
Simple	Data	

COS	326	
David	Walker	

Princeton	University	
	

slides	copyright	2017	David	Walker	
permission	granted	to	reuse	these	slides	for	non-commercial	educaDonal	purposes	

	

1	

What	is	the	single	most	important	mathemaDcal	
concept	ever	developed	in	human	history?		

2	

What	is	the	single	most	important	mathemaDcal	
concept	ever	developed	in	human	history?		

An	answer:		The	mathemaDcal	variable	

3	

What	is	the	single	most	important	mathemaDcal	
concept	ever	developed	in	human	history?		

An	answer:		The	mathemaDcal	variable	

4	

(runner	up:	natural	numbers/inducDon)	
	

Why	is	the	mathemaDcal	variable	so	important?	
The	mathemaDcian	says:	
	
“Let	x	be	some	integer,	we	define	a	polynomial	over	x	...”	
	

5	

Why	is	the	mathemaDcal	variable	so	important?	
The	mathemaDcian	says:	
	
“Let	x	be	some	integer,	we	define	a	polynomial	over	x	...”	
	
What	is	going	on	here?		The	mathemaDcian	has	separated	a	
defini&on	(of	x)	from	its	use	(in	the	polynomial).			
	
This	is	the	most	primiDve	kind	of	abstrac&on	(x	is	some	integer)	
	
Abstrac&on	is	the	key	to	controlling	complexity	and	without	it,	
modern	mathemaDcs,	science,	and	computaDon	would	not	exist.	
	
It	allows	reuse	of	ideas,	theorems	...	funcDons	and	programs!	

6	

OCAML	BASICS:	
LET	DECLARATIONS	

7	

AbstracDon	
•  Good	programmers	idenDfy	repeated	paZerns	in	their	code	

and	factor	out	the	repeDDon	into	meaningful	components	
•  In	O’Caml,	the	most	basic	technique	for	factoring	your	code	is	

to	use	let	expressions		
•  Instead	of	wriDng	this	expression:	

	
	

	

(2 + 3) * (2 + 3)

8	

AbstracDon	&	AbbreviaDon	
•  Good	programmers	idenDfy	repeated	paZerns	in	their	code	

and	factor	out	the	repeDDon	into	meaning	components	
•  In	O’Caml,	the	most	basic	technique	for	factoring	your	code	is	

to	use	let	expressions		
•  Instead	of	wriDng	this	expression:	

•  We	write	this	one:	
	

	

(2 + 3) * (2 + 3)

let x = 2 + 3 in
x * x

9	

A	Few	More	Let	Expressions	

let x = 2 in
let squared = x * x in
let cubed = x * squared in
squared * cubed

10	

A	Few	More	Let	Expressions	

let a = "a" in
let b = "b" in
let as = a ^ a ^ a in
let bs = b ^ b ^ b in
as ^ bs

let x = 2 in
let squared = x * x in
let cubed = x * squared in
squared * cubed

11	

AbstracDon	&	AbbreviaDon	
•  Two	kinds	of	let:	

	

	
let	…	in	…	is	an	expression	that		
can	appear	inside	any	other	expression	
	
The	scope	of	x	does	not	extend	outside	
the	enclosing	“in”	

let x = 2 + 3

let y = x + 17 / x

let	…		without	“in”	is	a	top-level	
declara&on		
	
Variables	x	and	y	may	be	exported;	
used	by	other	modules	
	
(Don’t	need	;;	if	another	let	comes	next;	do	need	it	if	
the	next	top-level	declaraDon	is	an	expression)	

if tuesday() then
 let x = 2 + 3 in
 x + x
else
 0

12	

Binding	Variables	to	Values	
•  Each	OCaml	variable	is	bound	to	1	value	
•  The	value	to	which	a	variable	is	bound	to	never	changes!	

	

let x = 3

let add_three (y:int) : int = y + x

13	

Binding	Variables	to	Values	
•  Each	OCaml	variable	is	bound	to	1	value	
•  The	value	to	which	a	variable	is	bound	to	never	changes!	

	

let x = 3

let add_three (y:int) : int = y + x

It	does	not	
ma;er	what	
I	write	next.	
add_three	
will	always	
add	3!	

14	

Binding	Variables	to	Values	
•  Each	OCaml	variable	is	bound	to	1	value	
•  The	value	a	variable	is	bound	to	never	changes!	

	

let x = 3

let add_three (y:int) : int = y + x

let x = 4

let add_four (y:int) : int = y + x

a	disDnct	
variable	that	
"happens	to	
be	spelled	the	
same"	

15	

Binding	Variables	to	Values	
•  Since	the	2	variables	(both	happened	to	be	named	x)	are	

actually	different,	unconnected	things,	we	can	rename	them	

	

let x = 3

let add_three (y:int) : int = y + x

let zzz = 4

let add_four (y:int) : int = y + zzz

let add_seven (y:int) : int =
 add_three (add_four y)

rename	x	
to	zzz	
if	you	want	
to,	replacing	
its	uses	

16	

Binding	Variables	to	Values	
•  Each	OCaml	variable	is	bound	to	1	value	
•  OCaml	is	a	staDcally	scoped	(or	lexically	scoped)	language	
	

	

let x = 3

let add_three (y:int) : int = y + x

let x = 4

let add_four (y:int) : int = y + x

let add_seven (y:int) : int =
 add_three (add_four y)

we	can	use	
add_three	
without	worrying	
about	the	second	
definiDon	of	x	

17	

How	do	let	expressions	operate?	

let x = 2 + 1 in x * x

18	

How	do	let	expressions	operate?	

let x = 2 + 1 in x * x

-->	

let x = 3 in x * x

19	

How	do	let	expressions	operate?	

let x = 2 + 1 in x * x

-->	

let x = 3 in x * x

-->	

 3 * 3

subsDtute	
3	for	x	

20	

How	do	let	expressions	operate?	

let x = 2 + 1 in x * x

-->	

let x = 3 in x * x

-->	

 3 * 3

-->	

 9

subsDtute	
3	for	x	

21	

How	do	let	expressions	operate?	

let x = 2 + 1 in x * x

-->	

let x = 3 in x * x

-->	

 3 * 3

-->	

 9

subsDtute	
3	for	x	

Note:		I	write		
e1	-->	e2	
when	e1	evaluates	
to	e2	in	one	step	

22	

Did	you	see	what	I	did	there?	

23	

Did	you	see	what	I	did	there?	

I	defined	the	language	in	terms	of	itself:	
	

let	x	=	2	in	x	+	3						-->							2	+	3	
	

I’m	trying	to	train	you	to	think	at	a	high	level	of	
abstracDon.	

			
I	didn’t	have	to	men&on	low-level	abstrac&ons	like	

assembly	code	or	registers	or	memory	layout	

24	

Another	Example	

let x = 2 in
let y = x + x in
y * x

25	

Another	Example	

let x = 2 in
let y = x + x in
y * x

-->	

subsDtute	
2	for	x	

let y = 2 + 2 in
y * 2

26	

Another	Example	

let x = 2 in
let y = x + x in
y * x

-->	

-->	

subsDtute	
2	for	x	

let y = 2 + 2 in
y * 2

let y = 4 in
y * 2

27	

Another	Example	

let x = 2 in
let y = x + x in
y * x

-->	

-->	

-->	

subsDtute	
2	for	x	

let y = 2 + 2 in
y * 2

let y = 4 in
y * 2

4 * 2

subsDtute	
4	for	y	

28	

Another	Example	

let x = 2 in
let y = x + x in
y * x

-->	

-->	

-->	

subsDtute	
2	for	x	

let y = 2 + 2 in
y * 2

let y = 4 in
y * 2

4 * 2

-->	

8

subsDtute	
4	for	y	

Moral:	Let	
operates	by	
subs&tu&ng	

computed	values	
for	variables	

29	

What	would	happen	in	an	imperaDve	language?	

x = 2;
x += x;
return x*2;

-->	

subsDtute	
2	for	x	

x += 2 ???
return x*2;

Moral:	Let	
operates	by	
subsDtuDng	

computed	values	
for	variables	

C	program:	

This	principle	works	in	
funcDonal	languages,	not	
so	well	in	imperaDve	

languages		

30	

OCAML	BASICS:	
TYPE	CHECKING	AGAIN	

31	

Back	to	Let	Expressions	...	Typing	
	

let x = e1 in

e2

overall	expression		
takes	on	the	type	of	e2	

x	granted	type	of	e1	for	use	in	e2	

32	

Back	to	Let	Expressions	...	Typing	
	

let x = e1 in

e2

x	granted	type	of	e1	for	use	in	e2	

let x = 3 + 4 in

string_of_int x

overall	expression		
takes	on	the	type	of	e2	

x	has	type	int	
for	use	inside	the	
let	body	

overall	expression	
has	type	string	

33	

OCAML	BASICS:	
FUNCTIONS	

34	

let add_one (x:int) : int = 1 + x

Defining	funcDons	
35	

let add_one (x:int) : int = 1 + x

Defining	funcDons	

funcDon	name	

argument	name	

type	of	argument	

type	of	result	 expression	
that	computes	
value	produced	
by	funcDon	

let	keyword	

Note:		recursive	funcDons	with	begin	with	"let	rec"	

36	

Defining	funcDons	
•  Nonrecursive	funcDons:	

let add_one (x:int) : int = 1 + x

let add_two (x:int) : int = add_one (add_one x)

definiDon	of	add_one	
must	come	before	use	

37	

Defining	funcDons	
•  Nonrecursive	funcDons:	

•  With	a	local	definiDon:	

let add_one (x:int) : int = 1 + x

let add_two (x:int) : int = add_one (add_one x)

local	funcDon	definiDon	
hidden	from	clients	

I	lep	off	the	types.			
O'Caml	figures	them	out	
	
Good	style:	types	on	
top-level	definiDons	

let add_two' (x:int) : int =
 let add_one x = 1 + x in
 add_one (add_one x)
	

38	

Types	for	FuncDons	
Some	funcDons:	

Types	for	funcDons:	

let add_one (x:int) : int = 1 + x

let add_two (x:int) : int = add_one (add_one x)

let add (x:int) (y:int) : int = x + y

add_one : int -> int

add_two : int -> int

add : int -> int -> int

funcDon	with	two	arguments	

39	

Rule	for	type-checking	funcDons	

add_one : int -> int

3 + 4 : int

add_one (3 + 4) : int

If	a	funcDon	f	:	T1	->	T2	
and	an	argument	e	:	T1		
then	f	e	:	T2	

General	Rule:	

Example:	

40	

Rule	for	type-checking	funcDons	
•  Recall	the	type	of	add:	

let add (x:int) (y:int) : int =
 x + y

DefiniDon:	

add : int -> int -> int

Type:	

41	

Rule	for	type-checking	funcDons	
•  Recall	the	type	of	add:	

let add (x:int) (y:int) : int =
 x + y

DefiniDon:	

add : int -> int -> int

Type:	

add : int -> (int -> int)

Same	as:	

42	

Rule	for	type-checking	funcDons	

add : int -> int -> int

3 + 4 : int

add (3 + 4) : ???

If	a	funcDon	f	:	T1	->	T2	
and	an	argument	e	:	T1		
then	f	e	:	T2	

General	Rule:	

Example:	

A	->	B	->	C	
	

same	as:	
	

A	->	(B	->	C)	

43	

Rule	for	type-checking	funcDons	

add : int -> (int -> int)

3 + 4 : int

add (3 + 4) :

General	Rule:	

Example:	

44	

A	->	B	->	C	
	

same	as:	
	

A	->	(B	->	C)	

If	a	funcDon	f	:	T1	->	T2	
and	an	argument	e	:	T1		
then	f	e	:	T2	

Rule	for	type-checking	funcDons	

add : int -> (int -> int)

3 + 4 : int

add (3 + 4) : int -> int

General	Rule:	

Example:	

45	

If	a	funcDon	f	:	T1	->	T2	
and	an	argument	e	:	T1		
then	f	e	:	T2	

A	->	B	->	C	
	

same	as:	
	

A	->	(B	->	C)	

Rule	for	type-checking	funcDons	

add : int -> int -> int

3 + 4 : int

add (3 + 4) : int -> int

(add (3 + 4)) 7 : int

General	Rule:	

Example:	

46	

If	a	funcDon	f	:	T1	->	T2	
and	an	argument	e	:	T1		
then	f	e	:	T2	

A	->	B	->	C	
	

same	as:	
	

A	->	(B	->	C)	

Rule	for	type-checking	funcDons	

add : int -> int -> int

3 + 4 : int

add (3 + 4) : int -> int

add (3 + 4) 7 : int

General	Rule:	

Example:	

47	

If	a	funcDon	f	:	T1	->	T2	
and	an	argument	e	:	T1		
then	f	e	:	T2	

A	->	B	->	C	
	

same	as:	
	

A	->	(B	->	C)	

Rule	for	type-checking	funcDons	

let munge (b:bool) (x:int) : ?? =
 if not b then
 string_of_int x
 else
 "hello"
;;

let y = 17;;

Example:	

munge (y > 17) : ??

munge true (f (munge false 3)) : ??
 f : ??

munge true (g munge) : ??
 g : ??

48	

Rule	for	type-checking	funcDons	

let munge (b:bool) (x:int) : ?? =
 if not b then
 string_of_int x
 else
 "hello"
;;

let y = 17;;

Example:	

munge (y > 17) : ??

munge true (f (munge false 3)) : ??
 f : string -> int

munge true (g munge) : ??
 g : (bool -> int -> string) -> int

49	

One	key	thing	to	remember	
•  If	you	have	a	funcDon	f	with	a	type	like	this:	

•  Then	each	Dme	you	add	an	argument,	you	can	get	the	type	of	
the	result	by	knocking	off	the	first	type	in	the	series	

A	->	B	->	C	->	D	->	E	->	F	

f	a1	:	B	->	C	->	D	->	E	->	F 	(if	a1	:	A)	
	
f	a1	a2	:	C	->	D	->	E	->	F 	(if	a2	:	B)	
	
f	a1	a2	a3	:	D	->	E	->	F 	(if	a3	:	C)	
	
f	a1	a2	a3	a4	a5	:	F	 	(if	a4	:	D	and	a5	:	E)	

50	

OUR	FIRST*	COMPLEX	DATA	STRUCTURE!	
THE	TUPLE	

*	it	is	really	our	second	complex	data	structure	since	funcDons	
are	data	structures	too!	

51	

•  A	tuple	is	a	fixed,	finite,	ordered	collecDon	of	values		
•  Some	examples	with	their	types:	

Tuples	

(1, 2) : int * int

("hello", 7 + 3, true) : string * int * bool

('a', ("hello", "goodbye")) : char * (string * string)

52	

•  To	use	a	tuple,	we	extract	its	components	
•  General	case:	

	

•  An	example:	

Tuples	

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y

53	

•  To	use	a	tuple,	we	extract	its	components	
•  General	case:	

	

•  An	example:	

Tuples	

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y
--> 2 + 2 + 4

subsDtute!	

54	

•  To	use	a	tuple,	we	extract	its	components	
•  General	case:	

	

•  An	example:	

Tuples	

let (id1, id2, …, idn) = e1 in e2

let (x,y) = (2,4) in x + x + y
--> 2 + 2 + 4
--> 8

55	

Rules	for	Typing	Tuples	
56	

 if	e1	:	t1		and	e2	:	t2		

then	(e1,	e2)	:	t1	*	t2	

Rules	for	Typing	Tuples	

let (x1,x2) = e1 in

e2

if	e1	:	t1	*	t2	then	
x1	:	t1	and	x2	:	t2	
inside	the	expression	e2	

overall	expression		
takes	on	the	type	of	e2	

57	

 if	e1	:	t1		and	e2	:	t2		

then	(e1,	e2)	:	t1	*	t2	

Distance	between	two	points	

c2	=	a2	+	b2	
(x1,	y1)	

(x2,	y2)	

a	

b	
c	

Problem:			
•  A	point	is	represented	as	a	pair	of	floaDng	point	values.	
•  Write	a	funcDon	that	takes	in	two	points	as	arguments	and	returns	
the	distance	between	them	as	a	floaDng	point	number	

58	

WriDng	FuncDons	Over	Typed	Data	
Steps	to	wriDng	funcDons	over	typed	data:	

1.  Write	down	the	funcDon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	

59	

WriDng	FuncDons	Over	Typed	Data	
Steps	to	wriDng	funcDons	over	typed	data:	

1.  Write	down	the	funcDon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	

•  the	argument	types	suggests	how	to	do	it	
5.  Build	new	output	values	

•  the	result	type	suggests	how	you	do	it		

60	

WriDng	FuncDons	Over	Typed	Data	
Steps	to	wriDng	funcDons	over	typed	data:	

1.  Write	down	the	funcDon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	

•  the	argument	types	suggests	how	to	do	it	
5.  Build	new	output	values	

•  the	result	type	suggests	how	you	do	it		
6.  Clean	up	by	idenDfying	repeated	paZerns	

•  define	and	reuse	helper	funcDons	
•  your	code	should	be	elegant	and	easy	to	read	

61	

WriDng	FuncDons	Over	Typed	Data	
Steps	to	wriDng	funcDons	over	typed	data:	

1.  Write	down	the	funcDon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	

•  the	argument	types	suggests	how	to	do	it	
5.  Build	new	output	values	

•  the	result	type	suggests	how	you	do	it		
6.  Clean	up	by	idenDfying	repeated	paZerns	

•  define	and	reuse	helper	funcDons	
•  your	code	should	be	elegant	and	easy	to	read	

Types	help	structure	your	thinking	about	how	to	write	programs.	

62	

Distance	between	two	points	

type point = float * float

a	type	abbreviaDon	 (x1,	y1)	

(x2,	y2)	

a	

b	
c	

63	

Distance	between	two	points	

type point = float * float

let distance (p1:point) (p2:point) : float =

write	down	funcDon	name	
argument	names	and	types	

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

64	

Distance	between	two	points	

type point = float * float

(* distance (0.0,0.0) (0.0,1.0) == 1.0
 * distance (0.0,0.0) (1.0,1.0) == sqrt(1.0 + 1.0)
 *
 * from the picture:
 * distance (x1,y1) (x2,y2) == sqrt(a^2 + b^2)
 *)

let distance (p1:point) (p2:point) : float =

(x1,	y1)	

(x2,	y2)	

a	

b	
c	examples	

65	

Distance	between	two	points	

type point = float * float

let distance (p1:point) (p2:point) : float =

 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 ...

deconstruct	
funcDon	inputs	

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

66	

Distance	between	two	points	

type point = float * float

let distance (p1:point) (p2:point) : float =

 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt ((x2 -. x1) *. (x2 -. x1) +.
 (y2 -. y1) *. (y2 -. y1))

compute		
funcDon	
results	

noDce	operators	on	
floats	have	a	"."	in	them	

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

67	

Distance	between	two	points	

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1)) +.
 square (y2 -. y1))

define	helper	funcDons	to	
avoid	repeated	code	

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

68	

Distance	between	two	points	

type point = float * float

let distance (p1:point) (p2:point) : float =
 let square x = x *. x in
 let (x1,y1) = p1 in
 let (x2,y2) = p2 in
 sqrt (square (x2 -. x1) +. square (y2 -. y1))

let pt1 = (2.0,3.0)
let pt2 = (0.0,1.0)
let dist12 = distance pt1 pt2

tesDng	

(x1,	y1)	

(x2,	y2)	

a	

b	
c	

69	

MORE	TUPLES	

70	

Tuples	
•  Here's	a	tuple	with	2	fields:	

(4.0,	5.0)	:	float	*	float	

71	

Tuples	
•  Here's	a	tuple	with	2	fields:	

•  Here's	a	tuple	with	3	fields:	

(4.0,	5.0)	:	float	*	float	

(4.0,	5,	"hello")	:	float	*	int	*	string	

72	

Tuples	
•  Here's	a	tuple	with	2	fields:	

•  Here's	a	tuple	with	3	fields:	

•  Here's	a	tuple	with	4	fields:	

(4.0,	5.0)	:	float	*	float	

(4.0,	5,	"hello")	:	float	*	int	*	string	

(4.0,	5,	"hello",	55)	:	float	*	int	*	string	*	int	

73	

Tuples	
•  Here's	a	tuple	with	2	fields:	

•  Here's	a	tuple	with	3	fields:	

•  Here's	a	tuple	with	4	fields:	

	
•  Here's	a	tuple	with	0	fields:	

(4.0,	5.0)	:	float	*	float	

(4.0,	5,	"hello")	:	float	*	int	*	string	

(4.0,	5,	"hello",	55)	:	float	*	int	*	string	*	int	

74	

()	:	unit	

Unit	
•  Unit	is	the	tuple	with	zero	fields!	

()	:	unit	

•  the	unit	value	is	wriZen	with	an	pair	of	parens	
•  there	are	no	other	values	with	this	type!	
	
	

75	

Unit	
•  Unit	is	the	tuple	with	zero	fields!	

•  Why	is	the	unit	type	and	value	useful?	
•  Every	expression	has	a	type:	

()	:	unit	

•  the	unit	value	is	wriZen	with	an	pair	of	parens	
•  there	are	no	other	values	with	this	type!	
	
	

(print_string	"hello	world\n")		:				???	

76	

Unit	
•  Unit	is	the	tuple	with	zero	fields!	

•  Why	is	the	unit	type	and	value	useful?	
•  Every	expression	has	a	type:	

•  Expressions	executed	for	their	effect	return	the	unit	value	

()	:	unit	

•  the	unit	value	is	wriZen	with	an	pair	of	parens	
•  there	are	no	other	values	with	this	type!	
	
	

(print_string	"hello	world\n")		:				unit	

77	

SUMMARY:	
BASIC	FUNCTIONAL	PROGRAMMING	

78	

WriDng	FuncDons	Over	Typed	Data	
Steps	to	wriDng	funcDons	over	typed	data:	

1.  Write	down	the	funcDon	and	argument	names	
2.  Write	down	argument	and	result	types	
3.  Write	down	some	examples	(in	a	comment)	
4.  Deconstruct	input	data	structures	
5.  Build	new	output	values	
6.  Clean	up	by	idenDfying	repeated	paZerns	

For	tuple	types:	
–  when	the	input	has	type	t1	*	t2	

•  use	let	(x,y)	=	…	to	deconstruct	
–  when	the	output	has	type	t1	*	t2	

•  use	(e1,	e2)	to	construct		

We	will	see	this	paradigm	repeat	itself	over	and	over	

79	

