
Data,	data	everywhere	

COS	326	
David	Walker	

Princeton	University	
	

slides	copyright	2017	David	Walker	
permission	granted	to	reuse	these	slides	for	non-commercial	educaFonal	purposes	

	

FUNCTIONAL	DECOMPOSITION	

FuncFonal	DecomposiFon	
	
==	
	

Break	down	complex	problems	in	to	a	set	of	simple	funcFons;		
Recombine	(compose)	funcFons	to	form	soluFon	

Such	problems	can	oPen	be	solved	using	a	combinator	library.	
(a	set	of	funcFons	that	fit	together	nicely)			

	
The	list	library,	which	contains	map	and	fold,	is	a	combinator	library.	

PIPELINES	

Pipe	

let (|>) x f = f x

Type?	

Pipe	

let (|>) x f = f x

Type?	

(|>) : 'a -> ('a -> 'b) -> 'b

Pipe	

let (|>) x f = f x

let twice f x =
 x |> f |> f

Pipe	

let (|>) x f = f x

let twice f x =
 (x |> f) |> f

leP	associaFve:		x	|>	f1	|>	f2	|>	f3			==		((x	|>	f1)	|>	f2)	|>	f3	

Pipe	

let (|>) x f = f x

let twice f x =
 x |> f |> f

let square x = x*x

let fourth x = twice square

Pipe	

let (|>) x f = f x

let twice f x = x |> f |> f
let square x = x*x
let fourth x = twice square x

let compute x =
 x |> square
 |> fourth
 |> (*) 3
 |> print_int
 |> print_newline

PIPING	LIST	PROCESSORS	
(Combining	combinators	cleverly)	

Another	Problem	

type student = {first: string;
 last: string;
 assign: float list;
 final: float}

let students : student list =
 [
 {first = "Sarah";
 last = "Jones";
 assign = [7.0;8.0;10.0;9.0];
 final = 8.5};

 {first = "Qian";
 last = "Xi";
 assign = [7.3;8.1;3.1;9.0];
 final = 6.5};
]

Another	Problem	

•  Create	a	funcFon	display	that	does	the	following:	
–  for	each	student,	print	the	following:	

•  last_name,	first_name:	score	
•  score	is	computed	by	averaging	the	assignments	with	the	final		

–  each	assignment	is	weighted	equally	
–  the	final	counts	for	twice	as	much	

•  one	student	printed	per	line	
•  students	printed	in	order	of	score	

type student = {first: string;
 last: string;
 assign: float list;
 final: float}

(1968	novel)	

Do Professors

Dream
 of

Homework-
grade

Databases
?

Another	Problem	

Create	a	funcFon	display	that	
–  takes	a	list	of	students	as	an	argument	
–  prints	the	following	for	each	student:		

•  last_name,	first_name:	score	
•  score	is	computed	by	averaging	the	assignments	with	the	final		

–  each	assignment	is	weighted	equally	
–  the	final	counts	for	twice	as	much	

•  one	student	printed	per	line	
•  students	printed	in	order	of	score	

let display (students : student list) : unit =
 students |> compute score
 |> sort by score
 |> convert to list of strings
 |> print each string

Another	Problem	

let display (students : student list) : unit =
 students |> List.map compute_score
 |> sort by score
 |> convert to list of strings
 |> print each string

let compute_score
 {first=f; last=l; assign=grades; final=exam} =

 let sum x (num,tot) = (num +. 1., tot +. x) in

 let score gs e = List.fold_right sum gs (2., 2. *. e) in

 let (number, total) = score grades exam in
 (f, l, total /. number)

Another	Problem	

let display (students : student list) : unit =
 students |> List.map compute_score
 |> List.sort compare_score
 |> convert to list of strings
 |> print each string

let student_compare (_,_,score1) (_,_,score2) =
 if score1 < score2 then 1
 else if score1 > score2 then -1
 else 0

Another	Problem	

let display (students : student list) : unit =
 students |> List.map compute_score
 |> List.sort compare_score
 |> List.map stringify
 |> print each string

let stringify (first, last, score) =
 last ^ ", " ^ first ^ ": " ^ string_of_float score

Another	Problem	

let display (students : student list) : unit =
 students |> List.map compute_score
 |> List.sort compare_score
 |> List.map stringify
 |> List.iter print_endline

let stringify (first, last, score) =
 last ^ ", " ^ first ^ ": " ^ string_of_float score

COMBINATORS	FOR	OTHER	TYPES:	
PAIRS	

Simple	Pair	Combinators	

let both f (x,y) = (f x, f y);;
let do_fst f (x,y) = (f x, y);;
let do_snd f (x,y) = (x, f y);;

pair	combinators	

Example:		Piping	Pairs	

let both f (x,y) = (f x, f y);;
let do_fst f (x,y) = (f x, y);;
let do_snd f (x,y) = (x, f y);;

let even x = (x/2)*2 == x;;

let process (p : float * float) =
 p |> both int_of_float (* convert to int *)
 |> do_fst ((/) 3) (* divide fst by 3 *)
 |> do_snd ((/) 2) (* divide snd by 2 *)
 |> both even (* test for even *)
 |> fun (x,y) -> x && y (* both even *)

pair	combinators	

When	&	how	to	create	new	combinator	libraries?	

Whenever	you	see	a	need!	
	

Are	there	specialized	programming	domains	you	are	familiar	with?	
	

Can	you	idenFfy	the	repeated	pa`erns	in	examples?	
	

Can	you	factor	out	the	repeFFons	into	reuseable	fragments?	
	

Do	you	need	to	generalize	to	create	uniformity?	
	

Is	there	data	that	flows	between	components?	
	

What	types	describe	such	data	and	form	the	interfaces?	
	

There	is	a	lot	of	art,	aestheAcs,	and	experience	involved.	
ICFP	is	conference	where	you	can	find	many	interesAng	combinator	libraries	

hPp://www.icfpconference.org/	
	

Summary	
•  (|>)	passes	data	from	one	funcFon	to	the	next	

–  compact,	elegant,	clear		

•  UNIX	pipes	(|)	compose	file	processors		
–  unix	scripFng	with	|	is	a	kind	of	funcFonal	programming	
–  but	it	isn't	very	general	since	|	is	not	polymorphic	
–  you	have	to	serialize	and	unserialize	your	data	at	each	step	

•  there	can	be	type	(ie:	file	format)	mismatches	between	steps	
•  we	avoided	that	in	your	assignment,	which	is	pre`y	simple	…	

•  Higher-order	combinator	libraries	arranged	around	types:	
–  List	combinators	(map,	fold,	reduce,	iter,	…)	
–  Pair	combinators	(both,	do_fst,	do_snd,	…)	
–  Network	programming	combinators	(FreneFc:		freneFc-lang.org)	

OCaml	Datatypes	

COS	326	
David	Walker	

Princeton	University	
	

slides	copyright	2017	David	Walker	
permission	granted	to	reuse	these	slides	for	non-commercial	educaFonal	purposes	

	

OCaml	So	Far	
•  We	have	seen	a	number	of	basic	types:	

–  int	
–  float	
–  char	
–  string	
–  bool	

•  We	have	seen	a	few	structured	types:	
–  pairs	
–  tuples	
–  opFons	
–  lists	

•  In	this	lecture,	we	will	see	some	more	general	ways	to	define	
our	own	new	types	and	data	structures	

26	

Type	AbbreviaFons	
•  We	have	already	seen	some	type	abbreviaFons:	

type point = float * float

27	

Type	AbbreviaFons	
•  We	have	already	seen	some	type	abbreviaFons:	

•  These	abbreviaFons	can	be	helpful	documentaFon:	

•  But	they	add	nothing	of	substance	to	the	language	
–  they	are	equal	in	every	way	to	an	exisFng	type	

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

28	

Type	AbbreviaFons	
•  We	have	already	seen	some	type	abbreviaFons:	

•  As	far	as	OCaml	is	concerned,	you	could	have	wri`en:	

•  Since	the	types	are	equal,	you	can	subs3tute	the	definiFon	for	
the	name	wherever	you	want	
–  we	have	not	added	any	new	data	structures	

type point = float * float

let distance (p1:float*float)
 (p2:float*float) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

29	

DATA	TYPES	

30	

Data	types	
•  OCaml	provides	a	general	mechanism	called	a	data	type	for	

defining	new	data	structures	that	consist	of	many	alternaFves		

type my_bool = Tru | Fal

a	value	with	type	my_bool	
is	one	of	two	things:	
•  Tru,	or	
•  Fal	

read	the	"|"	as	"or"	

31	

Data	types	
•  OCaml	provides	a	general	mechanism	called	a	data	type	for	

defining	new	data	structures	that	consist	of	many	alternaFves		

type my_bool = Tru | Fal

a	value	with	type	my_bool	
is	one	of	two	things:	
•  Tru,	or	
•  Fal	

read	the	"|"	as	"or"	

Tru	and	Fal	are	called	
"constructors"	

32	

Data	types	
•  OCaml	provides	a	general	mechanism	called	a	data	type	for	

defining	new	data	structures	that	consist	of	many	alternaFves		

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

there's	no	need	to	stop	
at	2	cases;	define	as	many	
alternaFves	as	you	want	

33	

Data	types	
•  OCaml	provides	a	general	mechanism	called	a	data	type	for	

defining	new	data	structures	that	consist	of	many	alternaFves		

	
•  CreaFng	values:	

type my_bool = Tru | Fal

type color = Blue | Yellow | Green | Red

let b1 : my_bool = Tru
let b2 : my_bool = Fal
let c1 : color = Yellow
let c2 : color = Red

use	constructors	to	create	values	

34	

Data	types	

•  Using	data	type	values:	

	

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue ->
 | Yellow ->
 | Green ->
 | Red ->

use	pa`ern	matching	to	
determine	which	color	
you	have;	act	accordingly	

35	

Data	types	

•  Using	data	type	values:	

	

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Green -> print_string "green"
 | Red -> print_string "red"

36	

Data	types	

•  Using	data	type	values:	

	

type color = Blue | Yellow | Green | Red

let c1 : color = Yellow
let c2 : color = Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Green -> print_string "green"
 | Red -> print_string "red"

Why	not	just	use	strings	to	represent	colors	instead	of	defining	a	new	type?	

37	

Data	types	

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Red -> print_string "red"

Warning	8:	this	pa`ern-matching	is	not	exhausFve.	
Here	is	an	example	of	a	value	that	is	not	matched:	
Green	

			oops!:	

38	

Data	types	

type color = Blue | Yellow | Green | Red

let print_color (c:color) : unit =
 match c with
 | Blue -> print_string "blue"
 | Yellow -> print_string "yellow"
 | Red -> print_string "red"

Warning	8:	this	pa`ern-matching	is	not	exhausFve.	
Here	is	an	example	of	a	value	that	is	not	matched:	
Green	

			oops!:	

OCaml's	datatype	mechanism	allow	you	to	create	types		
that	contain	precisely	the	values	you	want!			

39	

Data	Types	Can	Carry	AddiFonal	Values	
•  Data	types	are	more	than	just	enumeraFons	of	constants:	

•  Read	as:		a	simple_shape	is	either:	
–  a	Circle,	which	contains	a	pair	of	a	point	and	float,	or	
–  a	Square,	which	contains	a	pair	of	a	point	and	float	

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

(x,y)	
s	 (x,y)	

r	

40	

Data	Types	Can	Carry	AddiFonal	Values	
•  Data	types	are	more	than	just	enumeraFons	of	constants:	

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let origin : point = (0.0, 0.0)

let circ1 : simple_shape = Circle (origin, 1.0)
let circ2 : simple_shape = Circle ((1.0, 1.0), 5.0)
let square : simple_shape = Square (origin, 2.3)

41	

Data	Types	Can	Carry	AddiFonal	Values	
•  Data	types	are	more	than	just	enumeraFons	of	constants:	

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let simple_area (s:simple_shape) : float =
 match s with
 | Circle (_, radius) -> 3.14 *. radius *. radius
 | Square (_, side) -> side *. side

42	

Compare	
•  Data	types	are	more	than	just	enumeraFons	of	constants:	

type point = float * float

type simple_shape =
 Circle of point * float
| Square of point * float

let simple_area (s:simple_shape) : float =
 match s with
 | Circle (_, radius) -> 3.14 *. radius *. radius
 | Square (_, side) -> side *. side

type my_shape = point * float

let simple_area (s:my_shape) : float =
 (3.14 *. radius *. radius) ?? or ?? (side *. side)

43	

More	General	Shapes	

r1	
r2	

Square	s	=	

Ellipse	(r1,	r2)	=	

s2	
s1	RtTriangle	(s1,	s2)	=	

v2	
v1	 v3	

v4	v5	

	
Polygon		[v1;	...;v5]	=	

type point = float * float

type shape =
 Square of float
 | Ellipse of float * float
 | RtTriangle of float * float
 | Polygon of point list

s	

44	

More	General	Shapes	

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

Type	abbreviaFons	can	
aid	readability	

r1	
r2	

Square	s	=	

Ellipse	(r1,	r2)	=	

s2	
s1	RtTriangle	(s1,	s2)	=	

v2	
v1	 v3	

v4	v5	

	
RtTriangle		[v1;	...;v5]	=	

s	

45	

More	General	Shapes	

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let sq : shape = Square 17.0
let ell : shape = Ellipse (1.0, 2.0)
let rt : shape = RtTriangle (1.0, 1.0)
let poly : shape = Polygon [(0., 0.); (1., 0.); (0.; 1.)]

they	are	all	shapes;	
they	are	constructed	in		
		different	ways	

Polygon	builds	a	shape	
from	a	list	of	points	
(where	each	point	is	itself	a	pair)	

Square	builds	a	shape	
from	a	single	side	

RtTriangle	builds	a	shape	
from	a	pair	of	sides	

46	

More	General	Shapes	

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let area (s : shape) : float =
 match s with
 | Square s ->
 | Ellipse (r1, r2)->
 | RtTriangle (s1, s2) ->
 | Polygon ps ->

a	data	type	also	defines	
a	pa`ern	for	matching	

47	

More	General	Shapes	

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let area (s : shape) : float =
 match s with
 | Square s ->
 | Ellipse (r1, r2)->
 | RtTriangle (s1, s2) ->
 | Polygon ps ->

Square	carries	a	value	
with	type	float	so	s	is	
a	pa`ern	for	float	values	

RtTriangle	carries	a	value	
with	type	float	*	float	
so	(s1,	s2)	is	a	pa`ern	
for	that	type	

a	data	type	also	defines	
a	pa`ern	for	matching	

48	

More	General	Shapes	

type point = float * float
type radius = float
type side = float

type shape =
 Square of side
 | Ellipse of radius * radius
 | RtTriangle of side * side
 | Polygon of point list

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> pi *. r1 *. r2
 | RtTriangle (s1, s2) -> s1	*.	s2	/.	2.
 | Polygon ps -> ???

a	data	type	also	defines	
a	pa`ern	for	matching	

49	

CompuFng	Area	
•  How	do	we	compute	polygon	area?	
•  For	convex	polygons:	

–  Case:	the	polygon	has	fewer	than	3	points:	
•  it	has	0	area!		(it	is	a	line	or	a	point	or	nothing	at	all)	

–  Case:	the	polygon	has	3	or	more	points:	
•  Compute	the	area	of	the	triangle	formed	by	the	first	3	verFces	
•  Delete	the	second	vertex	to	form	a	new	polygon	
•  Sum	the	area	of	the	triangle	and	the	new	polygon	

v2	
v1	 v3	

v4	v5	
=	 +	

50	

CompuFng	Area	
•  How	do	we	compute	polygon	area?	
•  For	convex	polygons:	

–  Case:	the	polygon	has	fewer	than	3	points:	
•  it	has	0	area!		(it	is	a	line	or	a	point	or	nothing	at	all)	

–  Case:	the	polygon	has	3	or	more	points:	
•  Compute	the	area	of	the	triangle	formed	by	the	first	3	verFces	
•  Delete	the	second	vertex	to	form	a	new	polygon	
•  Sum	the	area	of	the	triangle	and	the	new	polygon	

•  Note:		This	is	a	beauFful	inducFve	algorithm:	
–  the	area	of	a	polygon	with	n	points	is	computed	in	terms	of	a	
smaller	polygon	with	only	n-1	points!	

v2	
v1	 v3	

v4	v5	
=	 +	

51	

CompuFng	Area	

v2	
v1	 v3	

v4	v5	
=	

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> r1 *. r2
 | RtTriangle (s1, s2) -> s1	*.	s2	/.	2.
 | Polygon ps -> poly_area ps

let poly_area (ps : point list) : float =
 match ps with
 | p1 :: p2 :: p3 :: tail ->
 tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
 | _ -> 0.

 =	 +	

This	pa`ern	says	the	
list	has	at	least	3	items	

52	

CompuFng	Area	

let area (s : shape) : float =
 match s with
 | Square s -> s *. s
 | Ellipse (r1, r2)-> pi *. r1 *. r2
 | RtTriangle (s1, s2) -> s1 *. s2 /. 2.
 | Polygon ps -> poly_area ps

let tri_area (p1:point) (p2:point) (p3:point) : float =
 let a = distance p1 p2 in
 let b = distance p2 p3 in
 let c = distance p3 p1 in
 let s = 0.5 *. (a +. b +. c) in
 sqrt (s *. (s -. a) *. (s -. b) *. (s -. c))

let rec poly_area (ps : point list) : float =
 match ps with
 | p1 :: p2 :: p3 :: tail ->
 tri_area p1 p2 p3 +. poly_area (p1::p3::tail)
 | _ -> 0.

53	

INDUCTIVE	DATA	TYPES	

54	

InducFve	data	types	
•  We	can	use	data	types	to	define	inducFve	data	
•  A	binary	tree	is:	

–  a	Leaf	containing	no	data	
–  a	Node	containing	a	key,	a	value,	a	leP	subtree	and	a	right	subtree	

55	

type key = string
type value = int

type tree =
 Leaf
| Node of key * value * tree * tree

InducFve	data	types	
•  We	can	use	data	types	to	define	inducFve	data	
•  A	binary	tree	is:	

–  a	Leaf	containing	no	data	
–  a	Node	containing	a	key,	a	value,	a	leP	subtree	and	a	right	subtree	

56	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducFve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =

57	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducFve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf ->
 | Node (k', v', left, right) ->

Again,	the	type	definiFon		
specifies	the	cases	you	must	
consider	

58	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducFve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->

59	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducFve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

60	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducFve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

61	

type key = int
type value = string

type tree =
 Leaf
| Node of key * value * tree * tree

InducFve	data	types	

let rec insert (t:tree) (k:key) (v:value) : tree =
 match t with
 | Leaf -> Node (k, v, Leaf, Leaf)
 | Node (k', v', left, right) ->
 if k < k' then
 Node (k', v', insert left k v, right)
 else if k > k' then
 Node (k', v', left, insert right k v)
 else
 Node (k, v, left, right)

62	

InducFve	data	types:		Another	Example	
•  Recall,	we	used	the	type	"int"	to	represent	natural	numbers	

–  but	that	was	kind	of	broken:	it	also	contained	negaFve	numbers		
–  we	had	to	use	a	dynamic	test	to	guard	entry	to	a	funcFon:	

–  it	would	be	nice	if	there	was	a	way	to	define	the	natural	
numbers	exactly,	and	use	OCaml's	type	system	to	guarantee	no	
client	ever	a`empts	to	double	a	negaFve	number	

let double (n : int) : int =
 if n < 0 then
 raise (Failure "negative input!")
 else
 double_nat n

63	

InducFve	data	types	
•  Recall,	a	natural	number	n	is	either:	

–  zero,	or	
–  m	+	1	

•  We	use	a	data	type	to	represent	this	definiFon	exactly:	

64	

InducFve	data	types	
•  Recall,	a	natural	number	n	is	either:	

–  zero,	or	
–  m	+	1	

•  We	use	a	data	type	to	represent	this	definiFon	exactly:	

type nat = Zero | Succ of nat

65	

InducFve	data	types	
•  Recall,	a	natural	number	n	is	either:	

–  zero,	or	
–  m	+	1	

•  We	use	a	data	type	to	represent	this	definiFon	exactly:	

type nat = Zero | Succ of nat

let rec nat_to_int (n : nat) : int =
 match n with
 Zero -> 0
 | Succ n -> 1 + nat_to_int n

66	

InducFve	data	types	
•  Recall,	a	natural	number	n	is	either:	

–  zero,	or	
–  m	+	1	

•  We	use	a	data	type	to	represent	this	definiFon	exactly:	

type nat = Zero | Succ of nat

let rec nat_to_int (n : nat) : int =
 match n with
 Zero -> 0
 | Succ n -> 1 + nat_to_int n

let rec double_nat (n : nat) : nat =
 match n with
 | Zero -> Zero
 | Succ m -> Succ (Succ(double_nat m))

67	

Summary	
•  OCaml	data	types:	a	powerful	mechanism	for	defining	

complex	data	structures:	
–  They	are	precise		

•  contain	exactly	the	elements	you	want,	not	more	elements	
–  They	are	general	

•  recursive,	non-recursive	(mutually	recursive	and	polymorphic)	
–  The	type	checker	helps	you	detect	errors	

•  missing	cases	in	your	funcFons	

68	

PARAMETERIZED	TYPE	DEFINITIONS	

69	

type	(‘key,	‘val)	tree	=		
					Leaf		
		|	Node	of	‘key	*	‘val	*	(‘key,	‘val)	tree	*	(‘key,	‘val)	tree		
	
	
type	‘a	stree	=	(string,	‘a)	tree	
	
	
type	sitree	=	int	stree	

type	‘x	f	=	body	

	arg	f	

definiFon:	

use:	

type	f	x	=	body	

	f	arg	

definiFon:	

use:	

General	form:	 A	more	convenFonal	notaFon	
would	have	been	(but	is	not	ML):	

70	

Take-home	Message	
•  Think	of	parameterized	types	like	funcFons:	

–  a	funcFon	that	take	a	type	as	an	argument	
–  produces	a	type	as	a	result	

•  TheoreFcal	basis:	
–  System	F-omega	
–  a	typed	lambda	calculus	with	general	type-level	funcFons	as	
well	as	value-level	funcFons	

71	

TYPE	DESIGN	

72	

Example	Type	Design	
73	

IBM	developed	GML	(Generalize	Markup	Language)	in	1969	
•  h`p://en.wikipedia.org/wiki/IBM_Generalized_Markup_Language	
•  Precursor	to	SGML,	HTML	and	XML	

	

:h1.Chapter 1: Introduction
:p.GML supported hierarchical containers, such as
:ol
:li.Ordered lists (like this one),
:li.Unordered lists, and
:li.Definition lists
:eol.
as well as simple structures.
:p.Markup Minimization (later generalized and
formalized in SGML), allowed the end-tags to be
omitted for the “h1” and “p” elements.

Simplified	GML	
74	

To	process	a	GML	document,	an	OCaml	program	would:	
•  Read	a	series	of	characters	from	a	text	file	&	Parse	GML	structure	
•  Represent	the	informaFon	content	as	an	OCaml	data	structure	
•  Analyze	or	transform	the	data	structure	
•  Print/Store/Communicate	results	
	
We	will	focus	on	how	to	represent	and	transform	the	informaFon	
content	of	a	GML	document.	

Example	Type	Design	
75	

•  A	GML	document	consists	of:	
–  a	list	of	elements	

•  An	element	is	either:	
–  a	word	or	markup	applied	to	an	element	

•  Markup	is	either:	
–  italicize,	bold,	or	a	font	name	

Example	Type	Design	
76	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

•  A	GML	document	consists	of:	
–  a	list	of	elements	

•  An	element	is	either:	
–  a	word	or	markup	applied	to	an	element	

•  Markup	is	either:	
–  italicize,	bold,	or	a	font	name	

Example	Data	
77	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

let d = [Formatted (Bold,
 Formatted (Font “Arial”,

 Words [“Chapter”;“One”]));

 Words [“It”; ”was”; ”a”; ”dark”;

 ”&”; ”stormy; ”night.”; "A"];

 Formatted (Ital, Words[“shot”]);

 Words [“rang”; ”out.”]];;

Challenge	
78	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”.	
•  Of	course,	when	we	program	funcFonally,	we	implement	

change	via	a	funcFon	that	
–  receives	one	data	structure	as	input	
–  builds	a	new	(different)	data	structure	as	an	output	

Challenge	
79	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”.	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Challenge	
80	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”.	

•  Technique:		approach	the	problem	top	down,	work	on	doc	first:	

let rec chfonts (elts:doc) : doc =
	
	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Challenge	
81	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”.	

•  Technique:		approach	the	problem	top	down,	work	on	doc	first:	

let rec chfonts (elts:doc) : doc =
 match elts with
 | [] ->
 | hd::tl ->
	
	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Challenge	
82	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”.	

•  Technique:		approach	the	problem	top	down,	work	on	doc	first:	

let rec chfonts (elts:doc) : doc =
 match elts with
 | [] -> []
 | hd::tl -> (chfont hd)::(chfonts tl)
	
	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing	fonts	in	an	element	
83	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”.	

•  Next	work	on	changing	the	font	of	an	element:	

let rec chfont (e:elt) : elt =
	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing	fonts	in	an	element	
84	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”.	

•  Next	work	on	changing	the	font	of	an	element:	

let rec chfont (e:elt) : elt =
 match e with
 | Words ws ->
 | Formatted(m,e) ->	
	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing	fonts	in	an	element	
85	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”.	

•  Next	work	on	changing	the	font	of	an	element:	

let rec chfont (e:elt) : elt =
 match e with
 | Words ws -> Words ws
 | Formatted(m,e) ->	
	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing	fonts	in	an	element	
86	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”.	

•  Next	work	on	changing	the	font	of	an	element:	

let rec chfont (e:elt) : elt =
 match e with
 | Words ws -> Words ws
 | Formatted(m,e) -> Formatted(chmarkup m, chfont e)
	
	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing	fonts	in	an	element	
87	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”.	

•  Next	work	on	changing	a	markup:	

let chmarkup (m:markup) : markup =
	
	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Changing	fonts	in	an	element	
88	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”.	

•  Next	work	on	changing	a	markup:	

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m
	
	

type markup = Ital | Bold | Font of string

type elt =
 Words of string list
| Formatted of markup * elt

type doc = elt list

Summary:		Changing	fonts	in	an	element	
89	

•  Change	all	of	the	“Arial”	fonts	in	a	document	to	“Courier”	
•  Lesson:		funcFon	structure	follows	type	structure	

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m

let rec chfont (e:elt) : elt =
 match e with
 | Words ws -> Words ws
 | Formatted(m,e) -> Formatted(chmarkup m, chfont e)

let rec chfonts (elts:doc) : doc =
 match elts with
 | [] -> []
 | hd::tl -> (chfont hd)::(chfonts tl)

Poor	Style	
90	

•  Consider	again	our	definiFon	of	markup	and	markup	change:	

type markup =
 Ital | Bold | Font of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m

Poor	Style	
91	

•  What	if	we	make	a	change:	

type markup =
 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | _ -> m

the	underscore	silently	catches	all	possible	alternaFves		
	
this	may	not	be	what	we	want	--	perhaps	there	is	an	
Arial	TT	font	
	
it	is	be`er	if	we	are	alerted	of	all	funcFons	
whose	implementaFon	may	need	to	change	
	

Be`er	Style	
92	

•  Original	code:	

	

type markup =
 Ital | Bold | Font of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | Ital | Bold -> m

Be`er	Style	
93	

•  Updated	code:	

	

type markup =
 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =
 match m with
 | Font “Arial” -> Font “Courier”
 | Ital | Bold -> m

..match m with
 | Font "Arial" -> Font "Courier"
 | Ital | Bold -> m..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
TTFont _

Be`er	Style	
94	

•  Updated	code,	fixed:	

•  Lesson:	use	the	type	checker	where	possible	to	help	you	
maintain	your	code	

	

	

type markup =
 Ital | Bold | Font of string | TTFont of string

let chmarkup (m:markup) : markup =
 match m with
 | Font "Arial" -> Font "Courier"
 | TTFont "Arial" -> TTFont "Courier"
 | Font s -> Font s
 | TTFont s -> TTFont s
 | Ital | Bold -> m

A	couple	of	pracFce	problems	
95	

•  Write	a	funcFon	that	gets	rid	of	immediately	redundant	
markup	in	a	document.			
–  Forma`ed(Ital,	Forma`ed(Ital,e))	can	be	simplified	to		
Forma`ed(Ital,e)	

–  write	maps	and	folds	over	markups	
•  Design	a	datatype	to	describe	bibliography	entries	for	

publicaFons.		Some	publicaFons	are	journal	arFcles,	others	
are	books,	and	others	are	conference	papers.		Journals	have	a	
name,	number	and	issue;	books	have	an	ISBN	number;	All	of	
these	entries	should	have	a	Ftle	and	author.	
–  design	a	sorFng	funcFon	
–  design	maps	and	folds	over	your	bibliography	entries	

To	Summarize	
96	

•  Design	recipe	for	wriFng	OCaml	code:	
–  write	down	English	specificaFons	

•  try	to	break	problem	into	obvious	sub-problems	
–  write	down	some	sample	test	cases	
–  write	down	the	signature	(types)	for	the	code	
–  use	the	signature	to	guide	construcFon	of	the	code:	

•  tear	apart	inputs	using	pa`ern	matching	
– make	sure	to	cover	all	of	the	cases!			(OCaml	will	tell	you)	

•  handle	each	case,	building	results	using	data	constructor	
–  this	is	where	human	intelligence	comes	into	play	
–  the	“skeleton”	given	by	types	can	almost	be	done	
automaFcally!	

•  clean	up	your	code	
–  use	your	sample	tests	(and	ideally	others)	to	ensure	correctness	

