Simple Data

COS 326
David Walker
Princeton University

slides copyright 2017 David Walker
permission granted to reuse these slides for non-commercial educational purposes

What is the single most important mathematical
concept ever developed in human history?

What is the single most important mathematical
concept ever developed in human history?

An answer: The mathematical variable

What is the single most important mathematical
concept ever developed in human history?

An answer: The mathematical variable

(runner up: natural numbers/induction)

5

[Why is the mathematical variable so important?]

The mathematician says:

“Let x be some integer, we define a polynomial over x ...”

6

[Why is the mathematical variable so important?]

The mathematician says:

“Let x be some integer, we define a polynomial over x ...”

What is going on here? The mathematician has separated a
definition (of x) from its use (in the polynomial).

This is the most primitive kind of abstraction (x is some integer)

Abstraction is the key to controlling complexity and without it,
modern mathematics, science, and computation would not exist.

It allows reuse of ideas, theorems ... functions and programs!

OCAML BASICS:
LET DECLARATIONS

Abstraction

Good programmers identify repeated patterns in their code
and factor out the repetition into meaningful components

In O’Caml, the most basic technique for factoring your code is
to use let expressions

Instead of writing this expression:

(2 + 3) * (2 + 3)

Abstraction & Abbreviation

Good programmers identify repeated patterns in their code
and factor out the repetition into meaning components

In O’Caml, the most basic technique for factoring your code is
to use let expressions

Instead of writing this expression:

(2 + 3) * (2 + 3)

We write this one:

let x = 2 + 3 1n
X x

A Few More Let Expressions

let x = 2 in

let squared = x * x 1n

let cubed = x * squared in
squared * cubed

10

A Few More Let Expressions

let x = 2 in

let squared = x * x 1n

let cubed = x * squared in
squared * cubed

let a = "a" in
let b = "b" in
let as = a *~ a * a in

let bs = b ~ b * b in
as ~ bs

11

12

Abstraction & Abbreviation]

e Two kinds of let:

if tuesday () then
let x = 2 + 3 1in
X + X

else

\

let x = 2 + 3

x + 17 / x

let vy

\

let ... in ... is an expression that
can appear inside any other expression

The scope of x does not extend outside
the enclosing “in”

let ... without “in” is a top-level
declaration

Variables x and y may be exported;
used by other modules

(Don’t need ;; if another let comes next; do need it if
the next top-level declaration is an expression)

Binding Variables to Values

e Each OCaml variable is bound to 1 value
* The value to which a variable is bound to never changes!

let x = 3

<

let add three (y:int) : 1int =y + X

13

Binding Variables to Values

e Each OCaml
e The value to

It does not
matter what

| write next. —
add _three

will always
add 3!

variable is bound to 1 value
which a variable is bound to never changes!

let x = 3
let add three (y:int) : 1int =y + X

14

Binding Variables to Values

e Each OCaml variable is bound to 1 value

 The value a variable is bound to never changes!

a distinct
variable that
"happens to
be spelled the
same"

let x = 3

let add three (y:int) : int = y +
\

\

let x = 4

let add four (y:int) : int =y + X

15

Binding Variables to Values

e Since the 2 variables (both happened to be named x) are
actually different, unconnected things, we can rename them

rename x
to zzz

if you want
to, replacing
its uses

let x = 3
let add three (y:int) : 1int =y + X

\
T
= 4

let zéE\\\\\\\\\\\\\\\\\\\\\\\\\\

let add four (y:int) : int =y + zzz

let add seven (y:int) : 1nt =
add three (add four y)

16

Binding Variables to Values

e Each OCaml variable is bound to 1 value

e OCaml is a statically scoped (or lexically scoped) language

we can use
add_three
without worrying
about the second
definition of x

let x = 3
e\\\\\\\\\\\\\\\\\\\\\\\\\\\
let add three (y:int) : 1int =y + X
let x = 4
e\\\\\\\\\\\\\\\\\\\\\\\\\\\
let add four (y:int) : int =y + X
let add seven (y:int) : 1nt =

add three (add four y)

17

How do let expressions operate?

let x

2 + 1 in X * X

18

How do let expressions operate?

let x = 2 + 1 in x * X

let x = 3 1n X * x

19

How do let expressions operate?

let x = 2 + 1 in x * X

let x = 3 1n X * x

substitute
> 3 for x

20

How do let expressions operate?

let x = 2 + 1 1n X * x
>
let x = 3 1n X * x
substitute
> 3 for x
3 * 3
>

21

How do let expressions operate?

let x

2 + 1 in X * X

let x

3 in x * X

substitute
3 for x

22

Note: | write
el-->e2

when el evaluates
to e2 in one step

Did you see what | did there?

23

Did you see what | did there?

| defined the language in terms of itself:
letx=2inx+3 -> 2+3

I’m trying to train you to think at a high level of
abstraction.

| didn’t have to mention low-level abstractions like
assembly code or registers or memory layout

24

Another Example

let x

let vy

Y

* X

2 1n
X + xX 1n

25

Another Example

2 1n
X + xX 1n

substitute
2 for x

2 4+ 2 in

26

Another Example

let x = 2 in

let v = x + x in substitute
y * x 2 for x
let vy 2 + 2 in

y * 2

let vy 4 in

y * 2

27

Another Example

let x = 2 in

let vy X + X 1in
y * x

let vy 2 + 2 in
y * 2

let vy 4 in
y * 2

substitute
2 for x

substitute
4 fory

28

Another Example

let x = 2 in

let vy X + X 1in
y * x

let vy 2 + 2 in
y * 2

let vy 4 in
y * 2

4 * 2

substitute
2 for x

substitute
4 fory

Moral: Let
operates by
substituting

computed values
for variables

29

30

[What would happen in an imperative language?]

X = 23

C program: , - x.; substitute
return x*2; 2 for x
substituting
g computed values
X += 2 2?27 for variables
return x*2;

This principle works in
functional languages, not
so well in imperative
languages

OCAML BASICS:
TYPE CHECKING AGAIN

[Back to Let Expressions ... Typing]

x granted type of el for use in e2

W

let x

e?

el 1in

—

overall expression
takes on the type of e2

32

[Back to Let Expressions ... Typing]

x granted type of el for use in e2

let x = el in ~ overall expression
5 takes on the type of e2
e
x has type int let,x = S _ overall expression
for use insidethe — | | has type string
let body string of int x

OCAML BASICS:
FUNCTIONS

Defining functions

let add one

(x:1int) : int = 1 + x

35

36

[Defining functions]

let keyword
\$
let add one (x:int) : int = 1 + X
T A _Y_}
/ \ type of result expression
function name that computes
type of argument value produced
by function

argument name

Note: recursive functions with begin with "let rec"

Defining functions

Nonrecursive functions:

let add one (x:int)

let add two (x:1

: 1int

o e

1 + x

add one

-

(add one x)

definition of add_one
must come before use

37

38

Defining functions]

* Nonrecursive functions:

let add one (x:int) : int =1 + x
let add two (x:int) : int = add one (add one Xx)
* With a local definition: local function definition

hidden from clients

let add two' (x:int) : int 1:/ | left off the types.
let add one x = 1 + x in O'Caml figures them out

add one (add one x)

Good style: types on
top-level definitions

Types for Functions

Some functions:

let add one (x:int) : int
let add two (x:int) : int

let add (x:int) (y:1int)
\

=1 + x
= add one (add one Xx)

int = x + y

Types for functions:

function with two arguments

add one : int -> int
add two : int -> int

add : int -> int -> int

39

Rule for type-checking functions

General Rule:

If a functionf: T1->T2
and an argumente : T1

thenfe: T2
Example:
add one : int -> int

3 + 4 : int

add one (3 + 4) : int

40

Rule for type-checking functions

* Recall the type of add:

Definition:

let add (x:int) (y:int) : int =
X + vy

Type:

add : int -> int -> 1int

Rule for type-checking functions

* Recall the type of add:

Definition:

let add (x:int) (y:int) : int =
X + vy

Type:

add : int -> int -> 1int

Same as:

add : int -> (int -> 1int)

Rule for type-checking functions

General Rule:

If a functionf: T1->T2
and an argumente : T1
thenfe: T2

Example:

43

A->B->C
same as:

A -> (B ->C)

add : int -> int -> int

3 + 4 : int

add (3 + 4) : 27?27

Rule for type-checking functions

44

General Rule:

If a functionf: T1->T2
and an argumente : T1
thenfe: T2

A->B->C
same as:

A -> (B ->C)

Example:

add : int -> (int -> 1int)

3 + 4 : int

add (3 + 4)

Rule for type-checking functions

General Rule: Do
If a functionf:T1->T2
and an argumente : T1 same as:
thenfe:T2

A->(B->C)
Example:

add : int -> (int -> 1int)
J

3 + 4 : int l

add (3 + 4) : int -> 1nt

Rule for type-checking functions

46

General Rule:

If a functionf: T1->T2
and an argumente : T1
thenfe: T2

A->B->C
same as:

A -> (B ->C)

Example:

add : int -> int -> 1nt
3 + 4 : int

add (3 + 4) : int -> 1int

/

(add (3 + 4)) 7 : int

Rule for type-checking functions

General Rule:

If a functionf: T1->T2
and an argumente : T1
thenfe: T2

Example:

47

A->B->C
same as:

A -> (B ->C)

add : int -> int -> 1nt

3 + 4 : int

add (3 + 4) : int -> 1int

add (3 + 4) 7 : int

Rule for type-checking functions

Example:

let munge (b:bool) (x:1int) : 2?2 =
1f not b then
string of int x
else
"hello"

o o
r 7

let v = 17;;

munge (y > 17) =@ 272

munge true (f (munge false 3)) : 2?27
£ « 2?7

munge true (g munge) : ?2°7?

g : 27

48

Rule for type-checking functions

Example:

let munge (b:bool) (x:1int) : 2?2 =
1f not b then
string of int x
else
"hello"

o o
r 7

let v = 17;;

munge (y > 17) =@ 272

munge true (f (munge false 3)) : 2?27
f : string -> int

munge true (g munge) : ?2°7?
g : (bool -> int -> string) -> int

49

50

One key thing to remember]

* If you have a function f with a type like this:

A->B->C->D->E->F

 Then each time you add an argument, you can get the type of
the result by knocking off the first type in the series

fal:B->C->D->E->F (ifal:A)
fala2:C->D->E->F (ifa2:B)
fala2a3:D->E->F (ifa3:C)

fala2a3ad4a5:F (ifa4 : Dand a5 : E)

OUR FIRST* COMPLEX DATA STRUCTURE!
THE TUPLE

* it is really our second complex data structure since functions
are data structures too!

51

Tuples

 Atupleis a fixed, finite, ordered collection of values

 Some examples with their types:

(1, 2)

("hello", 7 + 3,

('a',

("hello",

true)

"goodbye"))

int * int

string * int * bool

char *

(string * string)

52

Tuples

* To use atuple, we extract its components

e General case:

let

(1d1,

id2, ..,

idn) = el 1in e2

 An example:

let

(X,Y)

= (2,4)

in X + x + vy

53

Tuples

* To use atuple, we extract its components

e General case:

let

(1dl, 1d2,

oo J

idn) = el 1in e2

 An example:

let
——>

(x,v) = (2,

2 + 2 + 4

4)

in x + x + yg;::) substitute!

<=

54

Tuples

* To use atuple, we extract its components

e General case:

let

(1dl, idz, ..,

idn) = el 1in e2

 An example:

let
——>

55

Rules for Typing Tuples

ifel:tl ande2:t2
then (el, e2) : t1 * t2

56

[Rules for Typing Tuples

ifel:tl ande2:t2
then (el, e2) : t1 * t2

ifel:tl *t2 then
x1:tlandx2:t2
inside the expression e2

\

D
let (x1,x2) = el in

e’

overall expression
takes on the type of e2

[Distance between two points

(x1, y1)

c2=a2+b?

Problem:
A pointis represented as a pair of floating point values.

* Write a function that takes in two points as arguments and returns
the distance between them as a floating point number

Writing Functions Over Typed Data

Steps to writing functions over typed data:
1. Write down the function and argument names
2. Write down argument and result types

3. Write down some examples (in a comment)

59

Writing Functions Over Typed Data

Steps to writing functions over typed data:
Write down the function and argument names

1.
2.
3.
4.

5.

Write down argument and result types

Write down some examples (in a comment)

Deconstruct input data structures
the argument types suggests how to do it

Build new output values
the result type suggests how you do it

60

Writing Functions Over Typed Data

Steps to writing functions over typed data:

1.
2.
3.
4.

5.

6.

Write down the function and argument names

Write down argument and result types

Write down some examples (in a comment)

Deconstruct input data structures

the argument types suggests how to do it
Build new output values

the result type suggests how you do it

Clean up by identifying repeated patterns

define and reuse helper functions
your code should be elegant and easy to read

61

Writing Functions Over Typed Data

Steps to writing functions over typed data:
1. Write down the function and argument names
2. Write down argument and result types
3. Write down some examples (in a comment)
4. Deconstruct input data structures
* the argument types suggests how to do it
5. Build new output values
* the result type suggests how you do it
6. Clean up by identifying repeated patterns

« define and reuse helper functions
e your code should be elegant and easy to read

Types help structure your thinking about how to write programes.

62

[Distance between two points

a type abbreviation (x1,y1)

Y
type point = float * float

[Distance between two points

(x1, y1)

type point = float * float

let distance (pl:point) (p2:point) : float

=N

write down function name
argument names and types

[Distance between two points

(x1, y1)

examples

type point = float ¥ float

distance (0.0,0.0) (0.0,1.0) == 1.0
distance (0.0,0.0) (1.0,1.0) == sgrt(1.0 + 1.0)

from the picture:
distance (x1,vyl) (x2,y2) == sgrt(a®™2 + b"2)
)

b S R T &

let distance (pl:point) (pZ2:point) : float =

[Distance between two points

(x1, y1)

type point = float * float
let distance (pl:point) (pZ2:point) : float =
let (x1,yl) = pl 1in
let (x2,y2) = p2 in <
deconstruct
function inputs

[Distance between two points

(x1, y1)

type point = float * float

let distance (pl:point) (pZ2:point) : float =
let (x1,yl) = pl in
let (x2,vy2) = p2 in compute
sqrt ((x2 -. x1) *. (x2 -. x1) +. :% P
(y2 —-. yl) *. (y2 -. y1))

notice operators on

floats have a "." in them

[Distance between two points

(x1, y1)

type point = float * float

let distance (pl:point) (pZ2:point) : float =
let square x = x *. X 1n
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in
sgrt (square (x2 -. x1)) +.
square (y2 -. yl1))

\

define helper functions to
avoid repeated code

[Distance between two points

type point = float * float

let square x = x *. X 1n
let (x1,yl) = pl 1in
let (x2,y2) = p2 1in

let ptl = (2.
let pt2 = (0.
let distl2 =

3.0)
1.0)
distance ptl ptZ2

0,
0,

(x1, y1)

let distance (pl:point) (pZ2:point)

sgrt (square (x2 -. x1) +. square

(v2 —-. y1))

testing

MORE TUPLES

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

71

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:

(4.0, 5, "hello") : float * int * string

72

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:

(4.0, 5, "hello") : float * int * string

Here's a tuple with 4 fields:

(4.0, 5, "hello", 55) : float * int * string * int

73

Tuples

Here's a tuple with 2 fields:

(4.0, 5.0) : float * float

Here's a tuple with 3 fields:

(4.0, 5, "hello") : float * int * string
Here's a tuple with 4 fields:

(4.0, 5, "hello", 55) : float * int * string * int
Here's a tuple with 0 fields:

() : unit

74

Unit

Unit is the tuple with zero fields!

() : unit

‘\

the unit value is written with an pair of parens
there are no other values with this type!

75

Unit

* Unitis the tuple with zero fields!

() : unit

\

* the unit value is written with an pair of parens
* there are no other values with this type!

* Why is the unit type and value useful?
* Every expression has a type:

(print_string "hello world\n") : ???

Unit

Unit is the tuple with zero fields!

() : unit

\

* the unit value is written with an pair of parens
* there are no other values with this type!

 Why is the unit type and value useful?

Every expression has a type:

(print_string "hello world\n") : unit

Expressions executed for their effect return the unit value

77

SUMMARY:
BASIC FUNCTIONAL PROGRAMMING

Writing Functions Over Typed Data

Steps to writing functions over typed data:

Lo W

6.

Write down the function and argument names
Write down argument and result types

Write down some examples (in a comment)
Deconstruct input data structures

Build new output values

Clean up by identifying repeated patterns

For tuple types:

— when the input has type t1 * t2

e use let (x,y) = ... to deconstruct

— when the output has type t1 * t2

e use (el, e2) to construct

We will see this paradigm repeat itself over and over

79

