

2	

For	more	insanity:	
	

h0ps://www.destroyallso7ware.com/talks/wat	
	
	
	

[Broader	point:		No	one	(few	people)	knows	what	
their	programs	do	in	untyped	languages.]	

Type	Checking	Basics	

COS	326	
David	Walker	

Princeton	University	
	

slides	copyright	2017	David	Walker	
permission	granted	to	reuse	these	slides	for	non-commercial	educaRonal	purposes	

	

3	

LogisRcs	
4	

Sign	up	for	Piazza,	our	Q&A	forum:				h0p://piazza.com	
	
	
	
Assignment	#1	is	due	on	Wednesday	at	11:59pm	

Last	Time	
FuncRonal	programming	history	

–  Church	&	the	lambda	calculus	
–  Scheme	
–  ML	
–  Modern	Rmes:		F#,	Clojure,	Scala,	Map-Reduce,	...	

What	is	funcRonal	programming?	
–  ImperaRve	languages	get	most	work	done	by	modifying	data	
–  FuncRonal	languages	get	most	work	done	by	analyzing	old	data	
and	producing	new,	immutable	data	

	
OCaml	

–  Simple,	typed	programming	language	based	on	the	lambda	calculus	
–  Immutable	data	is	the	default;	mutable	data	is	possible	
	

5	

Type	Checking	
•  Every	value	has	a	type	and	so	does	every	expression	
•  We	write	(e	:	t)	to	say	that	expression	e	has	type	t.	eg:	

	
2	:	int 	 	 	 	"hello"	:	string	
	
2	+	2	:	int 	 	 	 	"I	say	"	^	"hello"	:	string	

6	

Type	Checking	Rules	
•  There	are	a	set	of	simple	rules	that	govern	type	checking	

–  programs	that	do	not	follow	the	rules	will	not	type	check	and	
O’Caml	will	refuse	to	compile	them	for	you	(the	nerve!)	

–  at	first	you	may	find	this	to	be	a	pain	…	

•  But	types	are	a	great	thing:	
–  they	help	us	think	about	how	to	construct	our	programs	
–  they	help	us	find	stupid	programming	errors		
–  they	help	us	track	down	compaRbility	errors	quickly	when	we	
edit	and	maintain	our	code	

–  they	allow	us	to	enforce	powerful	invariants	about	our	data	
structures	

7	

Type	Checking	Rules	
•  Example	rules:	

	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

8	

Type	Checking	Rules	
•  Example	rules:	

	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	 (4)	

9	

Type	Checking	Rules	
•  Example	rules:	

	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

10	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

11	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
Therefore,	(2	+	3)	:	int 	(By	rule		3)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

12	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
Therefore,	(2	+	3)	:	int 	(By	rule		3)	
5	:	int 	 	 	(By	rule		1)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

13	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
Therefore,	(2	+	3)	:	int 	(By	rule		3)	
5	:	int 	 	 	(By	rule		1)	
Therefore,	(2	+	3)	*	5	:	int 	(By	rule		4	and	our	previous	work)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

FYI:		This	is	a	formal	proof	
that	the	expression	is	well-

typed!	

14	

Type	Checking	Rules	
•  Example	rules:	

	
•  Another	perspecRve:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

	????				*				????																				:		int 		

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

rule	(4)	for	typing	expressions	
says	I	can	put	any	expression		
with	type	int	in	place	of	the	????	

15	

Type	Checking	Rules	
•  Example	rules:	

	
•  Another	perspecRve:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

	7										*				????																				:		int 		

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

rule	(4)	for	typing	expressions	
says	I	can	put	any	expression		
with	type	int	in	place	of	the	????	

16	

Type	Checking	Rules	
•  Example	rules:	

	
•  Another	perspecRve:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

	7										*				(add_one	17)				:		int 		

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

rule	(4)	for	typing	expressions	
says	I	can	put	any	expression		
with	type	int	in	place	of	the	????	

17	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

18	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;

19	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4

press	
return	
and	you		
find	out	
the	type	
and	the	
value	

20	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4
“hello ” ^ “world”;;
- : string = “hello world”

press	
return	
and	you		
find	out	
the	type	
and	the	
value	

21	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4
“hello ” ^ “world”;;
- : string = “hello world”
#quit;;
$

22	

Type	Checking	Rules	
•  Example	rules:	

	
•  ViolaRng	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

"hello"	:	string 	 	(By	rule		2)	
1	:	int 	 	 	(By	rule		1)	
1	+	"hello"	:	?? 	 	(NO	TYPE!		Rule	3	does	not	apply!)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

23	

•  ViolaRng	the	rules:	

•  The	type	error	message	tells	you	the	type	that	was	expected	
and	the	type	that	it	inferred	for	your	subexpression	

•  By	the	way,	this	was	one	of	the	nonsensical	expressions	that	
did	not	evaluate	to	a	value	

•  It	is	a	good	thing	that	this	expression	does	not	type	check!	
“Well	typed	programs	do	not	go	wrong”	

Robin	Milner,	1978	

Type	Checking	Rules	
•  ViolaRng	the	rules:	

•  The	type	error	message	tells	you	the	type	that	was	expected	
and	the	type	that	it	inferred	for	your	subexpression	

•  By	the	way,	this	was	one	of	the	nonsensical	expressions	that	
did	not	evaluate	to	a	value	

•  It	is	a	good	thing	that	this	expression	does	not	type	check!	

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

24	

Type	Checking	Rules	
•  ViolaRng	the	rules:	

•  A	possible	fix:	

•  One	of	the	keys	to	becoming	a	good	ML	programmer	is	to	
understand	type	error	messages.			

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

"hello" ^ (string_of_int 1);;
- : string = "hello1"

25	

Example	Type-checking	Rules	

if	e1	:	bool		
and	e2	:	t	and	e3	:	t	(the	same	type	t,	for	some	type	t)	
then	if	e1	then	e2	else	e3	:	t	(that	same	type	t)	

26	

Type	Checking	Rules	
•  Type	errors	for	if	statements	can	be	confusing	someRmes.		

Example.		We	create	a	string	from	s,	concatenaRng	it	n	Rmes:	

let rec concatn s n =
 if n <= 0 then
 ...
 else
 s ^ (concatn s (n-1))

27	

Type	Checking	Rules	
•  Type	errors	for	if	statements	can	be	confusing	someRmes.		

Example.		We	create	a	string	from	s,	concatenaRng	it	n	Rmes:	

let rec concatn s n =
 if n <= 0 then
 ...
 else
 s ^ (concatn s (n-1))

Error: This expression has type int but an
expression was expected of type string

ocamlbuild	says:	

28	

•  Type	errors	for	if	statements	can	be	confusing	someRmes.		
Example.		We	create	a	string	from	s,	concatenaRng	it	n	Rmes:	

Type	Checking	Rules	

Error: This expression has type int but an
expression was expected of type string

let rec concatn s n =
 if n <= 0 then
 ...
 else
 s ^ (concatn s (n-1))

Error: This expression has type string but an
expression was expected of type int

ocamlbuild	says:	

merlin	inside	emacs	points	to	the	error	above	and	gives	a	second	error:	

29	

•  Type	errors	for	if	statements	can	be	confusing	someRmes.		
Example.		We	create	a	string	from	s,	concatenaRng	it	n	Rmes:	

Type	Checking	Rules	

Error: This expression has type int but an
expression was expected of type string

let rec concatn s n =
 if n <= 0 then
 ...
 else
 s ^ (concatn s (n-1))

Error: This expression has type string but an
expression was expected of type int

ocamlbuild	says:	

merlin	inside	emacs	points	to	the	error	above	and	gives	a	second	error:	

30	

•  Type	errors	for	if	statements	can	be	confusing	someRmes.		
Example.		We	create	a	string	from	s,	concatenaRng	it	n	Rmes:	

Type	Checking	Rules	

Error: This expression has type int but an
expression was expected of type string

let rec concatn s n =
 if n <= 0 then
 0
 else
 s ^ (concatn s (n-1))

Error: This expression has type string but an
expression was expected of type int

ocamlbuild	says:	

merlin	inside	emacs	points	to	the	error	above	and	gives	a	second	error:	

they	don't	
agree!	

31	

•  Type	errors	for	if	statements	can	be	confusing	someRmes.		
Example.		We	create	a	string	from	s,	concatenaRng	it	n	Rmes:	

Type	Checking	Rules	

let rec concatn s n =
 if n <= 0 then
 0
 else
 s ^ (concatn s (n-1))

The	type	checker	points	to	the	correct	branch	as	the	cause	of	an	
error	because	it	does	not	AGREE	with	the	type	of	an	earlier	branch.			

Really,	the	error	is	in	the	earlier	branch.	
	

Moral:		SomeGmes	you	need	to	look	in	an	earlier	branch	for	the	error	
even	though	the	type	checker	points	to	a	later	branch.	
The	type	checker	doesn't	know	what	the	user	wants.	

they	don't	
agree!	

32	

A	TacRc:		Add	Typing	AnnotaRons	
33	

let rec concatn (s:string) (n:int) : string =
 if n <= 0 then
 0
 else
 s ^ (concatn s (n-1))

Error: This expression has type int but an
expression was expected of type string

EXCEPTIONS:	
DO	THEY	CAUSE	PROGRAMS	TO		
"GO	WRONG"?	

34	

Type	Checking	Rules	
•  What	about	this	expression:	

	
•  Why	doesn't	the	ML	type	checker	do	us	the	favor	of	telling	us	the	

expression	will	raise	an	excepRon?	

3 / 0 ;;
Exception: Division_by_zero.

35	

Type	Checking	Rules	
•  What	about	this	expression:	

	
•  Why	doesn't	the	ML	type	checker	do	us	the	favor	of	telling	us	the	

expression	will	raise	an	excepRon?	
–  In	general,	detecRng	a	divide-by-zero	error	requires	we	know	that	
the	divisor	evaluates	to	0.	

–  In	general,	deciding	whether	the	divisor	evaluates	to	0	requires	
solving	the	halRng	problem:	

•  There	are	type	systems	that	will	rule	out	divide-by-zero	errors,	but	
they	require	programmers	supply	proofs	to	the	type	checker		

3 / 0 ;;
Exception: Division_by_zero.

3 / (if turing_machine_halts m then 0 else 1);;

36	

Isn’t	that	cheaRng?	
“Well	typed	programs	do	not	go	wrong”	

Robin	Milner,	1978	
	
(3	/	0)			is	well	typed.			Does	it	“go	wrong?”		Answer:	No.	
	
“Go	wrong”	is	a	technical	term	meaning,	“have	no	defined	
semanRcs.”		Raising	an	excepRon	is	perfectly	well	defined	
semanRcs,	which	we	can	reason	about,	which	we	can	handle	in	
ML	with	an	excepRon	handler.	
	
So,	it’s	not	cheaRng.	
	
(Discussion:	why	do	we	make	this	disGncGon,	anyway?)	

37	

Type	Soundness	
“Well	typed	programs	do	not	go	wrong”	

	
Programming	languages	with	this	property	have		
sound	type	systems.		They	are	called	safe	languages.	
	
Safe	languages	are	generally	immune	to	buffer	overrun	
vulnerabiliRes,	uniniRalized	pointer	vulnerabiliRes,	etc.,	etc.	
(but	not	immune	to	all	bugs!)	
	
Safe	languages:		ML,	Java,	Python,	…	
	
Unsafe	languages:		C,	C++,	Pascal	

38	

Well	typed	programs	do	not	go	wrong	
•  ViolaRng	the	rules:	

•  The	type	error	message	tells	you	the	type	that	was	expected	
and	the	type	that	it	inferred	for	your	subexpression	

•  By	the	way,	this	was	one	of	the	nonsensical	expressions	that	
did	not	evaluate	to	a	value	

•  It	is	a	good	thing	that	this	expression	does	not	type	check!	
“Well	typed	programs	do	not	go	wrong”	

Robin	Milner,	1978	

Robin	Milner	

Turing	Award,	1991	
	
“For	three	disRnct	and	complete	achievements:		
	
1. 		LCF,	the	mechanizaRon	of	Sco0's	Logic	of	Computable	FuncRons,	probably	
the	first	theoreRcally	based	yet	pracRcal	tool	for	machine	assisted	proof	
construcRon;	

2. 		ML,	the	first	language	to	include	polymorphic	type	inference	together	with	
a	type-safe	excepRon-handling	mechanism;	

3. 		CCS,	a	general	theory	of	concurrency.	

In	addiRon,	he	formulated	and	strongly	advanced	full	abstracRon,	the	study	of	
the	relaRonship	between	operaRonal	and	denotaRonal	semanRcs.”	

39	

SUMMARY	

40	

OCaml	

OCaml	is	a	typed	programming	language		

–  the	type	of	an	expression	correctly	predicts	the	kind	of	value	
the	expression	will	generate	when	it	is	executed	

–  there	are	systemaRc	rules	defining	when	any	expression	(or	
program)	type	checks	
•  these	rules	actually	for	a	formal	logic	...	it	is	not	a	coincidence	that	
languages	like	ML	were	used	inside	theorem	provers	...	more	later	

–  the	type	system	is	sound;	the	language	is	safe	

41	

