
9/17/17

1

COS 318: Operating Systems

Overview

Jaswinder Pal Singh
Computer Science Department
Princeton University

(http://www.cs.princeton.edu/courses/cos318/)

2

Important Times

u  Precepts:
l  Mon: 7:30-8:20pm, 105 CS building
l  This week (TODAY):

•  Tutorial of Assembly programming and kernel debugging

u  Project 1
l  Design review:

•  9/25: 3:00 pm – 7:00 pm (Signup online), 010 Friend Center
l  Project 1 due: Sunday 10/01 at 11:55pm

u  To do:
l  Make sure you have your project partner

3

Today

u  Overview of OS functionality
u  Overview of OS components
u  Interacting with the OS
u  Booting a Computer

4

Hardware of A Typical Computer

CPU

Chipset Memory
I/O bus

CPU . . .

Network

ROM

9/17/17

2

An overview of HW functionality

u  Executing the machine code (cpu, cache, memory)
l  instructions for ALU, branch, memory operations
l  instructions for communicating with I/O devices

u  Performing I/Os
l  I/O devices and the CPU can execute concurrently
l  Every device controller is in charge of one device type
l  Every device controller has a local buffer
l  CPU moves data btw. main memory and local buffers
l  I/O is from the device to local buffer of controller
l  Device controller uses interrupt to inform CPU it is done

u  Protection
l  timer, paging (e.g. TLB), mode bit (e.g., kernel/user)

6

Software in a Typical Computer

Memory
CPU

CPU

. . .

OS
Apps
Data

Network

Applications

Operating System

ROM

BIOS

Libraries, Runtime Systems

7

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

User level

Kernel level
Portable OS Layer

8

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

User function calls
written by programmers and
compiled by programmers.

9/17/17

3

9

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Written by elves
•  Objects pre-compiled
•  Defined in headers
•  Input to linker
•  Invoked like functions
•  May be “resolved” when
program is loaded

10

Application: How it’s created

u  gcc can compile, assemble, and link together
u  Compiler (part of gcc) compiles a program into assembly
u  Assembler compiles assembly code into relocatable object file
u  Linker links object files into an executable
u  For more information:

l  Read man page of a.out, elf, ld, and nm
l  Read the document of ELF

foo.c gcc as foo.s foo.o

ld bar.c gcc as bar.s bar.o

libc.a …

a.out

11

Application: How it’s executed

u  On Unix, “loader” does the job
l  Read an executable file
l  Layout the code, data, heap and stack
l  Dynamically link to shared libraries
l  Prepare for the OS kernel to run the application

a.out loader *.o, *.a ld Application

Shared
library

12

What an executable application looks like

u  Four segments
l  Code/Text – instructions
l  Data – global variables
l  Stack
l  Heap

u  Why:
l  Separate code and data?
l  Have stack and heap go

towards each other?

Stack

Heap

Initialized data

Code

2n -1

0

9/17/17

4

13

Responsibilities for the segments

u  Stack
l  Layout by ?
l  Allocated/deallocated by ?
l  Local names are absolute/relative?

u  Heap
l  Who sets the starting address?
l  Allocated/deallocated by ?
l  How do application programs manage it?

u  Global data/code
l  Who allocates?
l  Who defines names and references?
l  Who translates references?
l  Who relocates addresses?
l  Who lays them out in memory?

14

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer “Guts” of system calls

Must Support Multiple Applications

u  In multiple windows
l  Browser, shell, powerpoint, word, …

u  Use command line to run multiple applications

% ls –al | grep ‘^d’
% foo &
% bar &

15 16

Multiple Application Processes

Application

Libraries

Machine-dependent layer

Portable OS Layer

Application

Libraries

Application

Libraries
…

9/17/17

5

17

OS Service Examples

u  Examples that are not provided at user level
l  System calls: file open, close, read and write
l  Control the CPU so that users won’t cause problems

•  while (1) ;

l  Protection:
•  Keep user programs from crashing OS
•  Keep user programs from crashing each other

u  Examples that are provided at user level
l  Read time of day
l  Protected user-level activities

18

Typical Unix OS Structure

Application

Libraries

Machine-dependent layer

Portable OS Layer

•  Bootstrap
•  System initialization
•  Interrupt and exception
•  I/O device driver
•  Memory management
•  Mode switching
•  Processor management

20

Today

u  Overview of OS functionality
u  Overview of OS components
u  Interacting with the OS
u  Booting a Computer

OS components

u  Resource manager for each HW resource
l  processor management (CPU)
l  memory management
l  file system and secondary-storage management
l  I/O device management (keyboards, mouse, …)

u  Additional services:
l  networking
l  window manager (GUI)
l  command-line interpreters (e.g., shell)
l  resource allocation and accounting
l  protection

•  Keep user programs from crashing OS
•  Keep user programs from crashing each other

9/17/17

6

22

Processor Management

u  Goals
l  Overlap between I/O and

computation
l  Time sharing
l  Multiple CPU allocation

u  Issues
l  Do not waste CPU resources
l  Synchronization and mutual

exclusion
l  Fairness and deadlock

CPU I/O CPU

CPU

CPU

CPU I/O

CPU

CPU

CPU

I/O

23

Memory Management

u  Goals
l  Support for programs to run

and to be written more easily
l  Allocation and management
l  Transfers from and to

secondary storage
u  Issues

l  Efficiency & convenience
l  Fairness
l  Protection

Register: 1x

L1 cache: 2-4x

L2 cache: ~10x

L3 cache: ~50x

DRAM: ~200-500x

Disks: ~30M x

Archive storage: >1000M x

24

I/O Device Management

u  Goals
l  Interactions between

devices and applications
l  Ability to plug in new

devices
u  Issues

l  Efficiency
l  Fairness
l  Protection and sharing

User 1 User n . . .

Library support

I/O
device

I/O
device . . .

Driver Driver

25

File System

u  Goals:
l  Manage disk blocks
l  Map between files and disk blocks

u  Typical file system calls
l  Open a file with authentication
l  Read/write data in files
l  Close a file

u  Issues
l  Reliability
l  Safety
l  Efficiency
l  Manageability

User 1 User n . . .

File system services

File File . . .

9/17/17

7

26

Window Systems

u  Goals
l  Interacting with a user
l  Interfaces to examine and

manage apps and the system
u  Issues

l  Inputs from keyboard, mouse,
touch screen, …

l  Display output from applications
and systems

l  Where is the Window System?
•  All in the kernel (Windows)
•  All at user level
•  Split between user and kernel (Unix)

27

Summary

u  Overview of OS functionality
l  Layers of abstraction
l  Services to applications
l  Resource management

u  Overview of OS components
l  Processor management
l  Memory management
l  I/O device management
l  File system
l  Window system
l …

28

Today

u  Overview of OS functionality
u  Overview of OS components
u  Interacting with the OS
u  Booting a Computer

29

How the OS is Invoked

u  Interrupt sources
l  Hardware (by external devices)
l  Software: INT n

u  Other exceptions
l  Normal or program error: faults, traps, aborts
l  Special software generated: INT 3
l  Machine-check exceptions

u  System calls
u  See Intel document volume 3 for details

9/17/17

8

30

Interrupts

u  Raised by external events
u  Interrupt handler is in the

kernel
l  Switch to another process
l  Overlap I/O with CPU
l …

u  Eventually resume the
interrupted process

u  A way for CPU to wait for
long-latency events (like I/O)
to happen

0:
1:
…

i:
i+1:
…

N:

Interrupt
handler

31

Interrupt and Exceptions (1)

Vector # Mnemonic Description Type

0 #DE Divide error (by zero) Fault

1 #DB Debug Fault/trap

2 NMI interrupt Interrupt

3 #BP Breakpoint Trap

4 #OF Overflow Trap

5 #BR BOUND range exceeded Trap

6 #UD Invalid opcode Fault

7 #NM Device not available Fault

8 #DF Double fault Abort

9 Coprocessor segment overrun Fault

10 #TS Invalid TSS

32

Interrupt and Exceptions (2)

Vector # Mnemonic Description Type
11 #NP Segment not present Fault

12 #SS Stack-segment fault Fault

13 #GP General protection Fault

14 #PF Page fault Fault

15 Reserved Fault

16 #MF Floating-point error (math fault) Fault

17 #AC Alignment check Fault

18 #MC Machine check Abort

19-31 Reserved

32-255 User defined Interrupt

33

System Calls

u  Operating system API
l  Interface between an application and the operating

system kernel
u  Categories

l  Process management
l  Memory management
l  File management
l  Device management
l  Communication

9/17/17

9

34

How many system calls?

u  6th Edition Unix: ~45
u  POSIX: ~130
u  FreeBSD: ~130
u  Linux: ~250 ("fewer than most")
u  Windows 7: ?

35

System Call Mechanism

u  Assumptions
l  User code can be arbitrary
l  User code cannot modify kernel

memory
u  Design Issues

l  User makes a system call with
parameters

l  The call mechanism switches
code to kernel mode

l  Execute system call
l  Return with results

Kernel in

protected memory

entry

User
program

User
program

call

return

36

OS Kernel: Trap Handler

HW Device
Interrupt

HW exceptions

SW exceptions

System Call

Virtual address
exceptions

HW implementation of the boundary

System
service
dispatcher

System
services

Interrupt
service
routines

Exception
dispatcher Exception

handlers

VM
manager’s
pager

Syscall table

System
Service
dispatcher

Interrupt, trap and syscall vector

u  Table set up by OS kernel; pointers to code to run
on different events

Interrupt
Vector Table

Processor
Register

h a n d l e T i m e r I n t e r r u p t () {
 . . .
}

h a n d l e D i v i d e B y Z e r o () {
 . . .
}

h a n d l e S y s t e m C a l l () {
 . . .
}

9/17/17

10

38

From http://minnie.tuhs.org/UnixTree/V6

39

Passing Parameters

u  Pass by registers
l  # of registers
l  # of usable registers
l  # of parameters in system call
l  Spill/fill code in compiler

u  Pass by a memory vector (list)
l  Single register for starting address
l  Vector in user’s memory

u  Pass by stack
l  Similar to the memory vector
l  Procedure call convention

40

Library Stubs for System Calls

u  Example:
int read(int fd, char * buf, int size)
{

 move fd, buf, size to R1, R2, R3
 move READ to R0
 int $0x80
 move result to Rresult

}

Linux: 80
NT: 2E

Kernel in
protected memory

User
program

Int $0x80

iret

41

System Call Entry Point

User
stack

Registers

User
memory

Kernel
stack

Registers

Kernel
memory

EntryPoint:

 switch to kernel stack
 save context
 check R0

 call the real code pointed by R0
place result in Rresult

 restore context
 switch to user stack
 iret (change to user mode and return)

 (Assume passing parameters in registers)

9/17/17

11

Kernel stacks

Per-processor, located in kernel memory. Why can’t the interrupt
handler run on the stack of the interrupted user process?

User Stack

Kernel Stack

Proc2

Running

Proc1

Main

Proc2

Ready to Run

Proc1

Main

User CPU
State

User CPU
State

Syscall
Handler

I/O Driver
Top Half

Proc2

Syscall

Waiting for I/O

Proc1

Main

System call stubs

User Program Kernel

m a i n () {
 f i l e _ o p e n (a r g 1 , a r g 2) ;
}

f i l e _ o p e n (a r g 1 , a r g 2) {
 // do operation
}

User Stub

f i l e _ o p e n (a r g 1 , a r g 2) {
 p u s h # S Y S C A L L _ O P E N
 t r a p
 r e t u r n
}

f i l e _ o p e n _ h a n d l e r () {
 // copy arguments
 // from user memory
 // check arguments
 f i l e _ o p e n (a r g 1 , a r g 2) ;
 // copy return value
 // into user memory
 r e t u r n ;
}

Kernel Stub
Hardware Trap

Trap Return

(2)

(5)

(1) (6) (3) (4)

45

Design Issues

u  System calls
l  There is one result register; what about more results?
l  How do we pass errors back to the caller?

u  System calls vs. library calls
l  What should be system calls?
l  What should be library calls?

47

Backwards compatibility...

9/17/17

12

48

Division of Labor (Separation Of Concerns)

Memory management example
u  Kernel

l  Allocates “pages” with hardware protection
l  Allocates a big chunk (many pages) to library
l  Does not care about small allocs

u  Library
l  Provides malloc/free for allocation and deallocation
l  Applications use them to manage memory
l  When reaching the end, library asks kernel for more

50

Today

u  Overview of OS functionality
u  Overview of OS components
u  Interacting with the OS
u  Booting a Computer

51

Bootstrap

u  Power up a computer
u  Processor reset

l  Set to known state
l  Jump to ROM code

(for x86, this is the BIOS)
u  Load in the boot loader from

stable storage
u  Jump to the boot loader
u  Load the rest of the operating

system
u  Initialize and run

Physical
Memory

BIOS

Disk

(1)
BIOS copies
bootloader

Bootloader
instructions

and data

OS kernel
instructions

and data

Login app
instructions

and data

Bootloader

OS kernel

Login app

(2)
Bootloader

copies OS kernel

(3)
OS kernel copies
login application

52

Booting a Computer

u  Power up a computer
u  Processor reset

l  Set to known state
l  Jump to ROM code

(for x86, this is the BIOS)
u  Load in the boot loader from

stable storage
u  Jump to the boot loader
u  Load the rest of the operating

system
u  Initialize and run

Physical
Memory

BIOS

Disk

(1)
BIOS copies
bootloader

Bootloader
instructions

and data

OS kernel
instructions

and data

Login app
instructions

and data

Bootloader

OS kernel

Login app

(2)
Bootloader

copies OS kernel

(3)
OS kernel copies
login application

9/17/17

13

COS318 Lec 2 53

System Boot

u Power on (processor waits until Power Good
Signal)

u Processor jumps to a fixed address, which is the
start of the ROM BIOS program

COS318 Lec 2 54

u POST (Power-On Self-Test)
•  Stop booting if fatal errors, and report

u  Look for video card and execute built-in BIOS
code (normally at C000h)

u  Look for other devices ROM BIOS code
l  IDE/ATA disk ROM BIOS at C8000h 9=818200d)

u Display startup screen
•  BIOS information

u Execute more tests
•  memory
•  system inventory

ROM Bios Startup Program (1)

COS318 Lec 2 55

ROM BIOS startup program (2)

u  Look for logical devices
l  Label them

•  Serial ports: COM 1, 2, 3, 4
•  Parallel ports: LPT 1, 2, 3

l  Assign each an I/O address and interrupt numbers

u Detect and configure Plug-and-Play (PnP) devices
u Display configuration information on screen

COS318 Lec 2 56

ROM BIOS startup program (3)

u Search for a drive to BOOT from
l  Hard disk or USB drive or CD/DVD

u  Load code in boot sector
u Execute boot loader
u Boot loader loads program to be booted

•  If no OS: "Non-system disk or disk error - Replace and press
any key when ready"

u Transfer control to loaded program
l  Could be OS or another feature-rich bootloader (e.g.

GRUB), which then loads the actual OS

9/17/17

14

57

Summary

u  Protection mechanism
l  Architecture support: two modes
l  Software traps (exceptions)

u  OS structures
l  Monolithic, layered, microkernel and virtual machine

u  System calls
l  Implementation
l  Design issues
l  Tradeoffs with library calls

