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Last	Time:	Java	Pair	Rant	

Java	has	a	paucity	of	types	
–  There	is	no	type	to	describe	just	the	pairs	
–  There	is	no	type	to	describe	just	the	triples	
–  There	is	no	type	to	describe	the	pairs	of	pairs	
–  There	is	no	type	…	

OCaml	has	many	more	types	
–  use	opKon	when	things	may	be	null	
–  do	not	use	opKon	when	things	are	not	null	
–  OCaml	types	describe	data	structures	more	precisely	

•  programmers	have	fewer	cases	to	worry	about	
•  enKre	classes	of	errors	just	go	away	
•  type	checking	and	paRern	analysis	help	prevent	programmers	from	
ever	forgeSng	about	a	case	
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Java	has	a	paucity	of	types	
–  There	is	no	type	to	describe	just	the	pairs	
–  There	is	no	type	to	describe	just	the	triples	
–  There	is	no	type	to	describe	the	pairs	of	pairs	
–  There	is	no	type	…	

OCaml	has	many	more	types	
–  use	opKon	when	things	may	be	null	
–  do	not	use	opKon	when	things	are	not	null	
–  OCaml	types	describe	data	structures	more	precisely	

•  programmers	have	fewer	cases	to	worry	about	
•  enKre	classes	of	errors	just	go	away	
•  type	checking	and	paRern	analysis	help	prevent	programmers	from	
ever	forgeSng	about	a	case	

Summary	of	Java	Pair	Rant	

	
SCORE:		OCAML	1,		JAVA	0	
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C,	C++		Rant	

Java	has	a	paucity	of	types	
–  but	at	least	when	you	forget	something,	
	it		throws	an	excep.on	instead	of	silently	going	off	the	trolley!	

	
If	you	forget	to	check	for	null	pointer	in	a	C	program,	

–  no	type-check	error	at	compile	Kme	
–  no	excepKon	at	run	Kme	
–  it	might	crash	right	away	(that	would	be	best),	or	
–  it	might	permit	a	buffer-overrun	(or	similar)	vulnerability	
–  so	the	hackers	pwn	you!	
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Java	has	a	paucity	of	types	
–  but	at	least	when	you	forget	something,	
	it		throws	an	excep.on	instead	of	silently	going	off	the	trolley!	

	
If	you	forget	to	check	for	null	pointer	in	a	C	program,	

–  no	type-check	error	at	compile	Kme	
–  no	excepKon	at	run	Kme	
–  it	might	crash	right	away	(that	would	be	best),	or	
–  it	might	permit	a	buffer-overrun	(or	similar)	vulnerability	
–  so	the	hackers	pwn	you!	

Summary	of	C,	C++	rant	

	
SCORE:			
OCAML	1,		JAVA	0,		C		-1	
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MORE	THOUGHTS	ON	LISTS	
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The	(Single)	List	Programming	Paradigm	
•  Recall	that	a	list	is	either:	

–  [	] 	(the	empty	list)	
–  v	::	vs 	(a	value	v	followed	by	a	previously	constructed	list	vs)	

•  Some	examples:	

let l0 = [];;             (* length is 0 *) 
let l1 = 1::l0;;          (* length is 1 *) 
let l2 = 2::l1;;          (* length is 2 *) 
let l3 = 3::l2;;          (* length is 3 *) 
… 
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Consider	This	Picture	
•  Consider	the	following	picture.		How	long	is	the	linked	structure?	
•  Can	we	build	a	value	with	type	int	list	to	represent	it?	

1	

2	

3	4	
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Consider	This	Picture	
•  How	long	is	it?		Infinitely	long?	
•  Can	we	build	a	value	with	type	int	list	to	represent	it?		No!	

–  all	values	with	type	int	list	have	finite	length	

1	

2	

3	4	

9	



The	List	Type	

•  Is	it	a	good	thing	that	the	type	list	does	not	contain	any	
infinitely	long	lists?		Yes!	

•  A	terminaKng	list-processing	scheme:	

let rec f (xs : int list) : int = 
  match xs with 
    [] -> … do something not recursive … 
  | hd::tail -> …  f tail … 
 

terminates	because	f	only	called	recursively	on	smaller	lists	
10	



A	Loopy	Program	

let rec loop (xs : int list) : int = 
  match xs with 
    [] -> 0 
  | hd::tail -> hd + loop (0::tail) 
 

Does	this	program	terminate?	
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A	Loopy	Program	

Does	this	program	terminate?		No!		Why	not?		We	call	loop	recursively	on	
(0::tail).		This	list	is	the	same	size	as	the	original	list	--	not	smaller.	

let rec loop (xs : int list) : int = 
  match xs with 
    [] -> [] 
  | hd::tail -> hd + loop (0::tail) 
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Take-home	Message	

ML	has	a	strong	type	system	
•  ML	types	say	a	lot	about	the	set	of	values	that	inhabit	them		

In	this	case,	the	tail	of	the	list	is	always	shorter	than	the	whole	list	

This	makes	it	easy	to	write	funcKons	that	terminate;	it	would	be	
harder	if	you	had	to	consider	more	cases,	such	as	the	case	that	the	
tail	of	a	list	might	loop	back	on	itself.		Moreover	OCaml	hits	you	over	
the	head	to	tell	you	what	the	only	2	cases	are!	

Note:		Just	because	the	list	type	excludes	cyclic	structures	does	not	
mean	that	an	ML	program	can't	build	a	cyclic	data	structure	if	it	
wants	to.		ML	is	be=er	than	other	languages	because	it	gives	you	
control	over	the	values	you	want	to	program	with	via	types!			 13	



Rant	#2:	ImperaKve	lists	
•  One	week	from	today,	ask	yourself:		Which	is	easier:	

–  Programming	with	immutable	lists	in	ML?	
–  Programming	with	pointers	and	mutable	cells	in	C/Java	
–  I	guarantee	you	are	going	to	say	ML	

•  there	are	so	many	more	cases	to	worry	about	in	C/Java	
•  so	many	more	things	that	can	go	wrong		

SCORE:		OCAML	2,		JAVA	0	
							C:	why	bother?	
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Do not believe his lies.



let  rec  xs  :  int  list  =  0::xs



let  rec  xs  :  int  list  =  0::xs
	
SCORE:		OCAML	1.8,		JAVA	0	
							C:	why	bother?	
	



Poly-HO!	

polymorphic,	
higher-order	
programming	

COS	326	
David	Walker	

Princeton	University	
	

slides	copyright	2017	David	Walker	
permission	granted	to	reuse	these	slides	for	non-commercial	educaKonal	purposes	

	



Some	Design	&	Coding	Rules	
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Some	Design	&	Coding	Rules	
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•  Laziness	can	be	a	really	good	force	in	design.	
•  Never	write	the	same	code	twice.	

–  factor	out	the	common	bits	into	a	reusable	procedure.	
–  beRer,	use	someone	else’s	(well-tested,	well-documented,	and	
well-maintained)	procedure.	

•  Why	is	this	a	good	idea?		
–  why	don’t	we	just	cut-and-paste	snippets	of	code	using	the	
editor	instead	of	creaKng	new	funcKons?		



Some	Design	&	Coding	Rules	
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•  Laziness	can	be	a	really	good	force	in	design.	
•  Never	write	the	same	code	twice.	

–  factor	out	the	common	bits	into	a	reusable	procedure.	
–  beRer,	use	someone	else’s	(well-tested,	well-documented,	and	
well-maintained)	procedure.	

•  Why	is	this	a	good	idea?		
–  why	don’t	we	just	cut-and-paste	snippets	of	code	using	the	
editor	instead	of	creaKng	new	funcKons?	

–  find	and	fix	a	bug	in	one	copy,	have	to	fix	in	all	of	them.	
–  decide	to	change	the	funcKonality,	have	to	track	down	all	of	the	
places	where	it	gets	used.				



Factoring	Code	in	OCaml	
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Consider	these	definiKons:	
	
	
	
	
	
	
	
	
	
	

let rec inc_all (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (hd+1)::(inc_all tl) 
 
 
let rec square_all (xs:int list) : int list = 
  match xs with 
  | [] -> [] 
  | hd::tl -> (hd*hd)::(square_all tl) 
 



Factoring	Code	in	OCaml	
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Consider	these	definiKons:	
	
	
	
	
	
	
	
	
	
The	code	is	almost	idenKcal	–	factor	it	out!	
	
	

let rec inc_all (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (hd+1)::(inc_all tl) 
 
 
let rec square_all (xs:int list) : int list = 
  match xs with 
  | [] -> [] 
  | hd::tl -> (hd*hd)::(square_all tl) 
 



Factoring	Code	in	OCaml	
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A	higher-order	funcKon	captures	the	recursion	paRern:	
	
	
	
	
	
	
	
	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl) 
 
 



Factoring	Code	in	OCaml	
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A	higher-order	funcKon	captures	the	recursion	paRern:	
	
	
	
	
	
Uses	of	the	funcKon:	
	
	
	
	
	
	
	
	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl) 
 
 

let inc x = x+1 
let inc_all xs = map inc xs 
 



Factoring	Code	in	OCaml	
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A	higher-order	funcKon	captures	the	recursion	paRern:	
	
	
	
	
	
Uses	of	the	funcKon:	
	
	
	
	
	
	
	
	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl) 
 
 

let inc x = x+1 
let inc_all xs = map inc xs 
 
let square y = y*y 
let square_all xs = map square xs 
 

WriKng	liRle	
funcKons	like	inc	
just	so	we	call	
map	is	a	pain.	



Factoring	Code	in	OCaml	
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A	higher-order	funcKon	captures	the	recursion	paRern:	
	
	
	
	
	
Uses	of	the	funcKon:	
	
	
	
	
	
	
	
	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl);; 
 
 

 
let inc_all xs = map (fun x -> x + 1) xs 
 
 
let square_all xs = map (fun y -> y * y) xs 
 

We	can	use	an	
anonymous	
funcKon	
instead.	 Originally,	

Church	wrote	
this	funcKon	

using	λ instead	
of	fun:	

(λx.		x+1)	or		
(λx.	x*x)	



Another	example	
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let rec sum (xs:int list) : int =  
  match xs with  
  | [] -> 0 
  | hd::tl -> hd + (sum tl) 
 
 
let rec prod (xs:int list) : int =  
  match xs with  
  | [] -> 1 
  | hd::tl -> hd * (prod tl) 
 
 
 Goal:		Create	a	funcKon	called	reduce	that	

when	supplied	with	a	few	arguments	
can	implement	both	sum	and	prod.	
Define	sum2	and	prod2	using	reduce.	
	
(Try	it)	

Goal:		If	you	finish	early,	use	
map	and	reduce		together	to	
find	the	sum	of	the	squares	of	
the	elements	of	a	list.	
	
(Try	it)	



Another	example	

29	

let rec sum (xs:int list) : int =  
  match xs with  
  | [] -> b 
  | hd::tl -> hd + (sum tl) 
 
 
let rec prod (xs:int list) : int =  
  match xs with  
  | [] -> b 
  | hd::tl -> hd * (prod tl) 
 
 
 



Another	example	

30	

let rec sum (xs:int list) : int =  
  match xs with  
  | [] -> b 
  | hd::tl -> hd OP (RECURSIVE CALL ON tl) 
 
 
let rec prod (xs:int list) : int =  
  match xs with  
  | [] -> b 
  | hd::tl -> hd OP (RECURSIVE CALL ON tl) 
 
 
 



Another	example	

31	

let rec sum (xs:int list) : int =  
  match xs with  
  | [] -> b 
  | hd::tl -> f hd (RECURSIVE CALL ON tl) 
 
 
let rec prod (xs:int list) : int =  
  match xs with  
  | [] -> b 
  | hd::tl -> f hd (RECURSIVE CALL ON tl) 
 
 
 



A	generic	reducer	

32	

let add x y = x + y  
let mul x y = x * y 
 
let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =  
  match xs with 
  | [] -> b 
  | hd::tl -> f hd (reduce f b tl) 
 
let sum xs = reduce add 0 xs  
let prod xs = reduce mul 1 xs  
 
 



Using	Anonymous	FuncKons	
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =  
  match xs with 
  | [] -> b 
  | hd::tl -> f hd (reduce f b tl) 
 
let sum xs = reduce (fun x y -> x+y) 0 xs  
let prod xs = reduce (fun x y -> x*y) 1 xs  
 
 



Using	Anonymous	FuncKons	
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =  
  match xs with 
  | [] -> b 
  | hd::tl -> f hd (reduce f b tl) 
 
let sum xs = reduce (fun x y -> x+y) 0 xs  
let prod xs = reduce (fun x y -> x*y) 1 xs  
 
let sum_of_squares xs = sum (map (fun x -> x * x) xs) 
let pairify xs = map (fun x -> (x,x)) xs 
 



Using	Anonymous	FuncKons	
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =  
  match xs with 
  | [] -> b 
  | hd::tl -> f hd (reduce f b tl) 
 
let sum xs = reduce (+) 0 xs  
let prod xs = reduce ( * ) 1 xs  
 
let sum_of_squares xs = sum (map (fun x -> x * x) xs) 
let pairify xs = map (fun x -> (x,x)) xs 
 



Using	Anonymous	FuncKons	
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =  
  match xs with 
  | [] -> b 
  | hd::tl -> f hd (reduce f b tl) 
 
let sum xs = reduce (+) 0 xs  
let prod xs = reduce (*) 1 xs  
 
let sum_of_squares xs = sum (map (fun x -> x * x) xs) 
let pairify xs = map (fun x -> (x,x)) xs 
 

wrong	



Using	Anonymous	FuncKons	
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let rec reduce (f:int->int->int) (b:int) (xs:int list) : int =  
  match xs with 
  | [] -> b 
  | hd::tl -> f hd (reduce f b tl) 
 
let sum xs = reduce (+) 0 xs  
let prod xs = reduce (*) 1 xs  
 
let sum_of_squares xs = sum (map (fun x -> x * x) xs) 
let pairify xs = map (fun x -> (x,x)) xs 
 

wrong		--	creates	a	comment!		ug.		OCaml	-0.1	



More	on	Anonymous	FuncKons	

38	

FuncKon	declaraKons:	
	
	
	
are	syntacAc	sugar	for:	
	
	
	
In	other	words,	funcAons	are	values	we	can	bind	to	a	variable,		
				just	like	3	or	“moo”	or	true.		 
	
FuncKons	are	2nd	class	no	more!	
	
 

 

let square x = x*x  
 
let add x y = x+y  

let square = (fun x -> x*x)  
 
let add = (fun x y -> x+y)  



One	argument,	one	result	

39	

Simplifying	further:	
	
	
	
is	shorthand	for:	
	
	
	
That	is,	add	is	a	funcKon	which:	

–  when	given	a	value	x,	returns	a	funcAon	(fun	y	->	x+y)	which:	
•  when	given	a	value	y,	returns	x+y.	

	
 

	
	
	
	
	

let add = (fun x y -> x+y) 

let add = (fun x -> (fun y -> x+y)) 



Curried	FuncKons	
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Currying:	verb.		gerund	or	present	parAciple			
	
(1)	to	prepare	or	flavor	with	hot-tasKng	spices	
(2)	to	encode	a	mulK-argument	funcKon	using	nested,	higher-order	

funcKons.	

fun x -> (fun y -> x+y) (* curried *) 

fun x y -> x + y  (* curried *) 

fun (x,y) -> x+y  (* uncurried *) 

(1)	

(2)	



Curried	FuncKons	
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Named	awer	the	logician	Haskell	B.	Curry	(1950s).	

–  was	trying	to	find	minimal	logics	that	are	powerful	enough	to	encode	
tradiKonal	logics.	

–  much	easier	to	prove	something	about	a	logic	with	3	connecKves	than	
one	with	20.			

–  the	ideas	translate	directly	to	math	(set	&	category	theory)	as	well	as	to	
computer	science.		

–  Actually,	Moses	Schönfinkel	did	some	of	this	in	1924	
•  thankfully,	we	don't	have	to	talk	about	Schönfinkelled	funcKons	

Curry	 Schönfinkel	



What	is	the	type	of	add?	
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Add’s	type	is:	
	
	
	
which	we	can	write	as:	
	
	
	
That	is,	the	arrow	type	is	right-associaKve.			

let add = (fun x -> (fun y -> x+y)) 

int -> (int -> int) 

int -> int -> int 



What’s	so	good	about	Currying?	

43	

In	addiKon	to	simplifying	the	language,	currying	funcKons	so	that	
they	only	take	one	argument	leads	to	two	major	wins:	

1.  We	can	parAally	apply	a	funcKon.	
2.  We	can	more	easily	compose	funcKons.		
	

	



ParKal	ApplicaKon	

44	

   
 
Curried	funcKons	allow	defs	of	new,	parAally	applied	funcKons:			
	
	
Equivalent	to	wriKng:	
	
	
which	is	equivalent	to	wriKng:	
	
	
also:	
 
	

let add = (fun x -> (fun y -> x+y))  

let inc = add 1 

 let inc = (fun y -> 1+y) 

 let inc y = 1+y 

let inc2 = add 2 
let inc3 = add 3 



SIMPLE	REASONING	ABOUT	
HIGHER-ORDER	FUNCTIONS	



Reasoning	About	DefiniKons	

46	

let square_all = map square  

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(square_all tl) 

We	can	factor	this	program	

into	this	program:	

assuming	we	already	have	a	definiKon	of	map	



Reasoning	About	DefiniKons	
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Goal:		Rewrite	definiKons	so	my	program	is	simpler,	easier	to		
understand,	more	concise,	…		
	
QuesAon:		What	are	the	reasoning	principles	for	rewriKng	programs		
without	breaking	them?		For	reasoning	about	the	behavior	of		
programs?		About	the	equivalence	of		two	programs?	
	
I	want	some	rules	that	never	fail.	

let square_all = map square 

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(square_all tl) 
 



Simple	EquaKonal	Reasoning	

(fun x -> ... x ...) arg       ... arg ... 

let f = def let f x = (def) x 

chose	name	x	wisely	so	it	does	not	
shadow	other	names	used	in	def	

if	arg	is	a	value	or,	when	executed,	
will	always	terminate	without	effect	and		
produce	a	value	

Rewrite	2	(SubsKtuKon):	

Rewrite	3	(Eta-expansion):	

if	f	has	a	funcKon	type	

let f x = body let f = (fun x -> body) 

Rewrite	1	(FuncKon	de-sugaring):	

==	

==	

==	

roughly:		all	occurrences	of	x	replaced		
by	arg	(though	geSng	this	exactly	
right	is	shockingly	difficult)	



Eta-expansion	is	an	example	of	Leibniz’s	law	

let f = def let f = fun x -> (def)x 

chose	name	x	wisely	so	it	does	not	
shadow	other	names	used	in	def	

Rewrite	3	(Eta-expansion):	

if	f	has	a	funcKon	type	

==	

Go}ried	Wilhelm	von	Leibniz	
German	Philosopher	
1646	-	1716	

Leibniz’s	law:	
	
If	every	predicate	possessed	by	x	is	also	
possessed	by	y	and	vice	versa,	then	enKKes	x	
and	y	are	idenKcal.		Frequently	invoked	in	
modern	logic	and	philosophy.		



EliminaKng	the	Sugar	in	Map	

50	

let rec map f xs =  
  match xs with  
  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl) 

 
	



EliminaKng	the	Sugar	in	Map	

51	

let rec map f xs =  
  match xs with  
  | [] -> [] 

  | hd::tl -> (f hd)::(map f tl) 

 
let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl))) 

	



Consider	square_all	

52	

let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl))) 

 
let square_all = 
   map square  

	



SubsKtute	map	definiKon	into	square_all	

53	

let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl))) 

 
let square_all = 
   (fun f -> 

       (fun xs ->  

       match xs with 
       | [] -> [] 
       | hd::tl -> (f hd)::(map f tl) 

       ) 

   ) square  



SubsKtute	map	definiKon	into	square_all	

54	

let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl))) 

 
let square_all = 
   (fun f -> 

       (fun xs ->  

       match xs with 
       | [] -> [] 
       | hd::tl -> (f hd)::(map f tl) 

       ) 

   ) square  



SubsKtute	map	definiKon	into	square_all	
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let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl))) 

 
let square_all = 
   (fun f -> 

       (fun xs ->  

       match xs with 
       | [] -> [] 
       | hd::tl -> (f hd)::(map f tl) 

       ) 

   ) square  



SubsKtute	Square	
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let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl))) 

 
let square_all = 
   ( 

       (fun xs ->  

       match xs with 
       | [] -> [] 
       | hd::tl -> (square hd)::(map square tl) 

       ) 

                   

argument	square	subsKtuted	
for	parameter	f	



Expanding	map	square	
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let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl))) 

 
let square_all ys = 
    

       (fun xs ->  

       match xs with 
       | [] -> [] 
       | hd::tl -> (square hd)::(map square tl) 

       ) ys 

    

add	argument	
via	eta-expansion	



Expanding	map	square	
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let rec map =  
  (fun f ->  
    (fun xs ->  
    match xs with 
    | [] -> [] 
    | hd::tl -> (f hd)::(map f tl))) 

 
let square_all ys = 
    

        

       match ys with 
       | [] -> [] 
       | hd::tl -> (square hd)::(map square tl) 

        

    

subsKtute	again		
(argument	ys	for		
	parameter	xs)	



So	Far	
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let rec map f xs =  
 match xs with 
 | [] -> [] 
 | hd::tl -> (f hd)::(map f tl) 

 
let square_all xs = map square xs 

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(map square tl) 
 

proof	by	
simple	
rewriKng	
unrolls	
definiKon	
once	



Next	Step	
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let rec map f xs =  
 match xs with 
 | [] -> [] 
 | hd::tl -> (f hd)::(map f tl) 

 
let square_all xs = map square xs 

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(map square tl) 
;; 

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(square_all tl) 
 

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(map square tl) 
 

proof	
by	
inducAon	
eliminates	
recursive	
funcKon	
map	

proof	by	
simple	
rewriKng	
unrolls	
definiKon	
once	



Summary	
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We	saw	this:	
	
	
	
	
	
	
Is	equivalent	to	this:	
	
	
	
	
	
Morals	of	the	story:	
(1)	OCaml’s	hot	(higher-order,	typed)	funcKons	capture	recursion	paRerns	
(2)	we	can	figure	out	what	is	going	on	by	equaAonal	reasoning.	
(3)	...	but	we	typically	need	to	do	proofs	by	inducAon	to	reason	about	recursive	
(inducKve)	funcKons	

let rec map f xs =  
 match xs with 
 | [] -> [] 
 | hd::tl -> (f hd)::(map f tl);; 

 
let square_all ys = map square 

let square_all ys = 
  match ys with 
    | [] -> [] 
    | hd::tl -> (square hd)::(map square tl) 



POLY-HO!	



Here’s	an	annoying	thing	
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What	if	I	want	to	increment	a	list	of	floats?	
Alas,	I	can’t	just	call	this	map.		It	works	on	ints!	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl);; 



Here’s	an	annoying	thing	

64	

 

 
 

 

	
What	if	I	want	to	increment	a	list	of	floats?	
Alas,	I	can’t	just	call	this	map.		It	works	on	ints!	
	
	
	

let rec map (f:int->int) (xs:int list) : int list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl);; 

let rec mapfloat (f:float->float) (xs:float list) :  
           float list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(mapfloat f tl);; 



Turns	out	
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let rec map f xs =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl) 
 
let ints = map (fun x -> x + 1) [1; 2; 3; 4]  
 
let floats = map (fun x -> x +. 2.0) [3.1415; 2.718]  
 
let strings = map String.uppercase [“sarah”; “joe”]  



Type	of	the	undecorated	map?	
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let rec map f xs =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl) 
 
map : ('a -> 'b) -> 'a list -> 'b list 
	



Type	of	the	undecorated	map?	

67	

	
	
	
	
	
	
Read	as:			
•  for	any	types	'a	and	'b,		
•  if	you	give	map	a	funcKon	from	'a	to	'b,		
•  it	will	return	a	funcKon	
– which	when	given	a	list	of	'a	values	
–  returns	a	list	of	'b	values.	

	

let rec map f xs =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl) 
 
map : ('a -> 'b) -> 'a list -> 'b list 
	

We	owen	use	
greek	leRers	
like	α	or	β	to	
represent	type	

variables.	



We	can	say	this	explicitly	
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The	OCaml	compiler	is	smart	enough	to	figure	out	that	this	is	the	

most	general	type	that	you	can	assign	to	the	code.			
	
We	say	map	is	polymorphic	in	the	types	'a	and	'b	–	just	a	fancy	

way	to	say	map	can	be	used	on	any	types	'a	and	'b.		
	
Java	generics	derived	from	ML-style	polymorphism	(but	added	

awer	the	fact	and	more	complicated	due	to	subtyping)	
	
	
	

let rec map (f:'a -> 'b) (xs:'a list) : 'b list =  
  match xs with  
  | [] -> [] 
  | hd::tl -> (f hd)::(map f tl) 
 
map : (‘a -> ‘b) -> ‘a list -> ‘b list 
	



More	realisKc	polymorphic	funcKons	
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let rec merge (lt:'a->'a->bool) (xs:'a list) (ys:'a list) : 'a list =  
  match (xs,ys) with  
  | ([],_) -> ys 

  | (_,[]) -> xs 

  | (x::xst, y::yst) ->  

    if lt x y then x::(merge lt xst ys) 
      else y::(merge lt xs yst)  
 

let rec split (xs:'a list)(ys:'a list)(zs:'a list) : 'a list * 'a list = 
  match xs with  
  | [] -> (ys, zs) 
  | x::rest -> split rest zs (x::ys)  
 

let rec mergesort (lt:'a->'a->bool) (xs:'a list) : 'a list =  
  match xs with  
  | ([] | _::[]) -> xs 

  | _ -> let (first,second) = split xs [] [] in 
         merge lt (mergesort lt first) (mergesort lt second)  
	



More	realisKc	polymorphic	funcKons	
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mergesort : ('a->'a->bool) -> 'a list -> 'a list   
 

mergesort (<) [3;2;7;1]  

  == [1;2;3;7] 

 

mergesort (>) [2; 3; 42]  

  == [42 ; 3; 2] 

 

mergesort (fun x y -> String.compare x y < 0) [“Hi”; “Bi”]  
  == [“Bi”; “Hi”]  

 

let int_sort = mergesort (<)  
let int_sort_down = mergesort (>)  
let str_sort = mergesort (fun x y -> String.compare x y < 0) 
	



let mystery =         fun x -> (add 1) (square x)  

Another	InteresKng	FuncKon	
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let comp f g x = f (g x)  
 
let mystery = comp (add 1) square  

let comp = fun f -> (fun g -> (fun x -> f (g x)))  
 
let mystery = comp (add 1) square  

let mystery =  
 (fun f -> (fun g -> (fun x -> f (g x)))) (add 1) square  

let mystery x = add 1 (square x)  



OpKmizaKon	

72	

map f (map g [x1; x2; …; xn]) 	

What	does	this	program	do?	

For	each	element	of	the	list	x1,	x2,	x3	...	xn,	it	executes	g,	creaKng:	

map f ([g x1; g x2; …; g xn]) 	

Then	for	each	element	of	the	list	[g	x1,	g	x2,	g	x3	...	g	xn],	it	executes	f,	creaKng:	

[f (g x1); f (g x2); …; f (g xn)] 	

Is	there	a	faster	way?	 Yes!		(And	query	opKmizers	for	SQL	do	it	for	you.)	

map (comp f g) [x1; x2; ...; xn] 	



DeforestaKon	
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map f (map g [x1; x2; …; xn]) 	

map (comp f g) [x1; x2; ...; xn] 	

This	kind	of	opKmizaKon	has	a	name:	
	

	deforestaJon	
	
(because	it	eliminates	intermediate	
lists	and,	um,	trees…)	



What	is	the	type	of	comp?	
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let comp f g x = f (g x)  



What	is	the	type	of	comp?	
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comp : ('b -> 'c) ->  
       ('a -> 'b) ->  
       ('a -> 'c) 
 

let comp f g x = f (g x)  



What	is	the	type	of	comp?	
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comp : ('b -> 'c) ->  
       ('a -> 'b) ->  
       ('a -> 'c) 
 

let comp f g x = f (g x)  

 
comp : ('b -> 'c) ->  
       ('a -> 'b) ->  
        'a -> 'c 
 



How	about	reduce?	
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let rec reduce f u xs =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce f u xs =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	

Based	on	the	
paRerns,	we	

know	xs	must	be	
a	('a	list)	for	
some	type	'a.	



How	about	reduce?	
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let rec reduce f u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce f u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	

f	is	called	so	it	
must	be	a	

funcKon	of	two	
arguments.	



How	about	reduce?	
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let rec reduce (f:? -> ? -> ?) u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce (f:? -> ? -> ?) u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	

Furthermore,	hd	
came	from	xs,	so	
f	must	take	an	'a	
value	as	its	first	

argument.	



How	about	reduce?	
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let rec reduce (f:'a -> ? -> ?) u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	

84	

let rec reduce (f:'a -> ? -> ?) u (xs: 'a list)  =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	

The	second	
argument	to	f	
must	have	the	

same	type	as	the	
result	of	reduce.		
Let’s	call	it	'b.	



How	about	reduce?	

85	

let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	

The	result	of	f	
must	have	the	

same	type	as	the	
result	of	reduce	

overall:	'b.	



How	about	reduce?	
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let rec reduce (f:'a -> 'b -> 'b) u (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce (f:'a -> 'b -> ?) u (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	

If	xs	is	empty,	
then	reduce	

returns	u.		So	u’s	
type	must	be	'b.	



How	about	reduce?	
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let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce (f:'a -> 'b -> ?) (u:'b) (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	

reduce	returns	
the	result	of	f.		
So	f’s	result	type	

must	be	'b.	



How	about	reduce?	
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let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
	



How	about	reduce?	
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let rec reduce (f:'a -> 'b -> 'b) (u:'b) (xs: 'a list) : 'b =  
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 

 
What’s	the	most	general	type	of	reduce?	
 

 ('a -> 'b -> 'b) -> 'b -> 'a list -> 'b  

	



What	does	this	do?	
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let rec reduce f u xs = 
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 
 

let mystery0 = reduce (fun x y -> 1+y) 0 



What	does	this	do?	
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let rec reduce f u xs = 
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 
 

let mystery0 = reduce (fun x y -> 1+y) 0;; 
 
let rec mystery0 xs =  
  match xs with 
  | [] -> 0 
  | hd::tl ->  
     (fun x y -> 1+y) hd (reduce (fun ...) 0 tl) 



What	does	this	do?	

94	

let rec reduce f u xs = 
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 
 

let mystery0 = reduce (fun x y -> 1+y) 0 
 
let rec mystery0 xs =  
  match xs with 
  | [] -> 0 
  | hd::tl -> 1 + reduce (fun ...) 0 tl 



What	does	this	do?	

95	

let rec reduce f u xs = 
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 
 

let mystery0 = reduce (fun x y -> 1+y) 0 
 
let rec mystery0 xs =  
  match xs with 
  | [] -> 0 
  | hd::tl -> 1 + mystery0 tl 



What	does	this	do?	
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let rec reduce f u xs = 
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 
 

let mystery0 = reduce (fun x y -> 1+y) 0 
 
let rec mystery0 xs =  
  match xs with 
  | [] -> 0 
  | hd::tl -> 1 + mystery0 tl  List Length! 



What	does	this	do?	
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let rec reduce f u xs = 
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl);; 
 

let mystery1 = reduce (fun x y -> x::y) [] 



What	does	this	do?	
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let rec reduce f u xs = 
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 
 

let mystery1 = reduce (fun x y -> x::y) [] 
 
let rec mystery1 xs =  
  match xs with 
  | [] -> [] 
  | hd::tl -> hd::(mystery1 tl)  Copy! 



And	this	one?	
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let rec reduce f u xs = 
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 
 

let mystery2 g =  
   reduce (fun a b -> (g a)::b) [] 



And	this	one?	
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let rec reduce f u xs = 
 match xs with 

  | [] -> u 
  | hd::tl -> f hd (reduce f u tl) 
 

let mystery2 g =  
   reduce (fun a b -> (g a)::b) [] 
 

let rec mystery2 g xs =  
  match xs with 
  | [] -> [] 
  | hd::tl -> (g hd)::(mystery2 g tl) map!  



Map	and	Reduce	

We	coded	map	in	terms	of	reduce:	
•  ie:	we	showed	we	can	compute	map	f	xs	using	a	call	to 	 		

reduce	?	?	?	just	by	passing	the	right	arguments	in	place	of	?	?	?	
	
Can	we	code	reduce	in	terms	of	map?	

val map : ('a -> 'b) -> 'a list -> 'b list 

val reduce : ('a -> 'b -> 'b) -> 'b ->  'a list -> 'b 



Some	Other	Combinators:		List	Module	

val iter : ('a -> unit) -> 'a list -> unit 
 
List.iter f [a0; ...; an] == f a0; … ; f an 

val mapi : (int -> 'a -> unit) -> 'a list -> unit 
 
List.mapi f [a0; ...; an] == f 0 a0; … ; f n an 

val map2 : ('a -> 'b -> 'c) -> 'a list -> 'b list -> 'c list 
 
List.map2 f [a0; ...; an] [b0; ...; bn] == [f a0 b0 ; … ; f an bn] 

val fold_left : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a 
 
val fold_right : ('a -> 'b -> 'b) -> 'a list -> 'b -> 'a list 

hRp://caml.inria.fr/pub/docs/manual-ocaml/libref/List.html	



Summary	
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•  Map	and	reduce	are	two	higher-order	funcAons	that	capture	
very,	very	common	recursion	pa=erns	

•  Reduce	is	especially	powerful:	
–  related	to	the	“visitor	paRern”	of	OO	languages	like	Java.	
–  can	implement	most	list-processing	funcKons	using	it,	including	
things	like	copy,	append,	filter,	reverse,	map,	etc.	

•  We	can	write	clear,	terse,	reusable	code	by	exploiKng:	
–  higher-order	funcKons	
–  anonymous	funcKons	
–  first-class	funcKons	
–  polymorphism	



PracKce	Problems	
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Using	map,	write	a	funcKon	that	takes	a	list	of	pairs	of	integers,	and	produces	
a	list	of	the	sums	of	the	pairs.			

–  e.g.,	list_add	[(1,3);	(4,2);	(3,0)]	=	[4;	6;	3]	
–  Write	list_add	directly	using	reduce.	

Using	map,	write	a	funcKon	that	takes	a	list	of	pairs	of	integers,	and	produces	
their	quoKent	if	it	exists.	

–  e.g.,	list_div	[(1,3);	(4,2);	(3,0)]	=	[Some	0;	Some	2;	None]	
–  Write	list_div	directly	using	reduce.	

Using	reduce,	write	a	funcKon	that	takes	a	list	of	opKonal	integers,	and	filters	
out	all	of	the	None’s.	

–  e.g.,	filter_none	[Some	0;	Some	2;	None;	Some	1]	=	[0;2;1]	
–  Why	can’t	we	directly	use	filter?		How	would	you	generalize	filter	so	that	

you	can	compute	filter_none?		AlternaKvely,	rig	up	a	soluKon	using	filter	+	map.	

Using	reduce,	write	a	funcKon	to	compute	the	sum	of	squares	of	a	list	of	
numbers.	

–  e.g.,	sum_squares	=	[3,5,2]	=	38	


