope2 ->v

Let e(x,el,e2) -> eval (substitute (eval el) x e2)

Var e x -> raise (UnboundVariable x)
Fun e (x,e) -> Fun_e (x,e)
FunCall e (el,e2) ->
(match eval el
| Fun_e (x,e) -> eval (Let_e (x,e2,e))
__ => raise TypeError)
LetRec_e (x,el,e2) ->
(Rec_e (f,x,e)) as £ val ->
let v = eval e2 in
substitute f val f (substitute v x e)

el-->vl e2 [vl/x] -->v2
letx=eline2 --> v2

Ax.e --> Ax.e

el --> Ax.e e2 -->v2 e[v2/x] -->v
ele2 ->v
el-->recfx=e e2 -->v2 efrecfx=e/f][v2/x] -->Vv3

ele2 --> v3

 There’s no formal rule for handling free variables
* No rule for evaluating function calls when a non-function in the caller position

* Ingeneral, no rule when further evaluation is impossible
— the rules express the legal evaluations and say nothing about what to do in error situations

— the code handles the error situations by raising exceptions

— type theorists prove that well-typed programs don’t run into undefined cases

Summary

] 105

 We can reason about OCaml programs using a substitution model.

integers, bools, strings, chars, and functions are values

value rule: values evaluate to themselves

let rule: “let x =elin e2” : substitute el’s value for x into e2

fun call rule: “(fun x -> e2) el”: substitute el’s value for x into e2

rec call rule: “(rec x =el) e2” : like fun call rule, but also substitute
recursive function for name of function

* To unwind: substitute (recx =el) forxinel

 We can make the evaluation model precise by building an interpreter
and using that interpreter as a specification of the language
semantics.

* We can also specify the evaluation model using a set of inference rules
— more on this in COS 510

Some Final Words]

The substitution model is only a model.
— it does not accurately model all of OCaml’s features
* |/0O, exceptions, mutation, concurrency, ...

* we can build models of these things, but they aren’t as simple.
e even substitution is tricky to formalize!

It’s useful for reasoning about higher-order functions,
correctness of algorithms, and optimizations.
— we can use it to formally prove that, for instance:
 map f (map g xs) == map (comp f g) xs

* proof: by induction on the length of the list xs, using the
definitions of the substitution model.

— we often model complicated systems (e.g., protocols) using a
small functional language and substitution-based evaluation.

It is not useful for reasoning about execution time or space
— more complex models needed there

Some Final Words

] 107

e even substitution was tricky to formalize!

You can say that again!
| got it wrong the first
time | tried, in 1932.
Fixed the bug by 1934,
though.

Alonzo Church,
1903-1995
Princeton Professor,
1929-1967

Church's mistake]

substitute:

fun xs -> map (+) xs

for fin:

funys ->
let map xs = 0::xs in
f (map ys)

and if you don't watch out, you will get:

funys ->
let map xs = 0::xs in
(fun xs -> map (+) xs) (map ys)

Church's mistake]

substitute:

fun xs -> map (+) xs

the problem was that the

for fin: value you substituted in
had a free variable (map) in
fun ys -> it that was
_ captured.
let map xs = 0::xs in
f (map ys)

and if you don't watch out, you will get:

funys ->
let map xs = 0::xs in
(fun xs -> map (+) xs) (map ys)

Church's mistake]

substitute:

fun xs -> map (+) xs

for fin:

funys ->
let map xs = 0::xs in
f (map ys)

to do it right, you need to rename some variables:

funys ->
let z xs = 0::xs in
(fun xs -> map (+) xs) (z ys)

NOW WE ARE REALLY DONE!

