
Thinking	Induc,vely	

COS	326	
David	Walker	

Princeton	University	
	

slides	copyright	2017	David	Walker	
permission	granted	to	reuse	these	slides	for	non-commercial	educa,onal	purposes	

	

Administra,on	
•  Assignment	1	due	at	11:59	tonight!	

•  Program	style	guide:	
–  hLp://www.cs.princeton.edu/~cos326/style.php	

•  Read	notes:	
–  func,onal	basics,	type-checking,	typed	programming	
–  thinking	induc,vely	(today)	
–  Real	World	OCaml	Chapter	2,	3	

2	

Op,ons	
A	value	v	has	type	t	op,on	if	it	is	either:	

–  the	value	None,	or	
–  a	value	Some	v',	and	v'	has	type	t	

Op,ons	can	signal	there	is	no	useful	result	to	the	computa,on	

Example:	we	look	up	a	value	in	a	hash	table	using	a	key.			
–  If	the	key	is	present,	return	Some	v	where	v	is	the	associated	value	
–  If	the	key	is	not	present,	we	return	None	

	

3	

Slope	between	two	points	

type point = float * float

let slope (p1:point) (p2:point) : float =

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

4	

Slope	between	two	points	

type point = float * float

let slope (p1:point) (p2:point) : float =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

deconstruct	tuple	

5	

Slope	between	two	points	

type point = float * float

let slope (p1:point) (p2:point) : float =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 (y2 -. y1) /. xd
 else
 ???

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

what	can	we	return?	

avoid	divide	by	zero	

6	

Slope	between	two	points	

type point = float * float

let slope (p1:point) (p2:point) : float option =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 ???
 else
 ???

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

we	need	an	op,on	
type	as	the	result	type	

7	

Slope	between	two	points	

type point = float * float

let slope (p1:point) (p2:point) : float option =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 Some ((y2 -. y1) /. xd)
 else
 None

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

8	

Slope	between	two	points	

type point = float * float

let slope (p1:point) (p2:point) : float option =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 (y2 -. y1) /. xd
 else
 None

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

Has	type	float	

Can	have	type	float	op,on	

9	

Slope	between	two	points	

type point = float * float

let slope (p1:point) (p2:point) : float option =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 (y2 -. y1) /. xd
 else
 None

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

Has	type	float	

Can	have	type	float	op,on	 WRONG:		Type	mismatch	

10	

Slope	between	two	points	

type point = float * float

let slope (p1:point) (p2:point) : float option =
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 let xd = x2 -. x1 in
 if xd != 0.0 then
 (y2 -. y1) /. xd
 else
 None

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

Has	type	float	

doubly	WRONG:	
result	does	not	
match	declared	result	

11	

Remember	the	typing	rule	for	if	

Returning	an	op,onal	value	from	an	if	statement:	

if	…	then	
	
				None								 	:	t	op,on	
	
else	
						
				Some	(…) 	:	t	op,on	

12	

if	e1	:	bool		
and	e2	:	t	and	e3	:	t	(for	some	type	t)	
then	if	e1	then	e2	else	e3	:	t	

How	do	we	use	an	op,on?	

slope : point -> point -> float option

returns	a	float	op,on	

13	

How	do	we	use	an	op,on?	

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =

14	

How	do	we	use	an	op,on?	

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
 slope p1 p2

returns	a	float	op,on;	
to	print	we	must	discover	if	it	is	
None	or	Some	

15	

How	do	we	use	an	op,on?	

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
 match slope p1 p2 with

16	

How	do	we	use	an	op,on?	

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
 match slope p1 p2 with
 Some s ->
 | None ->

There	are	two	possibili,es		

Ver,cal	bar	separates	possibili,es	

17	

How	do	we	use	an	op,on?	

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
 match slope p1 p2 with
 Some s ->
 | None ->

The	object	between	|	and	->	is	called	a	paLern		

The	"Some	s"		paLern	includes	the	variable	s		

18	

How	do	we	use	an	op,on?	

slope : point -> point -> float option

let print_slope (p1:point) (p2:point) : unit =
 match slope p1 p2 with
 Some s ->
 print_string ("Slope: " ^ string_of_float s)
 | None ->
 print_string "Vertical line.\n"

19	

Wri,ng	Func,ons	Over	Typed	Data	
•  Steps	to	wri,ng	func,ons	over	typed	data:	

1.  Write	down	the	func,on	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	
5.  Build	new	output	values	
6.  Clean	up	by	iden,fying	repeated	paLerns	

•  For	op,on	types:	

match … with
 | None -> …
 | Some s -> …

when	the	input	has	type	t	op,on,		
deconstruct	with:	
	

when	the	output	has	type	t	op,on,		
construct	with:	
	

Some (…) None

20	

MORE	PATTERN	MATCHING	

21	

Recall	the	Distance	Func,on	

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

22	

Recall	the	Distance	Func,on	

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))
;;

(x2,	y2)	is	an	example	of	a	paLern	–	a	paLern	for	tuples.	
	
So	let	declara,ons	can	contain	paLerns	just	like	match	statements	
	
The	difference	is	that	a	match	allows	you	to	consider	mul,ple	different	data	shapes	

23	

Recall	the	Distance	Func,on	

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 match p1 with
 | (x1,y1) ->
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))
;;

There	is	only	1	possibility	when	matching	a	pair	

24	

Recall	the	Distance	Func,on	

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 match p1 with
 | (x1,y1) ->
 match p2 with
 | (x2,y2) ->
 sqrt (square (x2 -. x1) +. square (y2 -. y1))
;;

We	can	nest	one	match	expression	inside	another.			
(We	can	nest	any	expression	inside	any	other,	if	the	expressions	have	the	
right	types)		

25	

BeLer	Style:	Complex	PaLerns	

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 match (p1, p2) with
 | ((x1,y1), (x2, y2)) ->
 sqrt (square (x2 -. x1) +. square (y2 -. y1))
;;

PaLern	for	a	pair	of	pairs:			((variable,	variable),	(variable,	variable))	
All	the	variable	names	in	the	paLern	must	be	different.	

we	built	a	pair	of	pairs	

26	

BeLer	Style:	Complex	PaLerns	

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 match (p1, p2) with
 | (p3, p4) ->
 let (x1, y1) = p3 in
 let (x2, y2) = p4 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))
;;

A	paLern	must	be	consistent	with	the	type	of	the	expression	
in	between	match	…	with	
We	use	(p3,	p4)	here	instead	of	((x1,	y1),	(x2,	y2))	

we	built	a	pair	of	pairs	

27	

PaLern-matching	in	func,on	parameters	

type point = float * float

let distance ((x1,y1):point) ((x2,y2):point) : float =
 let square x = x *. x in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))
;;

Func,on	parameters	are	paLerns	too!	

28	

What’s	the	best	style?	

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

Either	of	these	is	reasonably	clear	and	compact.	
Code	with	unnecessary	nested	matches/lets	is	par,cularly	ugly	to	read.			
You'll	be	judged	on	code	style	in	this	class.	

let distance ((x1,y1):point) ((x2,y2):point) : float =
 let square x = x *. x in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

29	

What’s	the	best	style?	

This	is	how	I'd	do	it	...	the	types	for	tuples	+	the	tuple	paLerns	are	a	liLle	
ugly/verbose	...	but	for	now	in	class,	use	the	explicit	type	annota,ons.	
We	will	loosen	things	up	later	in	the	semester.	

let distance (x1,y1) (x2,y2) =
 let square x = x *. x in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

30	

Combining	paLerns	

type point = float * float

(* returns a nearby point in the graph if one exists *)
nearby : graph -> point -> point option

let printer (g:graph) (p:point) : unit =
 match nearby g p with
 | None -> print_string "could not find one\n"
 | Some (x,y) ->
 print_float x;
 print_string ", ";
 print_float y;
 print_newline();
;;

31	

Other	PaLerns	
•  Constant	values	can	be	used	as	paLerns	

let small_prime (n:int) : bool =
 match n with
 | 2 -> true
 | 3 -> true
 | 5 -> true
 | _ -> false
;;
 let iffy (b:bool) : int =

 match b with
 | true -> 0
 | false -> 1
;;
 the	underscore	paLern	

matches		anything	
it	is	the	"don't	care"	paLern	

32	

INDUCTIVE	THINKING	

33	

Induc,ve	Programming	and	Proving	
An	induc&ve	data	type	T	is	a	data	type	defined	by:	

–  a	collec,on	of	base	cases		
•  that	don’t	refer	to	T	

–  a	collec,on	of	induc,ve	cases	that	build	new	values	of	type	T	from	
pre-exis,ng	data	of	type	T	
•  the	pre-exis,ng	data	is	guarateed	to	be	smaller	than	the	new	values	

Programming	principle:	
–  solve	programming	problem	for	base	cases	
–  solve	programming	problem	for	induc,ve	cases	by	calling	func,on	
recursively	(induc,vely)	on	smaller	data	value	

Proving	principle:	
–  prove	program	sa,sfies	property	P	for	base	cases	
–  prove	induc,ve	cases	sa,sfy	property	P	assuming	induc,ve	calls	on	
smaller	data	values	sa,sfy	property	P	

34	

LISTS:		AN	INDUCTIVE	DATA	TYPE	

35	

Lists	are	Recursive	Data	
•  In	OCaml,	a	list	value	is:	

–  [] 	(the	empty	list)	
–  v	::	vs 	(a	value	v	followed	by	a	shorter	list	of	values	vs)		

	

Base	Case	Induc,ve	
Case	

36	

Lists	are	Induc,ve	Data	
•  In	OCaml,	a	list	value	is:	

–  [] 	(the	empty	list)	
–  v	::	vs 	(a	value	v	followed	by	a	shorter	list	of	values	vs)		

	
•  An	example:	

–  2	::	3	::	5	::	[]	has	type	int	list	
–  is	the	same	as:		2	::	(3	::	(5	::	[]))	
–  "::"	is	called	"cons"	

	
•  An	alterna,ve	syntax	(“syntac,c	sugar”	for	lists):	

–  [2;	3;	5]	
–  But	this	is	just	a	shorthand	for	2	::	3	::	5	::	[].		If	you	ever	get	
confused	fall	back	on	the	2	basic	constructors:		::	and	[]	

37	

Typing	Lists	
•  Typing	rules	for	lists:	

	

[]	may	have	any	list	type	t	list		

if	e1	:	t	and		e2	:	t	list	
then	(e1	::	e2)	:	t	list	

(1)	

(2)	

38	

Typing	Lists	
•  Typing	rules	for	lists:	

•  More	examples:	
(1	+	2)	::	(3	+	4)	::	[]		:	??	
	
(2	::	[])	::	(5	::	6		::	[])	::	[]	 	:	??	
	
[[2];	[5;	6]]	 	 	:	??	
	

	

[]	may	have	any	list	type	t	list		

if	e1	:	t	and		e2	:	t	list	
then	(e1	::	e2)	:	t	list	

(1)	

(2)	

39	

Typing	Lists	
•  Typing	rules	for	lists:	

•  More	examples:	
(1	+	2)	::	(3	+	4)	::	[]		:	int	list	
	
(2	::	[])	::	(5	::	6		::	[])	::	[]	 	:	int	list	list	
	
[[2];	[5;	6]]	 	 	:	int	list	list	
	
(Remember	that	the	3rd	example	is	an	abbrevia,on	for	the	2nd)	

	

[]	may	have	any	list	type	t	list		

if	e1	:	t	and		e2	:	t	list	
then	(e1	::	e2)	:	t	list	

(1)	

(2)	

40	

Another	Example	

•  What	type	does	this	have?	

																																																[2]	::	[3]	

41	

Another	Example	

[2] :: [3];;
Error: This expression has type int but an
 expression was expected of type
 int list

•  What	type	does	this	have?	

																																																[2]	::	[3]	

int	list	 int	list	

42	

Another	Example	

•  What	type	does	this	have?	

																																																[2]	::	[3]	
	
	
	
	
•  Give	me	a	simple	fix	that	makes	the	expression	type	check?	

int	list	 int	list	

43	

Another	Example	

•  What	type	does	this	have?	

																																																[2]	::	[3]	
	
	
	
	
•  Give	me	a	simple	fix	that	makes	the	expression	type	check?	

																												Either:									2		::		[3]					 	:	int	list	
	
																												Or:											[2]	::	[[3]] 	:	int	list	list	

int	list	 int	list	

44	

Analyzing	Lists	
•  Just	like	op,ons,	there	are	two	possibili,es	when	

deconstruc,ng	lists.	Hence	we	use	a	match	with	two	branches	

(* return Some v, if v is the first list element;
 return None, if the list is empty *)

let head (xs : int list) : int option =

45	

Analyzing	Lists	
•  Just	like	op,ons,	there	are	two	possibili,es	when	

deconstruc,ng	lists.	Hence	we	use	a	match	with	two	branches	

(* return Some v, if v is the first list element;
 return None, if the list is empty *)

let head (xs : int list) : int option =
 match xs with
 | [] ->
 | hd :: _ ->

we	don't	care	about	the	contents	of	the	
tail	of	the	list	so	we	use	the	underscore	

46	

Analyzing	Lists	
•  Just	like	op,ons,	there	are	two	possibili,es	when	

deconstruc,ng	lists.	Hence	we	use	a	match	with	two	branches	

•  This	func,on	isn't	recursive	--	we	only	extracted	a	small	,	fixed	
amount	of	informa,on	from	the	list	--	the	first	element	

(* return Some v, if v is the first list element;
 return None, if the list is empty *)

let head (xs : int list) : int option =
 match xs with
 | [] -> None
 | hd :: _ -> Some hd

47	

A	more	interes,ng	example 		

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

48	

A	more	interes,ng	example 		

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =

49	

A	more	interes,ng	example 		

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] ->
 | (x,y) :: tl ->

50	

A	more	interes,ng	example 		

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl ->

51	

A	more	interes,ng	example 		

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> ?? :: ??

the	result	type	is	int	list,	so	we	can	speculate	
that	we	should	create	a	list	

52	

A	more	interes,ng	example 		

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: ??

the	first	element	is	the	product	

53	

A	more	interes,ng	example 		

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: ??

to	complete	the	job,	we	must	compute	
the	products	for	the	rest	of	the	list	

54	

A	more	interes,ng	example 		

(* Given a list of pairs of integers,
 produce the list of products of the pairs

 prods [(2,3); (4,7); (5,2)] == [6; 28; 10]
*)

let rec prods (xs : (int * int) list) : int list =
 match xs with
 | [] -> []
 | (x,y) :: tl -> (x * y) :: prods tl

55	

Three	Parts	to	Construc,ng	a	Func,on		

let rec prods (xs : (int*int) list) : int list =
 match xs with

 | [] -> ...

 | (x,y) :: tl -> ...

(1)	Think	about	how	to	break	down	the	input	in	to	cases:	

let rec prods (xs : (int*int) list) : int list =
 ...
 | (x,y) :: tl -> ... prods tl ...

(2)	Assume	the	recursive	call	on	smaller	data	is	correct.		
	
(3)	Use	the	result	of	the	recursive	call	to	build	correct	answer.	

This	assump&on	is	called	the	
Induc&on	Hypothesis.		You’ll	
use	it	to	prove	your	program	

correct.		

56	

Another	example:	zip	

(* Given two lists of integers,
 return None if the lists are different lengths
 otherwise stitch the lists together to create
 Some of a list of pairs

 zip [2; 3] [4; 5] == Some [(2,4); (3,5)]
 zip [5; 3] [4] == None
 zip [4; 5; 6] [8; 9; 10; 11; 12] == None
*)

(Give	it	a	try.)	

57	

Another	example:	zip	

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

58	

Another	example:	zip	

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with

59	

Another	example:	zip	

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) ->
 | ([], y::ys') ->
 | (x::xs', []) ->
 | (x::xs', y::ys') ->

60	

Another	example:	zip	

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') ->
 | (x::xs', []) ->
 | (x::xs', y::ys') ->

61	

Another	example:	zip	

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') ->

62	

Another	example:	zip	

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') -> (x, y) :: zip xs' ys'

is	this		ok?	

63	

Another	example:	zip	

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') -> (x, y) :: zip xs' ys'

No!		zip	returns	a	list	op,on,	not	a	list!			
We	need	to	match	it	and	decide	if	it	is	Some	or	None.	

64	

Another	example:	zip	

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> (x,y) :: zs)

Is	this	ok?	

65	

Another	example:	zip	

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | ([], y::ys') -> None
 | (x::xs', []) -> None
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> Some ((x,y) :: zs))

66	

Another	example:	zip	

let rec zip (xs : int list) (ys : int list)
 : (int * int) list option =

 match (xs, ys) with
 | ([], []) -> Some []
 | (x::xs', y::ys') ->
 (match zip xs' ys' with
 None -> None
 | Some zs -> Some ((x,y) :: zs))
 | (_, _) -> None

Clean	up.		
Reorganize	the	cases.	
PaLern	matching	proceeds	in	order.	

67	

A	bad	list	example	

let rec sum (xs : int list) : int =
 match xs with
 | hd::tl -> hd + sum tl

68	

A	bad	list	example	

let rec sum (xs : int list) : int =
 match xs with
 | hd::tl -> hd + sum tl

Characters 39-78:
 ..match xs with
 hd :: tl -> hd + sum tl..
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched: []
val sum : int list -> int = <fun>

69	

INSERTION	SORT	

70	

Recall	Inser,on	Sort	

•  At	any	point	during	the	inser,on	sort:	
–  some	ini,al	segment	of	the	array	will	be	sorted	
–  the	rest	of	the	array	will	be	in	the	same	(unsorted)	order	as	it	
was	originally		

-5	 -2	 3	 -4	 10	 6	 7	

sorted	 unsorted	

71	

Recall	Inser,on	Sort	

•  At	any	point	during	the	inser,on	sort:	
–  some	ini,al	segment	of	the	array	will	be	sorted	
–  the	rest	of	the	array	will	be	in	the	same	(unsorted)	order	as	it	
was	originally		

•  At	each	step,	take	the	next	item	in	the	array	and	insert	it	in	
order	into	the	sorted	por,on	of	the	list	

-5	 -2	 3	 -4	 10	 6	 7	

sorted	 unsorted	

-5	 -4	 -2	 3	 10	 6	 7	

sorted	 unsorted	

72	

Inser,on	Sort	With	Lists	
•  The	algorithm	is	similar,	except	instead	of	one	array,	we	will	

maintain	two	lists,	a	sorted	list	and	an	unsorted	list	

•  We'll	factor	the	algorithm:	
–  a	func,on	to	insert	into	a	sorted	list	
–  a	sor,ng	func,on	that	repeatedly	inserts	

-5	 -2	 3	 -4	 10	 6	 7	

sorted	 unsorted	

list	1:	 list	2:	

73	

Insert	

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =

74	

Insert	

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] ->
 | hd :: tl ->

 a	familiar	paLern:		

analyze	the	list	by	cases		

75	

Insert	

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] -> [x]
 | hd :: tl ->

insert	x	into	the	
empty	list	
	

76	

Insert	

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] -> [x]
 | hd :: tl ->
 if hd < x then
 hd :: insert x tl

build	a	new	list	with:	
•  hd	at	the	beginning	
•  the	result	of	inser,ng	x	in	to	

the	tail	of	the	list	awerwards	
	

77	

Insert	

(* insert x in to sorted list xs *)

let rec insert (x : int) (xs : int list) : int list =
 match xs with
 | [] -> [x]
 | hd :: tl ->
 if hd < x then
 hd :: insert x tl
 else
 x :: xs

put	x	on	the	front	of	the	list,		
the	rest	of	the	list	follows	
	

78	

Inser,on	Sort	

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

79	

Inser,on	Sort	

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =

 in

80	

Inser,on	Sort	

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =

 in
 aux [] xs

81	

Inser,on	Sort	

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =
 match unsorted with
 | [] ->
 | hd :: tl ->
 in
 aux [] xs

82	

Inser,on	Sort	

type il = int list

insert : int -> il -> il

(* insertion sort *)

let rec insert_sort(xs : il) : il =

 let rec aux (sorted : il) (unsorted : il) : il =
 match unsorted with
 | [] -> sorted
 | hd :: tl -> aux (insert hd sorted) tl
 in
 aux [] xs

83	

A	SHORT	JAVA	RANT	

84	

Defini,on	and	Use	of	Java	Pairs	
	

What	could	go	wrong?	

public class Pair {

 public int x;
 public int y;

 public Pair (int a, int b) {
 x = a;
 y = b;
 }
}

public class User {

 public Pair swap (Pair p1) {
 Pair p2 =
 new Pair(p1.y, p1.x);

 return p2;
 }
}

85	

A	Paucity	of	Types	

	

	
The	input	p1	to	swap	may	be	null	and	we	forgot	to	check.	

	
Java	has	no	way	to	define	a	pair	data	structure	that	is	just	a	pair.	

	

public class Pair {

 public int x;
 public int y;

 public Pair (int a, int b) {
 x = a;
 y = b;
 }
}

public class User {

 public Pair swap (Pair p1) {
 Pair p2 =
 new Pair(p1.y, p1.x);

 return p2;
 }
}

86	

How	many	students	in	the	class	have	seen	an	accidental	null	pointer		
excep&on	thrown	in	their	Java	code?	

	

From	Java	Pairs	to	OCaml	Pairs	

type java_pair = (int * int) option

In	OCaml,	if	a	pair	may	be	null	it	is	a	pair	op,on:	

87	

From	Java	Pairs	to	OCaml	Pairs	

let swap_java_pair (p:java_pair) : java_pair =
 let (x,y) = p in
 (y,x)

type java_pair = (int * int) option

In	OCaml,	if	a	pair	may	be	null	it	is	a	pair	op,on:	

And	if	you	write	code	like	this:	

88	

From	Java	Pairs	to	OCaml	Pairs	

let swap_java_pair (p:java_pair) : java_pair =
 let (x,y) = p in
 (y,x)

type java_pair = (int * int) option

In	OCaml,	if	a	pair	may	be	null	it	is	a	pair	op,on:	

And	if	you	write	code	like	this:	

… Characters 91-92:
 let (x,y) = p in (y,x);;
 ^
Error: This expression has type java_pair = (int * int) option
 but an expression was expected of type 'a * 'b

You	get	a	helpful	error	message	like	this:	

89	

From	Java	Pairs	to	OCaml	Pairs	

type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =
 match p with
 | Some (x,y) -> Some (y,x)

And	what	if	you	were	up	at	3am	trying	to	finish	your	
COS	326	assignment	and	you	accidentally	wrote	the	
following	sleep-deprived,	brain-dead	statement?	

90	

From	Java	Pairs	to	OCaml	Pairs	

type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =
 match p with
 | Some (x,y) -> Some (y,x)

And	what	if	you	were	up	at	3am	trying	to	finish	your	
COS	326	assignment	and	you	accidentally	wrote	the	
following	sleep-deprived,	brain-dead	statement?	

 ..match p with
 | Some (x,y) -> Some (y,x)
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
None

OCaml	to	the	rescue!	

91	

From	Java	Pairs	to	OCaml	Pairs	

type java_pair = (int * int) option

let swap_java_pair (p:java_pair) : java_pair =
 match p with
 | Some (x,y) -> Some (y,x)

And	what	if	you	were	up	at	3am	trying	to	finish	your	
COS	326	assignment	and	you	accidentally	wrote	the	
following	sleep-deprived,	brain-dead	statement?	

An	easy	fix!	

let swap_java_pair (p:java_pair) : java_pair =
 match p with
 | None -> None
 | Some (x,y) -> Some (y,x)

92	

From	Java	Pairs	to	OCaml	Pairs	

Moreover,	your	pairs	are	probably	almost	never	null!	
	
	
	

Defensive	programming	&	always	checking	for	null	is	

	
	

93	

From	Java	Pairs	to	OCaml	Pairs	

	
There	just	isn't	always	some	"good	thing"	for	a	func,on	to	do	when	it	receives	a	

bad	input,	like	a	null	pointer	
	

In	OCaml,	all	these	issues	disappear	when	you	use	the	proper	type	for	a	pair	and	
that	type	contains	no	"extra	junk”	

	
	

Once	you	know	OCaml,	it	is	hard	to	write	swap	incorrectly	
Your	bullet-proof	code	is	much	simpler	than	in	Java.	

	

type pair = int * int

let swap (p:pair) : pair =
 let (x,y) = p in (y,x)

94	

Summary	of	Java	Pair	Rant	

Java	has	a	paucity	of	types	
–  There	is	no	type	to	describe	just	the	pairs	
–  There	is	no	type	to	describe	just	the	triples	
–  There	is	no	type	to	describe	the	pairs	of	pairs	
–  There	is	no	type	…	

OCaml	has	many	more	types	
–  use	op,on	when	things	may	be	null	
–  do	not	use	op,on	when	things	are	not	null	
–  OCaml	types	describe	data	structures	more	precisely	

•  programmers	have	fewer	cases	to	worry	about	
•  en,re	classes	of	errors	just	go	away	
•  type	checking	and	paLern	analysis	help	prevent	programmers	from	
ever	forgeyng	about	a	case	

95	

Summary	of	Java	Pair	Rant	

Java	has	a	paucity	of	types	
–  There	is	no	type	to	describe	just	the	pairs	
–  There	is	no	type	to	describe	just	the	triples	
–  There	is	no	type	to	describe	the	pairs	of	pairs	
–  There	is	no	type	…	

OCaml	has	many	more	types	
–  use	op,on	when	things	may	be	null	
–  do	not	use	op,on	when	things	are	not	null	
–  ocaml	types	describe	data	structures	more	precisely	

•  programmers	have	fewer	cases	to	worry	about	
•  en,re	classes	of	errors	just	go	away	
•  type	checking	and	paLern	analysis	help	prevent	programmers	from	
ever	forgeyng	about	a	case	

	
SCORE:		OCAML	1,		JAVA	0	
	

96	

Example	problems	to	prac,ce	
•  Write	a	func,on	to	sum	the	elements	of	a	list	

–  sum	[1;	2;	3]	==>	6	
•  Write	a	func,on	to	append	two	lists	

–  append	[1;2;3]	[4;5;6]	==>	[1;2;3;4;5;6]	
•  Write	a	func,on	to	reverse	a	list	

–  rev	[1;2;3]	==>	[3;2;1]	
•  Write	a	func,on	to	turn	a	list	of	pairs	into	a	pair	of	lists	

–  split	[(1,2);	(3,4);	(5,6)]	==>		([1;3;5],	[2;4;6])	
•  Write	a	func,on	that	returns	all	prefixes	of	a	list	

–  prefixes	[1;2;3]	==>	[[];	[1];	[1;2];	[1;2;3]]	
•  suffixes…	

97	

