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Today’s Topics 

u  Thread implementation 
l  Non-preemptive versus preemptive threads 

l  Kernel vs. user threads 
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Kernel scheduler 

Revisit Monolithic OS Structure 

u  Kernel has its address space, 
shared with all processes 

u  Kernel consists of 
l  Boot loader 
l  BIOS 
l  Key drivers 
l  Threads 
l  Scheduler 
l  … 

u  Scheduler 
l  Use a ready queue to hold all 

ready threads 
l  Schedule in a thread in the 

same address space (thread 
context switch) 

l  Schedule in a thread with a 
different address space 
(process context switch) 

User 
Process 

 
 

User 
Process 

 
 

Thread context switch 

u  Scheduler schedules threads on context switch 
u  Voluntary 

l  Thread_yield 
l  Thread_join (if child is not done yet) 

u  Involuntary 
l  Interrupt or exception 
l  Some other thread is higher priority 
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Non-Preemptive Scheduling 

Running 

Blocked 
Ready 

Resource becomes available 
(move to ready queue) 

Create 

Terminate 
(call scheduler) 

Yield 
(call scheduler) 

Block for resource 
(call scheduler) 

Scheduler 
dispatch 

Exited 
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Non-Preemptive Scheduling (contd.) 

u  A non-preemptive scheduler invoked by calling 
l  block() 
l  yield() 

u  The simplest form 
 Scheduler: 
  save current process/thread state  

 choose next process/thread to run 
  dispatch (load PCB/TCB and jump to it) 

 
u  Scheduler can be viewed as just another kernel thread 

Thread Context 

u  Can be classified into two types: 
l  Private 
l  Shared 

u  Shared state 
l  Contents of memory (global variables, heap) 
l  File system 

u  Private state 
l  Program counter 
l  Registers 
l  Stack 
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Where and How to Save Thread Context? 

u  Save the context on the thread’s stack 
l  Many processors have a special instruction to do it efficiently 
l  But, need to deal with the overflow problem 

u  Check before saving 
l  Make sure that the stack has no overflow problem 
l  Copy it to the TCB residing in the kernel heap 
l  Not so efficient, but no overflow problems 

frame 
frame 

frame 
frame 

frame 
frame 

frame 
frame Thread 2 

Thread 1 

Save the context 
of Thread 1 to 
its stack  Context 
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Thread Data Structures 

Thread 1·s
Perï7hread State

Stack

Thread �·s
Perï7hread State

Shared
State 

Thread
Metadata

Saved
Registers

Stack
Information

Thread Control
Block (TCB)

Stack

Thread
Metadata

Saved
Registers

Stack
Information

Thread Control
Block (TCB)

Global
Variables

Heap

Code
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Thread Control Block (TCB) 

l  Current state 
•  Ready: ready to run 
•  Running: currently running 
•  Blocked: waiting for resources 

l  Registers 
l  Status (EFLAGS) 
l  Program counter (EIP) 
l  Stack 
 

Voluntary thread context switch 

u  Save registers on old stack 
u  Switch to new stack, new thread 
u  Restore registers from new stack 
u  Return 
u  Exactly the same with kernel threads or user threads 

 

Pseudo code for thread_switch 

// We enter as oldThread, but we return as newThread. 
// Returns with newThread's registers and stack. 
 
void thread_switch(oldThreadTCB, newThreadTCB) { 
    pushad;                 // Push general register values onto the old stack. 
    oldThreadTCB->sp = %esp; // Save the old thread's stack pointer. 
    %esp = newThreadTCB->sp; // Switch to the new stack. 
    popad;        // Pop register values from the new stack. 
    return; 
} 
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Preemption 

u  Why? 
l  Timer interrupt for  

CPU management 
l  Asynchronous I/O completion 

u  When is CPU interrupted? 
l  Between instructions 
l  Within an instruction,  

except atomic ones 
u  Manipulate interrupts 

l  Disable (mask) interrupts 
l  Enable interrupts 
l  Non-Maskable Interrupts 

CPU 

Memory Interrupt 
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State Transition for Non-Preemptive Scheduling 

Running 

Blocked 
Ready 

Resource becomes available 
(move to ready queue) 

Create 

Terminate 
(call scheduler) 

Yield 
(call scheduler) 

Block for resource 
(call scheduler) 

Scheduler 
dispatch 

Exited 
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State Transition for Preemptive Scheduling 

Running 

Blocked 
Ready 

Resource free, I/O completion interrupt 
(move to ready queue) 

Create 

Terminate 
(call scheduler) 

Yield, Interrupt 
(call scheduler) 

Block for resource 
(call scheduler) 

Scheduler 
dispatch 

Exited 
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Interrupt Handling for Preemptive Scheduling 

u  Timer interrupt handler: 
l  Save the current process / thread to its PCB / TCB 
l  Call scheduler 

u  I/O interrupt handler: 
l  Save the current process / thread to its PCB / TCB 
l  Do the I/O job 
l  Call scheduler 

u  Issues 
l  Disable/enable interrupts 
l  Make sure that it works on multiprocessors 
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User Threads vs. Kernel Threads 

u  Kernel knows only about 
processes, not threads 

u  Context switch at user-level 
without OS (Java threads) 

u  Preemptive scheduling? 
u  What about I/O events? 

u  A user thread 
l  Makes a system call (e.g. I/O) 
l  Gets interrupted  

u  Context switch in the kernel 
19 

Summary of User vs. Kernel Threads 

u  User-level threads 
l  User-level thread package implements thread context switches 
l  OS doesn’t know the process has multiple threads 
l  Timer interrupt (signal facility) can introduce preemption 
l  When a user-level thread is blocked on an I/O event, the whole 

process is blocked  
•  Precisely the case for which threads are often useful …  

l  Allows user-level code to build custom schedulers 
u  Kernel-threads 

l  Kernel-level threads are scheduled by a kernel scheduler 
l  A context switch of kernel-threads is more expensive than user 

threads due to crossing protection boundaries 
u  Hybrid 

l  It is possible to have a hybrid scheduler, but it is complex 
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Interactions between User and Kernel Threads 

u  Each thread has its own user stack. What about kernel 
stack? Two possibilities: 
l  Each user thread has its own kernel stack 
l  All threads of a process share the same kernel stack 

Private kernel stack Shared kernel stack 

Memory usage More Less 

System services Concurrent access Serial access 

Multiprocessor Yes Not within a process 

Complexity More Less 
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Summary 

u  Non-preemptive threads issues 
l  Scheduler 
l  Where to save contexts 

u  Preemptive threads 
l  Interrupts can happen any where! 

u  Kernel vs. user threads 
l  Main difference is which scheduler to use 


