
COS	326	Func,onal	Programming:	
An	elegant	weapon	for	the	modern	age	

David	Walker	
Princeton	University		

©
	2
00
7	
xk
cd
	

slides	copyright	2013-2015	David	Walker		
permission	granted	to	reuse	these	slides	for	non-commercial	educaConal	purposes	

	

or	mother's	

In	1936,	Alonzo	Church	
invented	the	lambda	calculus.		
He	called	it	a	logic,	but	it	was	a	
language	of	pure	funcCons	--	
the	world's	first	programming	
language.	
	
He	said:	
	
"There	may,	indeed,	be	other	
applica3ons	of	the	system	than	
its	use	as	a	logic."	Alonzo	Church,	1903-1995	

Princeton	Professor,	1929-1967	

2	

In	1936,	Alonzo	Church	
invented	the	lambda	calculus.		
He	called	it	a	logic,	but	it	was	a	
language	of	pure	funcCons	--	
the	world's	first	programming	
language.	
	
He	said:	
	
"There	may,	indeed,	be	other	
applica3ons	of	the	system	than	
its	use	as	a	logic."	

Greatest	technological	
understatement	of	the	20th	

century?	

Alonzo	Church,	1903-1995	
Princeton	Professor,	1929-1967	

3	

Alonzo	Church	
1934	--	developed	lambda	calculus	

Alan	Turing	(PhD	Princeton	1938)	
1936	--	developed	Turing	machines	

Programming	Languages	 Computers	

hZp://press.princeton.edu/chapters/s9780.pdf	
Op3onal	reading:			The	Birth	of	Computer	Science	at	Princeton	in	the	1930s	
by	Andrew	W.	Appel,	2012.	

4	

A	few	designers	of	funcConal	programming	languages	
5	

Alonzo	Church:			
λ-calculus,	1934	

John	McCarthy	
	(PhD	Princeton	1951)	

LISP,	1958	

Guy	Steele	&	Gerry	Sussman:	
Scheme,	1975	

A	few	designers	of	funcConal	programming	languages	
6	

Alonzo	Church:			
λ-calculus,	1934	

Robin	Milner	
ML,	1978	

Xavier	Leroy:		Ocaml,	1990’s	Appel	&	MacQueen:	SML/NJ,	1988	

They	were	younger	than	they	appear…	
7	

Alonzo	Church:			
λ-calculus,	1934	

John	McCarthy	
	(PhD	Princeton	1951)	

LISP,	1958	

Guy	Steele	&	Gerry	Sussman:	
Scheme,	1975	

Robin	Milner	
ML,	1978	

Xavier	Leroy:	
Ocaml,	1990’s	

Luca	Cardelli	
Edinburgh	ML,	1981	

Appel	&	MacQueen:	SML/NJ,	1988	

Implementa,ons:	
Photo	~1960	

Photo	~1975	

Photo	~2005	
Photo	~1995	

Photo	2005	 Photo	~2000	

Photo	~2005	

Photo	~1995	 Photo	~1995	

Vastly	Abbreviated	FP	Geneology	
LCF	Theorem	
Prover	(70s)	

Edinburgh	ML	

Miranda	(80s)	

Haskell		
(90s	-	now)	

Standard	ML	
(90s	-	now)	 OCaml	

(90s	-	now)	

Caml	
(80s-now)	

F#	
(now)	

LISP	
(50s-now)	

Scheme	
(70s-now)	

lazy	

typed,	polymorphic	

untyped	

Coq	
(80s	-	now)	

dependently	
typed	

call-by-value	

Racket	
(00s-now)	

Scala	
(00s	-	now)	

8	

Vastly	Abbreviated	FP	Geneology	
LCF	Theorem	
Prover	(70s)	

Edinburgh	ML	

Miranda	(80s)	

Haskell		
(90s	-	now)	

Standard	ML	
(90s	-	now)	 OCaml	

(90s	-	now)	

Caml	
(80s-now)	

F#	
(now)	

LISP	
(50s-now)	

Scheme	
(70s-now)	

lazy	

typed,	polymorphic	

untyped	

Coq	
(80s	-	now)	

dependently	
typed	

call-by-value	

Racket	
(00s-now)	

Scala	
(00s	-	now)	

9	

But	Why	FuncConal	Programming	Now?	

•  FuncConal	programming	will	introduce	you	to	new	ways	to	
think	about	and	structure	your	programs:	
–  new	reasoning	principles	
–  new	abstracCons	
–  new	design	paZerns	
–  new	algorithms	
–  elegant	code	

•  Technology	trends	point	to	increasing	parallelism:	
–  mulCcore,	gpu,	data	center	
–  funcConal	programming	techniques	such	as	map-reduce	
provide	a	plausible	way	forward	for	many	applicaCons	

10	

FuncConal	Languages:		Who’s	using	them?	

F#	in	Visual	Studio	

map-reduce	in	their	data	centers	

Erlang	for	
concurrency,	
Haskell	for	
managing	PHP	

Haskell	to		
synthesize	hardware	

Scala	for	
correctness,	maintainability,	flexibility	

www.arCma.com/scalazine/arCcles/twiZer_on_scala.html	
gregosuri.com/how-facebook-uses-erlang-for-real-Cme-chat	
www.janestcapital.com/technology/ocaml.php	
msdn.microsos.com/en-us/fsharp/cc742182	
labs.google.com/papers/mapreduce.html	
www.haskell.org/haskellwiki/Haskell_in_industry	

Haskell	
for	specifying	
equity	derivaCves	

mathemaCcians	

Coq	(re)proof	of	
4-color	theorem	

11	

FuncConal	Languages:		Join	the	crowd	
•  Elements	of	funcConal	programming	are	showing	up	all	over	

–  F#	in	Microsos	Visual	Studio	
–  Scala	combines	ML	(a	funcConal	language)	with	Objects	

•  runs	on	the	JVM	
–  C#	includes	“delegates”	

•  delegates	==	funcCons	
–  Python	includes	“lambdas”	

•  lambdas	==	more	funcCons	
–  Javascript	

•  find	tutorials	online	about	using	funcConal	programming	
techniques	to	write	more	elegant	code	

–  C++	libraries	for	map-reduce	
•  enabled	funcConal	parallelism	at	Google	

–  Java	has	generics	and	GC	
–  ...	

12	

COURSE	LOGISTICS	

13	

Course	Staff	

Christopher	Morey	
Teaching	Faculty	
Head	Preceptor	
office:		COS	208	

email:	cmorey@cs	

Robin	Qiu	
Grad	Student	
office:	Fishbowl	
email:	yqiu@cs	

Nik	Giannarakis	
Grad	Student	
office:	Fishbowl	
		email:	ng8@cs	

David	Walker	
Professor	

office:		COS	211	
email:	dpw@cs	

14	

Resources	
•  Web:			

–  hZp://www.cs.princeton.edu/~cos326	

•  Lecture	schedule	and	readings:	
–  $(coursehome)/lectures.php	

•  Assignments:	
–  $(coursehome)/assignments.php	

•  Precepts	
–  useful	if	you	want	to	do	well	on	exams	and	homeworks	

•  Install	OCaml:		$(coursehome)/resources.php	

15	

CollaboraCon	Policy	
The	COS	326	collaboraCon	policy	can	be	found	here:	

	
Read	it	in	full	prior	to	beginning	the	first	assignment.	
	
Please	ask	quesCons	whenever	anything	is	unclear,	at	any	Cme	
during	the	course.	

hZp://www.cs.princeton.edu/~cos326/info.php#collab	

16	

Course	Textbook	

hZp://realworldocaml.org/	

17	

Exams	
Minterm:		Wednesday	of	midterm	week:	
	
											Wednesday,	October	25	
	

There	will	be	a	final	exam,	in	exam	period		
(January	—	Make	your	travel	plans	accordingly)	

18	

Assignment	0	

Figure	out	how	to	download	and	install	the	latest	version	of	
OCaml	

on	your	machine	by	the	Cme	precept	begins	tomorrow.	
(or,	how	to	use	OCaml	by	ssh	to	Princeton	University	servers)	

	
Resources	Page:	

	
hZp://www.cs.princeton.edu/~cos326/resources.php	

	
Hint:			
	

ocaml.org	

19	

Public	Service	Announcement	

The	Pen	is	Mighter	than	the	Keyboard:	
Advantages	of	Longhand	Over	Laptop	Note	Taking	

	
Pam	Mueller	(Princeton	University)	

Daniel	Oppenheimer	(UCLA)	
Journal	of	Psychological	Science,	June	2014,	vol	25,	no	6	

hZp://pss.sagepub.com/content/25/6/1159.fullkeytype=ref&siteid=sppss&ijkey=CjRAwmrlURGNw	

•  You	learn	conceptual	topics	beZer	by	taking	notes	by	hand.	
•  Instagram	and	World	of	Warcras	distract	your	classmates.	

20	

A	FuncConal	IntroducCon	

Thinking	FuncConally	
In	Java	or	C,	you	get	(most)	work	done	by	changing	something	
	
	
	
	
	
	
In	ML,	you	get	(most)	work	done	by	producing	something	new	

temp	=	pair.x;	
pair.x	=	pair.y;	
pair.y	=	temp;	 commands	modify	or	change	an	

exisCng	data	structure	(like	pair)	

let	
		(x,y)	=	pair	
in	
		(y,x)	

you	analyze	exisCng	data	(like	pair)	
and	you	produce	new	data	(y,x)	

22	

This	simple	switch	in	perspecCve	can	change	the	way	you		
think		

about	programming	and	problem	solving.	

23	

Thinking	FuncConally	

imperaCve	code:	
	
	
	
	
•  outputs	are	irrelevant!	
•  output	is	not	func3on	of	input	
•  data	proper3es	change	
•  unrepeatable	
•  parallelism	hidden	
•  harder	to	test	
•  harder	to	compose	

pure,	funcConal	code:	
	
	
	
	
•  outputs	are	everything!	
•  output	is	func3on	of	input	
•  data	proper3es	are	stable	
•  repeatable	
•  parallelism	apparent	
•  easier	to	test	
•  easier	to	compose	

temp	=	pair.x;	
pair.x	=	pair.y;	
pair.y	=	temp;	

let	(x,y)	=	pair	in	
(y,x)	

24	

Why	OCaml?	
25	

Small,	orthogonal	core	based	on	the	lambda	calculus.	
–  Control	is	based	on	(recursive)	funcCons.	
–  Instead	of	for-loops,	while-loops,	do-loops,	iterators,	etc.	

•  can	be	defined	as	library	funcCons.	
–  Makes	it	easy	to	define	semanCcs		

Supports	first-class,	lexically-scoped,	higher-order	procedures	
–  a.k.a.	first-class	funcCons	or	closures	or	lambdas.	
–  first-class:		funcCons	are	data	values	like	any	other	data	value	

•  like	numbers,	they	can	be	stored,	defined	anonymously,	...			
–  lexically-scoped:		meaning	of	variables	determined	staCcally.	
–  higher-order:		funcCons	as	arguments	and	results	

•  programs	passed	to	programs;	generated	from	programs	

These	features	also	found	in	Racket,	Haskell,	SML,	F#,	Clojure,	

Why	OCaml?	
26	

StaCcally	typed:		debugging	and	tesCng	aid	
–  compiler	catches	many	silly	errors	before	you	can	run	the	code.	

•  A	type	is	worth	a	thousand	tests	(start	at	6:20):			
–  hZps://www.youtube.com/watch?v=q1Yi-WM7XqQ	

–  Java	is	also	strongly,	staCcally	typed.	
–  Scheme,	Python,	Javascript,	etc.	are	all	strongly,	dynamically	
typed	–	type	errors	are	discovered	while	the	code	is	running.	

Strongly	typed:		compiler	enforces	type	abstracCon.	
–  cannot	cast	an	integer	to	a	record,	funcCon,	string,	etc.	

•  so	we	can	uClize	types	as	capabili3es;	crucial	for	local	reasoning	
–  C/C++	are	weakly-typed	(staCcally	typed)	languages.		The	compiler	
will	happily	let	you	do	something	smart	(more	oMen	stupid).			

Type	inference:		compiler	fills	in	types	for	you	

Installing,	running	Ocaml	
27	

•  OCaml	comes	with	compilers:	
–  “ocamlc”	–	fast	bytecode	compiler	
–  “ocamlopt”	–	opCmizing,	naCve	code	compiler	
–  “ocamlbuild	–	a	nice	wrapper	that	computes	dependencies	

•  And	an	interacCve,	top-level	shell:	
–  occasionally	useful	for	trying	something	out.	
–  “ocaml”	at	the	prompt.	
–  but	use	the	compiler	most	of	the	3me	

•  And	many	other	tools	
–  e.g.,	debugger,	dependency	generator,	profiler,	etc.	

•  See	the	course	web	pages	for	installaCon	pointers	
–  also	OCaml.org	

EdiCng	Ocaml	Programs	
28	

•  Many	opCons:		pick	your	own	poison	
–  Emacs	

•  what	I’ll	be	using	in	class.	
•  good	but	not	great	support	for	OCaml.	
•  I	like	it	because	it's	what	I'm	used	to	
•  (extensions	wriZen	in	elisp	–	a	funcConal	language!)	

–  OCaml	IDE	
•  integrated	development	environment	wriZen	in	Ocaml.	
•  haven’t	used	it	much,	so	can’t	comment.	

–  Eclipse	
•  I’ve	put	up	a	link	to	an	Ocaml	plugin	
•  I	haven't	tried	it	but	others	recommend	it	

–  Sublime,	atom	
•  A	lot	of	students	seem	to	gravitate	to	this	

	

XKCD	on	Editors	
29	

AN	INTRODUCTORY	EXAMPLE	
(OR	TWO)	

30	

OCaml	Compiler	and	Interpreter	
•  Demo:	

–  emacs	
–  ml	files	
–  wriCng	simple	programs:	hello.ml,	sum.ml	
–  simple	debugging	and	unit	tests	
–  ocamlc	compiler	
	

31	

A	First	OCaml	Program	

hello.ml:

print_string “Hello COS 326!!\n";;

32	

print_string “Hello COS 326!!\n"

A	First	OCaml	Program	

hello.ml:

a	funcCon	 its	string	argument	
enclosed	in	"..."

a	program	
can	be	nothing	
more	than	
just	a	single	
expression	
(but	that	is	
uncommon)	

33	

no	parens.		normally	call	a	funcCon	f	like	this:	
	

 f arg

(parens	are	used	for	grouping,	precedence		
only	when	necessary)	

A	First	OCaml	Program	

print_string “Hello COS 326!!\n"

$ ocamlbuild hello.d.byte
$./hello.d.byte
Hello COS 326!!
$

hello.ml:

compiling and running hello.ml:

.d	for	debugging	
(other	choices	.p	for	profiled;	or	none)	

.byte	for	interpreted	bytecode	
(other	choices	.naCve	for	machine	code)	

34	

A	First	OCaml	Program	

$ ocaml
 Objective Caml Version 3.12.0

hello.ml:

interpreting and playing with hello.ml:

print_string “Hello COS 326!!\n"

35	

A	First	OCaml	Program	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4

hello.ml:

interpreting and playing with hello.ml:

print_string “Hello COS 326!!\n"

36	

A	First	OCaml	Program	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4
#use "hello.ml";;
hello cos326!!
-  : unit = ()

hello.ml:

interpreting and playing with hello.ml:

print_string “Hello COS 326!!\n"

37	

A	First	OCaml	Program	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4
#use "hello.ml";;
hello cos326!!
-  : unit = ()
#quit;;
$

hello.ml:

interpreting and playing with hello.ml:

print_string “Hello COS 326!!\n"

38	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)

let _ =
 print_int (sumTo 8);
 print_newline()

A	Second	OCaml	Program	

a	comment	
(*	...	*)	sumTo8.ml:

39	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)

let _ =
 print_int (sumTo 8);
 print_newline()

A	Second	OCaml	Program	

the	name	of	the	funcCon	being	defined	

the	keyword	“let”	begins	a	definiCon;		keyword	“rec”	indicates	recursion	

sumTo8.ml:

40	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)

let _ =
 print_int (sumTo 8);
 print_newline()

A	Second	OCaml	Program	

result	type	int	

argument		
named	n	
with	type	int	

sumTo8.ml:

41	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)

let _ =
 print_int (sumTo 8);
 print_newline()

A	Second	OCaml	Program	

deconstruct	the	value	n	
using	paZern	matching	

data	to	be	
deconstructed	
appears	
between	
key	words	
“match”	and	
“with”	

sumTo8.ml:

42	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)

let _ =
 print_int (sumTo 8);
 print_newline()

_

A	Second	OCaml	Program	

deconstructed	data	matches	one	of	2	cases:	
(i)	the	data	matches	the	paZern	0,	or	(ii)	the	data	matches	the	variable	paZern	n	

verCcal	bar	"|"	separates	the	alternaCve	paZerns	

sumTo8.ml:

43	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)

let _ =
 print_int (sumTo 8);
 print_newline()

A	Second	OCaml	Program	

Each	branch	of	the	match	statement	constructs	a	result	

construct	
the	result	0	
	

construct		
a	result	
using	a	
recursive	
call	to	sumTo	
	

sumTo8.ml:

44	

(* sum the numbers from 0 to n
 precondition: n must be a natural number
*)
let rec sumTo (n:int) : int =
 match n with
 0 -> 0
 | n -> n + sumTo (n-1)

let _ =
 print_int (sumTo 8);
 print_newline()

A	Second	OCaml	Program	

print	the	
result	of		
calling	
sumTo	on	8	
	

print	a	
new	line	

sumTo8.ml:

45	

OCAML	BASICS:	
EXPRESSIONS,	VALUES,	SIMPLE	
TYPES	

46	

Terminology:	Expressions,	Values,	Types	
•  Expressions	are	computaCons	

–  2	+	3	is	a	computaCon	

•  Values	are	the	results	of	computaCons	
–  5	is	a	value	

•  Types	describe	collecCons	of	values	and	the	computaCons	
that	generate	those	values	
–  int	is	a	type	

–  values	of	type	int	include		
•  0,	1,	2,	3,	…,	max_int	
•  -1,	-2,	…,	min_int	

47	

Some	simple	types,	values,	expressions	
48	

Type: 	 	Values: 	 	 	Expressions:	
int -2, 0, 42 42 * (13 + 1)
float 3.14, -1., 2e12 (3.14 +. 12.0) *. 10e6

char ’a’, ’b’, ’&’ int_of_char ’a’

string "moo", "cow" "moo" ^ "cow"
bool true, false if true then 3 else 4

unit () print_int 3

For	more	primiCve	types	and	funcCons	over	them,		
see	the	OCaml	Reference	Manual	here:	

	
hZp://caml.inria.fr/pub/docs/manual-ocaml/libref/Pervasives.html	

Not	every	expression	has	a	value	
49	

Expression:	
42 * (13 + 1) evaluates to 588
(3.14 +. 12.0) *. 10e6 ↦ 151400000.

int_of_char ’a’ ↦ 97

"moo" ^ "cow" ↦
“moocow"
if true then 3 else 4 ↦
3
print_int 3 ↦
()

1 + "hello"
does not evaluate!

Language	DefiniCon	
•  There	are	a	number	of	ways	to	define	a	programming	language	
•  In	this	class,	we	will	briefly	invesCgate:	

–  Syntax	
–  EvaluaCon	
–  Type	checking	

•  Standard	ML,	a	very	close	relaCve	of	OCaml,	has	a	full	definiCon	
of	each	of	these	parts	and	a	number	of	proofs	of	correctness	
–  For	more	on	this	theme,	see	COS	441/510	

•  The	OCaml	Manual	fleshes	out	the	syntax,	evaluaCon	and	type	
checking	rules	informally	

50	

OCAML	BASICS:	
CORE	EXPRESSION	SYNTAX	

51	

Core	Expression	Syntax	
52	

The	simplest	OCaml	expressions	e	are:	
•  values 	 	 	numbers,	strings,	bools,	...	
•  id 	 	 	 	variables	(x,	foo,	...)	
•  e1	op	e2 	 	 	operators	(x+3,	...)	
•  id	e1	e2	…	en	 	 	func3on	call	(foo	3	42)	
•  let	id	=	e1	in	e2 	 	local	variable	decl.	
•  if	e1	then	e2	else	e3				 	a	condi3onal	
•  (e) 	 	 	 	a	parenthesized	expression	
•  (e	:	t) 	 	 	an	expression	with	its	type	

A	note	on	parentheses	
53	

In	most	languages,	arguments	are	parenthesized	&	separated	by	commas:			
		
 f(x,y,z) sum(3,4,5)

	
In	OCaml,	we	don’t	write	the	parentheses	or	the	commas:		

	
 f x y z sum 3 4 5

	
But	we	do	have	to	worry	about	grouping.		For	example,	

 f x y z
f x (y z)

	
The	first	one	passes	three	arguments	to	f	(x,	y,	and	z)	
The	second	passes	two	arguments	to	f	(x,	and	the	result	of	applying	the	

funcCon	y	to	z.)			
	

OCAML	BASICS:	
TYPE	CHECKING	

54	

Type	Checking	
•  Every	value	has	a	type	and	so	does	every	expression	
•  This	is	a	concept	that	is	familiar	from	Java	but	it	becomes	

more	important	when	programming	in	a	funcConal	language	
•  The	type	of	an	expression	is	determined	by	the	type	of	its	

subexpressions	
•  We	write	(e	:	t)	to	say	that	expression	e	has	type	t.	eg:	

	
2	:	int 	 	 	 	"hello"	:	string	
	
2	+	2	:	int 	 	 	 	"I	say	"	^	"hello"	:	string	

55	

Type	Checking	Rules	
•  There	are	a	set	of	simple	rules	that	govern	type	checking	

–  programs	that	do	not	follow	the	rules	will	not	type	check	and	
O’Caml	will	refuse	to	compile	them	for	you	(the	nerve!)	

–  at	first	you	may	find	this	to	be	a	pain	…	

•  But	types	are	a	great	thing:	
–  they	help	us	think	about	how	to	construct	our	programs	
–  they	help	us	find	stupid	programming	errors		
–  they	help	us	track	down	compaCbility	errors	quickly	when	we	
edit	and	maintain	our	code	

–  they	allow	us	to	enforce	powerful	invariants	about	our	data	
structures	

56	

Type	Checking	Rules	
•  Example	rules:	

	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

57	

Type	Checking	Rules	
•  Example	rules:	

	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	 (4)	

58	

Type	Checking	Rules	
•  Example	rules:	

	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

59	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

60	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
Therefore,	(2	+	3)	:	int 	(By	rule		3)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

61	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
Therefore,	(2	+	3)	:	int 	(By	rule		3)	
5	:	int 	 	 	(By	rule		1)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

62	

Type	Checking	Rules	
•  Example	rules:	

	
•  Using	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

2	:	int	and	3	:	int.		 	(By	rule		1)	
Therefore,	(2	+	3)	:	int 	(By	rule		3)	
5	:	int 	 	 	(By	rule		1)	
Therefore,	(2	+	3)	*	5	:	int 	(By	rule		4	and	our	previous	work)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

FYI:		This	is	a	formal	proof	
that	the	expression	is	well-

typed!	

63	

Type	Checking	Rules	
•  Example	rules:	

	
•  Another	perspecCve:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

	????				*				????																				:		int 		

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

rule	(4)	for	typing	expressions	
says	I	can	put	any	expression		
with	type	int	in	place	of	the	????	

64	

Type	Checking	Rules	
•  Example	rules:	

	
•  Another	perspecCve:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

	7										*				????																				:		int 		

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

rule	(4)	for	typing	expressions	
says	I	can	put	any	expression		
with	type	int	in	place	of	the	????	

65	

Type	Checking	Rules	
•  Example	rules:	

	
•  Another	perspecCve:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

	7										*				(add_one	17)				:		int 		

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

rule	(4)	for	typing	expressions	
says	I	can	put	any	expression		
with	type	int	in	place	of	the	????	

66	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

67	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;

68	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4

press	
return	
and	you		
find	out	
the	type	
and	the	
value	

69	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4
“hello ” ^ “world”;;
- : string = “hello world”

press	
return	
and	you		
find	out	
the	type	
and	the	
value	

70	

Type	Checking	Rules	
•  You	can	always	start	up	the	OCaml	interpreter	to	find	out	a	

type	of	a	simple	expression:	

	

$ ocaml
 Objective Caml Version 3.12.0

3 + 1;;
-  : int = 4
“hello ” ^ “world”;;
- : string = “hello world”
#quit;;
$

71	

Type	Checking	Rules	
•  Example	rules:	

	
•  ViolaCng	the	rules:	

if	e1	:	int	and	e2	:	int	
then	e1	+	e2	:	int	

if	e1	:	int	and	e2	:	int	
then	e1	*	e2	:	int	

if	e1	:	string	and	e2	:	string	
then	e1	^	e2	:	string	

if	e	:	int	
then	string_of_int	e		:	string	

"hello"	:	string 	 	(By	rule		2)	
1	:	int 	 	 	(By	rule		1)	
1	+	"hello"	:	?? 	 	(NO	TYPE!		Rule	3	does	not	apply!)	
	

0	:	int								 	(and	similarly	for	any	other	integer	constant	n)	

"abc"	:	string 	(and	similarly	for	any	other	string	constant	"…")	(2)	

(1)	

(3)	

(5)	

(4)	

(6)	

72	

•  ViolaCng	the	rules:	

•  The	type	error	message	tells	you	the	type	that	was	expected	
and	the	type	that	it	inferred	for	your	subexpression	

•  By	the	way,	this	was	one	of	the	nonsensical	expressions	that	
did	not	evaluate	to	a	value	

•  It	is	a	good	thing	that	this	expression	does	not	type	check!	
“Well	typed	programs	do	not	go	wrong”	

Robin	Milner,	1978	

Type	Checking	Rules	
•  ViolaCng	the	rules:	

•  The	type	error	message	tells	you	the	type	that	was	expected	
and	the	type	that	it	inferred	for	your	subexpression	

•  By	the	way,	this	was	one	of	the	nonsensical	expressions	that	
did	not	evaluate	to	a	value	

•  It	is	a	good	thing	that	this	expression	does	not	type	check!	

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

73	

Type	Checking	Rules	
•  ViolaCng	the	rules:	

•  A	possible	fix:	

•  One	of	the	keys	to	becoming	a	good	ML	programmer	is	to	
understand	type	error	messages.			

"hello" + 1;;
Error: This expression has type string but an
expression was expected of type int

"hello" ^ (string_of_int 1);;
- : string = "hello1"

74	

Type	Checking	Rules	
•  What	about	this	expression:	

	
•  Why	doesn't	the	ML	type	checker	do	us	the	favor	of	telling	us	the	

expression	will	raise	an	excepCon?	

3 / 0 ;;
Exception: Division_by_zero.

75	

Type	Checking	Rules	
•  What	about	this	expression:	

	
•  Why	doesn't	the	ML	type	checker	do	us	the	favor	of	telling	us	the	

expression	will	raise	an	excepCon?	
–  In	general,	detecCng	a	divide-by-zero	error	requires	we	know	that	
the	divisor	evaluates	to	0.	

–  In	general,	deciding	whether	the	divisor	evaluates	to	0	requires	
solving	the	halCng	problem:	

•  There	are	type	systems	that	will	rule	out	divide-by-zero	errors,	but	
they	require	programmers	supply	proofs	to	the	type	checker		

3 / 0 ;;
Exception: Division_by_zero.

3 / (if turing_machine_halts m then 0 else 1);;

76	

Isn’t	that	cheaCng?	
“Well	typed	programs	do	not	go	wrong”	

Robin	Milner,	1978	
	
(3	/	0)			is	well	typed.			Does	it	“go	wrong?”		Answer:	No.	
	
“Go	wrong”	is	a	technical	term	meaning,	“have	no	defined	
semanCcs.”		Raising	an	excepCon	is	perfectly	well	defined	
semanCcs,	which	we	can	reason	about,	which	we	can	handle	in	
ML	with	an	excepCon	handler.	
	
So,	it’s	not	cheaCng.	
	
(Discussion:	why	do	we	make	this	dis3nc3on,	anyway?)	

77	

Type	Soundness	
“Well	typed	programs	do	not	go	wrong”	

	
Programming	languages	with	this	property	have		
sound	type	systems.		They	are	called	safe	languages.	
	
Safe	languages	are	generally	immune	to	buffer	overrun	
vulnerabiliCes,	uniniCalized	pointer	vulnerabiliCes,	etc.,	etc.	
(but	not	immune	to	all	bugs!)	
	
Safe	languages:		ML,	Java,	Python,	…	
	
Unsafe	languages:		C,	C++,	Pascal	

78	

Well	typed	programs	do	not	go	wrong	
•  ViolaCng	the	rules:	

•  The	type	error	message	tells	you	the	type	that	was	expected	
and	the	type	that	it	inferred	for	your	subexpression	

•  By	the	way,	this	was	one	of	the	nonsensical	expressions	that	
did	not	evaluate	to	a	value	

•  It	is	a	good	thing	that	this	expression	does	not	type	check!	
“Well	typed	programs	do	not	go	wrong”	

Robin	Milner,	1978	

Robin	Milner	

Turing	Award,	1991	
	
“For	three	disCnct	and	complete	achievements:		
	
1. 		LCF,	the	mechanizaCon	of	ScoZ's	Logic	of	Computable	FuncCons,	probably	
the	first	theoreCcally	based	yet	pracCcal	tool	for	machine	assisted	proof	
construcCon;	

2. 		ML,	the	first	language	to	include	polymorphic	type	inference	together	with	
a	type-safe	excepCon-handling	mechanism;	

3. 		CCS,	a	general	theory	of	concurrency.	

In	addiCon,	he	formulated	and	strongly	advanced	full	abstracCon,	the	study	of	
the	relaConship	between	operaConal	and	denotaConal	semanCcs.”	

79	

OVERALL	SUMMARY:	
A	SHORT	INTRODUCTION	TO	
FUNCTIONAL	PROGRAMMING	

80	

OCaml	
OCaml	is	a	func3onal	programming	language	
	

–  Java	gets	most	work	done	by	modifying		data	

–  OCaml	gets	most	work	done	by	producing	new,	immutable	data	

OCaml	is	a	typed	programming	language		

–  the	type	of	an	expression	correctly	predicts	the	kind	of	value	
the	expression	will	generate	when	it	is	executed	

–  types	help	us	understand	and	write	our	programs	
–  the	type	system	is	sound;	the	language	is	safe	

81	

