
COS 226 Algorithms & Data Structures – p. 1/6

COS 226–Algorithms and Data Structures

Week 3: Comparators,
& Sorting (Video §5.D & Algorithms §2.1 and §2.2)

Version: September 28, 2017

Exercise 1 – Comparables and Comparators
A Point2D is a class that represents 2D immutable points in the plane. It encapsulates a two-dimensional point with real-value
coordinates. A partial code for a Point2D class is given below.

1
2 import java.util.Arrays;
3 import java.util.Comparator;
4
5 public final class Point2D implements Comparable<Point2D> {
6 private final double x; // x coordinate
7 private final double y; // y coordinate
8
9 //Compares two points by x-coordinate.

10 public static final Comparator<Point2D> X_ORDER = new XOrder();
11
12 //Compares two points by y-coordinate.
13 public static final Comparator<Point2D> Y_ORDER = new YOrder();
14
15 //creates a new 2D Point
16 public Point2D(double x, double y) {
17 this.x = x;
18 this.y = y;
19 }
20
21
22 //Returns the square of the Euclidean distance between this point and that point.
23 public double distanceSquaredTo(Point2D that) {
24 double dx = this.x - that.x;
25 double dy = this.y - that.y;
26 return dx*dx + dy*dy;
27 }
28 /**
29 * Compares two points by y-coordinate, breaking ties by x-coordinate.
30 * Formally, the invoking point (x0, y0) < (x1, y1)
31 * if and only if either y0 < y1 or if y0 == y1 and x0 < x1.

c©Fall 2017 by COS 226 Staff. September 28, 2017

COS 226 Algorithms & Data Structures – p. 2/6

32 */
33 public int compareTo(Point2D that) {
34 // to be completed
35 }
36
37 //Compares two points by distance to this point. Returns a Comparator.
38 public Comparator<Point2D> distanceToOrder(Point2D p) {
39 return new DistanceToOrder(p);
40 }
41
42 //compare points according to their x-coordinate
43 private static class XOrder implements Comparator<Point2D> {
44 public int compare(Point2D p, Point2D q) {
45 // to be completed
46 }
47 }
48
49 // compare points according to their y-coordinate
50 private static class YOrder implements Comparator<Point2D> {
51 public int compare(Point2D p, Point2D q) {
52 //to be completed
53 }
54 }
55
56 // compare points according to their distance to this point
57 private class DistanceToOrder implements Comparator<Point2D> {
58 public int compare(Point2D p, Point2D q) {
59 //to be completed
60 }
61 }
62
63 //returns a String representation of this point
64 public String toString() {
65 return "(" + x + ", " + y + ")";
66 }
67
68 public static void main(String[] args) {
69 //client code to be completed
70 }

c©Fall 2017 by COS 226 Staff. September 28, 2017

COS 226 Algorithms & Data Structures – p. 3/6

A. (Group Activity) Read the code in Point2D class and answer the following questions. Please write only brief answers
in the space provided.

• What are the instance variables of the Point2D class?

• Why is it necessary to include a method called compareTo() in Point2D class?

• Name the three comparators declared in the above code.

B. (Individual Activity) Complete the code below that implements x-order compare() method.

// compare points according to their x-coordinate
private static class XOrder implements Comparator<Point2D> {

public int compare(Point2D p, Point2D q) {
//complete code below

}
}

C. (Individual Activity) Complete the code below that implements y-order compare() method.

// compare points according to their y-coordinate
private static class YOrder implements Comparator<Point2D> {
public int compare(Point2D p, Point2D q) {
//complete code below

}
}

D. (Individual Activity) Complete the code below that implements distanceTo-order compare() method.

// compare two points p and q according to their distance to this point.
private class DistanceToOrder implements Comparator<Point2D> {

Point2D origin;
public DistanceToOrder(Point2D p) {

origin = p;
}
public int compare(Point2D p, Point2D q) {
//complete code below

}
}

c©Fall 2017 by COS 226 Staff. September 28, 2017

COS 226 Algorithms & Data Structures – p. 4/6

E. (Group Activity) Complete the missing code in compareTo() method

1 /**
2 * Compares two points by y-coordinate, breaking ties by x-coordinate.
3 * Formally, the invoking point (x0, y0) < (x1, y1)
4 * if and only if either y0 < y1 or if y0 == y1 and x0 < x1.
5 */
6 public int compareTo(Point2D that) {
7 //complete code below
8
9

10
11
12
13
14 }

F. (Group Activity) Here is some client/tester code for using the Point2D class. Complete the code as listed below.

1 public static void main(String[] args) {
2 int n = Integer.parseInt(args[2]);
3 Point2D[] points = new Point2D[n];
4 for (int i = 0; i < n; i++) {
5 int x = StdRandom.uniform(10);
6 int y = StdRandom.uniform(10);
7 points[i] = new Point2D(x, y);
8 }
9 Point2D origin = new Point2D(0,0);

10 //sort the points array by x-order
11
12
13
14 //sort the points array by y-order
15
16
17
18 //sort the points array by default order (defined by compareTo())
19
20
21
22 //sort the points array by distance to the origin
23
24
25
26 }

c©Fall 2017 by COS 226 Staff. September 28, 2017

COS 226 Algorithms & Data Structures – p. 5/6

Exercise 2 – Counting Compares
Suppose that you have an array of length 2n consisting of n B’s followed by n A’s. Below is the array when n = 10.
B B B B B B B B B B A A A A A A A A A A

A. How many compares does it take to insertion sort (ascending order) the array, as a function of n? Use tilde notation to
simplify your answer.

B. How many compares does it take to selection sort (ascending order) the array, as a function of n? Use tilde notation to
simplify your answer.

c©Fall 2017 by COS 226 Staff. September 28, 2017

COS 226 Algorithms & Data Structures – p. 6/6

Exercise 3 – 3-way Merge Sort
3-way merge sort is a modification of the merge sort algorithm that considers 3 sub arrays instead of 2 sub arrays.

A. Given three sorted subarrays of length n/3 each, design an algorithm to merge them into a sorted array of length n. As
a function of n, how many compares does your algorithm make in the worst case? Use tilde notation to simplify your
answer.

B. Argue that number of compares to sort an array of size n using 3-way merge sort is still linearithmic.

C. Given a choice, would you choose 3-way or 2-way merge sort? Justify your answer.

c©Fall 2017 by COS 226 Staff. September 28, 2017

