
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 12/15/17 2:58 PM

ALGORITHM DESIGN

‣ analysis of algorithms

‣ greedy

‣ divide-and-conquer

‣ dynamic programming

‣ network flow

‣ randomized algorithms

‣ intractability

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

2

Algorithm design

Algorithm design patterns (and antipatterns).

Analysis of algorithms.

Greedy.

Divide-and-conquer.

Dynamic programming.

Network flow.

Randomized algorithms.

Intractability.

 
 
 
 
 
 
 
Want more? See COS 343, COS 423, COS 445, COS 451, .…

3

Interview questions

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ divide-and-conquer

‣ dynamic programming

‣ network flow

‣ randomized algorithms

‣ intractability

ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Goal. Find T using fewest number of tosses.

5

Egg drop

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

Goal. Find T using fewest number of tosses.

Variant 1. 1 egg.

Variant 2. ∞ eggs.

Variant 3. ∞ eggs and ~ 2 lg T tosses.

Variant 4. 2 eggs and ≤ c n 1/2 tosses.

Variant 5. 2 eggs and ≤ c T 1/2 tosses.

6

Egg drop

n

.

.

.

T

.

.

.

.

3

2

1

breaks

does not
break

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ divide-and-conquer

‣ dynamic programming

‣ network flow

‣ randomized algorithms

‣ intractability

ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

13

Greedy algorithms

Make locally optimal choices at each step.

 
Familiar examples.

Huffman coding.

Prim’s algorithm.

Kruskal’s algorithm.

Dijkstra’s algorithm.

 
More classic examples.

U.S. coin changing.

Activity scheduling.

Gale–Shapley stable marriage.

...

 
Caveat. Greedy algorithm rarely leads to globally optimal solution.  
(but is often used anyway, especially for intractable problems)

14

Document search

Given a document that is a sequence of n words, and a query that  
is a sequence of m words, find the smallest range in the document 
that includes the m query words (in the same order).

Ex. Query = “textbook programming computer”

This book is intended to survey the most important computer
algorithms in use today, and to teach fundamental techniques
to the growing number of people in need of knowing them. It
is intended for use as a textbook for a second course in
computer science, after students have acquired basic
programming skills and familiarity with computer systems.
The book also may be useful for self-study or as a reference
for people engaged in the development of computer systems or
applications programs, since it contains implementations of
useful algorithms and detailed information on performance
characteristics and clients.

This book is intended to survey the most important computer
algorithms in use today, and to teach fundamental techniques
to the growing number of people in need of knowing them. It
is intended for use as a textbook for a second course in
computer science, after students have acquired basic
programming skills and familiarity with computer systems.
The book also may be useful for self-study or as a reference
for people engaged in the development of computer systems or
applications programs, since it contains implementations of
useful algorithms and detailed information on performance
characteristics and clients.

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ divide-and-conquer

‣ dynamic programming

‣ network flow

‣ randomized algorithms

‣ intractability

ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

31

Divide and conquer

Break up problem into two or more independent subproblems.

Solve each subproblem recursively.

Combine solutions to subproblems to form solution to original problem.

 
Familiar examples.

Mergesort.

Quicksort. 

More classic examples.

Closest pair.

Convolution and FFT.

Matrix multiplication.

Integer multiplication. 
…

 
Prototypical usage. Turn brute-force n 2 algorithm into n log n algorithm.

needs to take COS 226?

32

Music site tries to match your song preferences with others.

Your ranking of songs: 0, 1, …, n−1.

My ranking of songs: a0, a1, …, an−1.

Music site consults database to find people with similar tastes.  

Kendall-tau distance. Number of inversions between two rankings.

Inversion. Songs i and j are inverted if i < j, but ai > aj.

Personalized recommendations

A B C D E F G H

you 0 1 2 3 4 5 6 7

me 0 2 3 1 4 5 7 6

3 inversions: 2-1, 3-1, 7-6

Problem. Given a permutation of length n, count the number of inversions.

 
 
 
 
 
 
 
Brute-force n2 algorithm. For each i < j, check if ai > aj .

A bit better. Run insertion sort; return number of exchanges.

 
Goal. n log n time (or better).

33

Counting inversions

0 2 3 1 4 5 7 6

3 inversions: 2-1, 3-1, 7-6

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ divide-and-conquer

‣ dynamic programming

‣ network flow

‣ randomized algorithms

‣ intractability

ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

38

Dynamic programming

Break up problem into a series of overlapping subproblems.

Build up solutions to larger and larger subproblems. 
(caching solutions to subproblems in a table for later reuse)  

Familiar examples.

Shortest paths in DAGs.

Seam carving.

Bellman–Ford.

 
More classic examples.

Unix diff.

Viterbi algorithm for hidden Markov models.

Smith–Waterman for DNA sequence alignment.

CKY algorithm for parsing context-free grammars. 
...

THE THEORY OF DYNAMIC PROGRAMMING
RICHARD BELLMAN

1. Introduction. Before turning to a discussion of some representa-
tive problems which will permit us to exhibit various mathematical
features of the theory, let us present a brief survey of the funda-
mental concepts, hopes, and aspirations of dynamic programming.

To begin with, the theory was created to treat the mathematical
problems arising from the study of various multi-stage decision
processes, which may roughly be described in the following way: We
have a physical system whose state at any time / is determined by a
set of quantities which we call state parameters, or state variables.
At certain times, which may be prescribed in advance, or which may
be determined by the process itself, we are called upon to make de-
cisions which will affect the state of the system. These decisions are
equivalent to transformations of the state variables, the choice of a
decision being identical with the choice of a transformation. The out-
come of the preceding decisions is to be used to guide the choice of
future ones, with the purpose of the whole process that of maximizing
some function of the parameters describing the final state.

Examples of processes fitting this loose description are furnished
by virtually every phase of modern life, from the planning of indus-
trial production lines to the scheduling of patients at a medical
clinic ; from the determination of long-term investment programs for
universities to the determination of a replacement policy for ma-
chinery in factories; from the programming of training policies for
skilled and unskilled labor to the choice of optimal purchasing and in-
ventory policies for department stores and military establishments.

I t is abundantly clear from the very brief description of possible
applications tha t the problems arising from the study of these
processes are problems of the future as well as of the immediate
present.

Turning to a more precise discussion, let us introduce a small
amount of terminology. A sequence of decisions will be called a
policy, and a policy which is most advantageous according to some
preassigned criterion will be called an optimal policy.

The classical approach to the mathematical problems arising from
the processes described above is to consider the set of all possible

An address delivered before the Summer Meeting of the Society in Laramie on
September 3, 1953 by invitation of the Committee to Select Hour Speakers for An-
nual and Summer meetings; received by the editors August 27,1954.

503

39

House coloring problem

Goal. Paint a row of n houses red, green, or blue so that

No two adjacent houses have the same color.

Minimize total cost, where cost(i, color) is cost to paint i given color.

A B C D E F

7 6 7 8 9 20

3 8 9 22 12 8

16 10 4 2 5 7

cost to paint house i the given color

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ divide-and-conquer

‣ dynamic programming

‣ network flow

‣ randomized algorithms

‣ intractability

ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

42

Network flow

Classic problems on edge-weighted graphs. 

Familiar examples.

Shortest paths.

Bipartite matching.

Maxflow and mincut.

Minimum spanning tree. 

Other classic examples.

Minimum-cost arborescence.

Non-bipartite matching.

Assignment problem.

Minimum-cost flow.

...

Applications. Many many problems can be modeled using network flow.

43

Shortest path with orange and black edges

Goal. Given a digraph, where each edge has a positive weight and is orange

or black, find shortest path from s to t that uses at most k orange edges.

s

2 3

1G

t

8

21

4
3

9
10

7

k = 0: s→1→t (17)
k = 1: s→3→t (13)
k = 2: s→2→3→t (11)
k = 3: s→2→1→3→t (10)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ divide-and-conquer

‣ dynamic programming

‣ network flow

‣ randomized algorithms

‣ intractability

ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

47

Randomized algorithms

Algorithm that uses random coin flips to guide its behavior. 

Familiar examples.

Quicksort.

Quickselect.

More classic examples.

Rabin–Karp substring search.

Miller–Rabin primality testing.

Polynomial identity testing.

Volume of convex body.

Universal hashing.

Global min cut. 
…

48

Nuts and bolts

Problem. A disorganized carpenter has a mixed pile of n nuts and n bolts.

The goal is to find the corresponding pairs of nuts and bolts.

Each nut fits exactly one bolt and each bolt fits exactly one nut.

By fitting a nut and a bolt together, the carpenter can see which one is

bigger (but cannot directly compare either two nuts or two bolts).

 
 
 
 
 
 
 
 
 
Brute-force n2 solution. Compare each bolt to each nut.

Challenge. Design an n log n algorithm.

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ analysis of algorithms

‣ greedy

‣ divide-and-conquer

‣ dynamic programming

‣ network flow

‣ randomized algorithms

‣ intractability

ALGORITHM DESIGN

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

52

NP-completeness

Fundamental barrier to designing efficient algorithms.

 
Familiar examples.

3-SATISFIABILITY.

INTEGER-LINEAR-PROGRAMMING.

TRAVELING-SALESPERSON-PROBLEM.

 
More classic examples.

PLANAR-MAP-3-COLOR.

REGISTER-ALLOCATION.

PROTEIN-FOLDING.

HAMILTON-PATH.

KNAPSACK.

3D-ISING.

...

53

Exhaustive search

Exhaustive search. Iterate over all elements of a search space.

 
Applicability. Huge range of problems (including intractable ones).

 
 
 
 
 
 
 
 
Caveat. Search space is typically exponential in size of input.

 
Backtracking. Systematic method to iterate over elements of a search

space, pruning useless ones to save time.

54

Goal. Fill 9-by-9 grid so that every row, column, and box contains 
each of the digits 1 through 9.

Sudoku

7 8 3

2 1

5

4 2 6

3 8

1 9

9 6 4

7 5

55

Goal. Fill 9-by-9 grid so that every row, column, and box contains 
each of the digits 1 through 9.

Sudoku

7 2 8 9 4 6 3 1 5

9 3 4 2 5 1 6 7 8

5 1 6 7 3 8 2 4 9

1 4 7 5 9 3 8 2 6

3 6 9 4 8 2 1 5 7

8 5 2 1 6 7 4 9 3

2 9 3 6 1 5 7 8 4

4 8 1 3 7 9 5 6 2

6 7 5 8 2 4 9 3 1

“ Sudoku is a denial of service attack on human intellect. ”

 — Ben Laurie (founding director of Apache Software Foundation)

Remark. Natural generalization of Sudoku is NP-complete.

56

Sudoku is (probably) intractable

http://xkcd.com/74

25-by-25 Sudoku2-by-2 Sudoku

http://xkcd.com/74

Goal. Does there exist a path that visits every vertex exactly once?

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark. Linear-time algorithm for EULER-PATH; HAMILTON-PATH is NP-complete.

60

Hamilton path

visit every edge exactly once

Faculty lead preceptors

 
 
 
 
 
 
Undergraduate graders and lab TAs. Apply to be one next semester!

 
 
 
Ed tech. Most developed by undergrads!

Credits

62

and graduate student AIs.

A final thought

63

“ Algorithms and data structures are love.

 Algorithms and data structures are life. ”

 — anonymous COS 226 student

