
1

COS 318: Operating Systems

Implementing Threads

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Today’s Topics

u  Thread implementation
l  Non-preemptive versus preemptive threads

l  Kernel vs. user threads

3

Kernel scheduler

Revisit Monolithic OS Structure

u  Kernel has its address space,
shared with all processes

u  Kernel consists of
l  Boot loader
l  BIOS
l  Key drivers
l  Threads
l  Scheduler
l  …

u  Scheduler
l  Use a ready queue to hold all

ready threads
l  Schedule in a thread in the

same address space (thread
context switch)

l  Schedule in a thread with a
different address space
(process context switch)

User
Process

User
Process

Thread context switch

u  Scheduler schedules threads on context switch
u  Voluntary

l  Thread_yield
l  Thread_join (if child is not done yet)

u  Involuntary
l  Interrupt or exception
l  Some other thread is higher priority

2

5

Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

6

Non-Preemptive Scheduling (contd.)

u  A non-preemptive scheduler invoked by calling
l  block()
l  yield()

u  The simplest form
 Scheduler:
 save current process/thread state

 choose next process/thread to run
 dispatch (load PCB/TCB and jump to it)

u  Scheduler can be viewed as just another kernel thread

Thread Context

u  Can be classified into two types:
l  Private
l  Shared

u  Shared state
l  Contents of memory (global variables, heap)
l  File system

u  Private state
l  Program counter
l  Registers
l  Stack

8

Where and How to Save Thread Context?

u  Save the context on the thread’s stack
l  Many processors have a special instruction to do it efficiently
l  But, need to deal with the overflow problem

u  Check before saving
l  Make sure that the stack has no overflow problem
l  Copy it to the TCB residing in the kernel heap
l  Not so efficient, but no overflow problems

frame
frame

frame
frame

frame
frame

frame
frame Thread 2

Thread 1

Save the context
of Thread 1 to
its stack Context

3

Thread Data Structures

Thread 1·s
Perï7hread State

Stack

Thread �·s
Perï7hread State

Shared
State

Thread
Metadata

Saved
Registers

Stack
Information

Thread Control
Block (TCB)

Stack

Thread
Metadata

Saved
Registers

Stack
Information

Thread Control
Block (TCB)

Global
Variables

Heap

Code

10

Thread Control Block (TCB)

l  Current state
•  Ready: ready to run
•  Running: currently running
•  Blocked: waiting for resources

l  Registers
l  Status (EFLAGS)
l  Program counter (EIP)
l  Stack

Voluntary thread context switch

u  Save registers on old stack
u  Switch to new stack, new thread
u  Restore registers from new stack
u  Return
u  Exactly the same with kernel threads or user threads

Pseudo code for thread_switch

// We enter as oldThread, but we return as newThread.
// Returns with newThread's registers and stack.

void thread_switch(oldThreadTCB, newThreadTCB) {
 pushad; // Push general register values onto the old stack.
 oldThreadTCB->sp = %esp; // Save the old thread's stack pointer.
 %esp = newThreadTCB->sp; // Switch to the new stack.
 popad; // Pop register values from the new stack.
 return;
}

4

13

Preemption

u  Why?
l  Timer interrupt for

CPU management
l  Asynchronous I/O completion

u  When is CPU interrupted?
l  Between instructions
l  Within an instruction,

except atomic ones
u  Manipulate interrupts

l  Disable (mask) interrupts
l  Enable interrupts
l  Non-Maskable Interrupts

CPU

Memory Interrupt

14

State Transition for Non-Preemptive Scheduling

Running

Blocked
Ready

Resource becomes available
(move to ready queue)

Create

Terminate
(call scheduler)

Yield
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

15

State Transition for Preemptive Scheduling

Running

Blocked
Ready

Resource free, I/O completion interrupt
(move to ready queue)

Create

Terminate
(call scheduler)

Yield, Interrupt
(call scheduler)

Block for resource
(call scheduler)

Scheduler
dispatch

Exited

16

Interrupt Handling for Preemptive Scheduling

u  Timer interrupt handler:
l  Save the current process / thread to its PCB / TCB
l  Call scheduler

u  I/O interrupt handler:
l  Save the current process / thread to its PCB / TCB
l  Do the I/O job
l  Call scheduler

u  Issues
l  Disable/enable interrupts
l  Make sure that it works on multiprocessors

5

18

User Threads vs. Kernel Threads

u  Kernel knows only about
processes, not threads

u  Context switch at user-level
without OS (Java threads)

u  Preemptive scheduling?
u  What about I/O events?

u  A user thread
l  Makes a system call (e.g. I/O)
l  Gets interrupted

u  Context switch in the kernel
19

Summary of User vs. Kernel Threads

u  User-level threads
l  User-level thread package implements thread context switches
l  OS doesn’t know the process has multiple threads
l  Timer interrupt (signal facility) can introduce preemption
l  When a user-level thread is blocked on an I/O event, the whole

process is blocked
•  Precisely the case for which threads are often useful …

l  Allows user-level code to build custom schedulers
u  Kernel-threads

l  Kernel-level threads are scheduled by a kernel scheduler
l  A context switch of kernel-threads is more expensive than user

threads due to crossing protection boundaries
u  Hybrid

l  It is possible to have a hybrid scheduler, but it is complex

20

Interactions between User and Kernel Threads

u  Each thread has its own user stack. What about kernel
stack? Two possibilities:
l  Each user thread has its own kernel stack
l  All threads of a process share the same kernel stack

Private kernel stack Shared kernel stack

Memory usage More Less

System services Concurrent access Serial access

Multiprocessor Yes Not within a process

Complexity More Less

21

Summary

u  Non-preemptive threads issues
l  Scheduler
l  Where to save contexts

u  Preemptive threads
l  Interrupts can happen any where!

u  Kernel vs. user threads
l  Main difference is which scheduler to use

