A 1 g() I 1 [h Ims ROBERT SEDGEWICK | KEVIN WAYNE

5.3 SUBSTRING SEARCH

» introduction

» brute force

» Knuth-Morris—Pratt
» Boyer-Moore

RoOBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

5.3 SUBSTRING SEARCH

» introduction

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Substring search

Goal. Find pattern of length m in a text of length n.

AN

typically n > m

patteen—N E E D L E

text——1 N A H A Y S T A C K N E E D L E I N A

!

match

Substring search applications

Goal. Find pattern of length m in a text of length n.

AN

typically n > m

patteen—N E E D L E

text——1 N A H A Y S T A C K N E E D L E I N A

!

match

O Find & Replace

¥4 Q- NEEDLE (%

Substring search applications

Goal. Find pattern of length m in a text of length =.

AN

typically n > m

patterm—N E E D L E

text—1 N A H A Y S T A C K N E E D L E I N A

!

match

Computer forensics. Search memory or disk for signatures,
e.g., all URLs or RSA keys that the user has entered.

. Windows Vista unmate

http://citp.princeton.edu/memory

Substring search applications

Goal. Find pattern of length m in a text of length n.

AN

typically n > m

patteen—N E E D L E

text——1 N A H A Y S T A C K N E E D L E I N A

!

match

ldentify patterns indicative of spam.
e PROFITS
e LOSE WEIGHT
« herbal Viagra
e There 1s no catch.
e This 1s a one-time mailing.

e This message 1s sent 1n compliance with spam regulations.

Substring search applications

Electronic surveillance.

Need to monitor all
internet traffic.
(security)

No way!
(privacy)

Well, we’re mainly
interested in
“ATTACK AT DAWN”

OK. Build a
machine that just
looks for that.

“ATTACK AT DAWN”
substring search machine

found O

Substring search applications

Web scraping. Extract relevant data from web page.

Ex. Find string delimited by and after first occurrence of
pattern Last Trade:.

raw HTML

<tr>

<td class= "yfnc_tableheadl"
width= "48%">

Last Trade:

</td>
as rendered by browser <td class= "yfnc_tabledatal"”>
<b1g>582.93</bi1g>
, </td></tr>
Google Inc. (NasdagGs: GOOG) 4 Add to Portfolio @
After Hours: 0.00 N/A (N/A) 10:00PM EST <td class= " yfn c tableheadl”
Google Inc. —
Last Trade: 582.93 Day's Range: N/A-N/A EGOOG o W'i d t h — " 4 8% n >
Trade Time: Nov 29 52wk Range: 473.02 - 642.96 583 .
Change: 0.00 (0.00%) Volume: 0 556 T r ad e T-| me:
Prev Close: 582.93 Avg Vol (3m): 3,100,480 584 < / t d >
Open: N/A Market Cap: 188.80B 582 " "
Bid: 579.70 x 100 PIE (ttm): 1967 ©Yahoo! 0 <td class= yfn C_ta.b-l edatal">
Ask: 585.33 x 100 EPS (ttm): 29.34 e e zpm; revious Tpm

1y Target Est: 731.10 Div & Yield: N/A (N/A) d 54 3m 6m 1y 2 S5y max

Web scraping: Java implementation

Java library. The index0f() method in Java's String data type returns the
index of the first occurrence of a given string, starting at a given offset.

public class StockQuote

{
public static void main(String[] args)
{
String name = "http://finance.yahoo.com/q?s=";
In in = new In(name + args[0]);
String text = in.readAll1();
int start = text.indexOf("Last Trade:", 0);
int from = text.indexOf("", start);
int to = text.indexOf("", from);
String price = text.substring(from + 3, to);
StdOut.printin(price);
}
}

% java StockQuote goog
582.93

Caveat. Must update program whenever Yahoo format changes.

5.3 SUBSTRING SEARCH

» brute force

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Brute-force substring search

Check for pattern starting at each text position.

1 j 1+ 0 1 2 3 4 5 6 7 8 9 10
txt—A B A C A D A B R A C
0) 2 2 A B R ~— pat
1 0 1 A entries in red are
5 1 3 A B / mismatches
entries in gray are
: L : / 2 for reference only
4 L > entries in black A B /
> 0 5 match the text A
6 4 10 A B R A
™ return 1 when j ism A

match

11

Brute-force substring search: Java implementation

Check for pattern starting at each text position.

J 147 0O 1 2 3 4 5 6 7 8 9 10
A.B A CADAZBIRAUC
4 / A D A C
0 5 A

public static int search(String pat, String txt)

{

int m = pat.length(Q);
int n = txt.length();
for (int i = 0; i <= n - m; i++) <«——

{

for each
possible offset

int j; <— number of characters that match
for (J =0; J < m; J++)
1f (txt.charAt(i+j) !'= pat.charAt(j))
break;

)) ; index in text where
if (j == m) return i1; <«—

pattern starts

}

return n; <«— not found

12

Substring search: quiz 1

What is the worst-case running time of brute-force substring search
as a function of both the pattern length m and text length n ?

A. m+n
B. m?
C. mn
D. n?

Backup

In many applications, we want to avoid backup in text stream.
« Treat input as stream of data.
« Abstract model: standard input.

Brute-force algorithm needs backup for every mismatch.

matched chars
l mismatch

e
A
B

A A A A A
A A A A A
backup

A

/

shift pattern right one position

Approach 1. Maintain buffer of last m characters.
Approach 2. Stay tuned.

“ATTACK AT DAWN”
substring search machine

14

Brute-force substring search: alternate implementation

Same sequence of character compares as previous implementation.
. i points to end of sequence of already-matched characters in text.
« j stores # of already-matched characters.

i § 01 2 3 456 7 8 9 10
A BACATDATGBTR RASLC

7 3 A DA C

5 0

public static int search(String pat, String txt)

{
int 1, n = txt.length(Q);
int j, m = pat.length(Q);
for (1 =0, J =0; 1 <n&&J<m i++)
{

if (txt.charAt(i) == pat.charAt(3)) j++;
else { i -=3; 3 =0; 1}

} ‘\\\
if (j == m) return i - m; explicit backup
else return n;

Algorithmic challenges in substring search

Brute-force substring search is not always good enough.

Theoretical challenge. Linear-time guarantee. <— fundamental algorithmic problem
Practical challenge. Avoid backup in text stream. «<— avoid extra buffer

Now is the time for all people to come to the aid of their party. Now 1is the time for all
good people to come to the aid of their party. Now is the time for many good people to come
to the aid of their party. Now is the time for all good people to come to the aid of their
party. Now is the time for a lot of good people to come to the aid of their party. Now is
the time for all of the good people to come to the aid of their party. Now is the time for
all good people to come to the aid of their party. Now is the time for each good person to
come to the aid of their party. Now 1is the time for all good people to come to the aid of
their party. Now 1is the time for all good Republicans to come to the aid of their party.
Now is the time for all good people to come to the aid of their party. Now is the time for
many or all good people to come to the aid of their party. Now is the time for all good
people to come to the aid of their party. Now is the time for all good Democrats to come to
the aid of their party. Now is the time for all people to come to the aid of their party.
Now is the time for all good people to come to the aid of their party. Now is the time for
many good people to come to the aid of their party. Now is the time for all good people to
come to the aid of their party. Now is the time for a lot of good people to come to the aid
of their party. Now is the time for all of the good people to come to the aid of their
party. Now 1is the time for all good people to come to the aid of their attack at dawn
party. Now 1is the time for each person to come to the aid of their party. Now is the time
for all good people to come to the aid of their party. Now is the time for all good
Republicans to come to the aid of their party. Now 1is the time for all good people to come
to the aid of their party. Now is the time for many or all good people to come to the aid
of their party. Now is the time for all good people to come to the aid of their party. Now
is the time for all good Democrats to come to the aid of their party.

5.3 SUBSTRING SEARCH

» Knuth-Morris—Pratt

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern BAAAAAAAAA.

« Suppose we match 5 chars in pattern, with mismatch on 6th char.

.i

text\ l
A B A A A A B A AAAAAA A A
after mismatch
onsixthchar——B A A A A A ~— pattern
brute-force backs B
up to try this — B
and this -~ B
and this -~ B
and this -~

B A A A A A A A A A
andthis/

18

Knuth-Morris-Pratt substring search

Intuition. Suppose we are searching in text for pattern BAAAAAAAAA.
« Suppose we match 5 chars in pattern, with mismatch on 6th char.
« We know previous 6 chars in text must be BAAAAB.
« Don’t need to back up text pointer! scsuie 4 A, B 1 elshebet

.i

text\ l
A B A A A AB AAAAAAAAA
after mismatch
onsixthchar——B A A A A A ~— pattern

butnobackup/ AAA A A A A A AA

1s needed

Knuth—-Morris—Pratt algorithm. Clever method to always avoid backup!

19

Deterministic finite state automaton (DFA)

DFA is abstract string-searching machine.
« Finite number of states (including start and halt).
« Exactly one state transition for each char in alphabet.
« Accept if sequence of state transitions leads to halt state.

internal representation

i 0 1 2 3 4 5 |
pat.charAt(i) A B A B A C If in state J reading char C:
Al 1 3 1 5 1 if j is 6 halt and accept
dfafJ[j1|]B 0 2 0 4 0 4 else move to state dfa[c][j]
c 0 0O O O o0 ©

graphical representation

N
(Aj@ ;@ A c—(6)

e

20

Knuth-Morris-Pratt demo: DFA simulation

A ABACAABABACAA

© >
©O O — » O

O N — 8 —

OO W > N

© ~h = W W

© O v > b~
SO b — N U

o

21

Interpretation of Knuth-Morris-Pratt DFA

Q. What is interpretation of DFA state after reading in txt[i]?
A. State = number of characters in pattern that have been matched.

length of longest prefix of pat[]
that is a suffix of txt[0..1]

Ex. DFA is in state 3 after reading in txt[0..6].

_i

O 1 2 3 4 5 6 O 1 2 3 4 5
Xt—> B C B A A B A pat —™> A B A B A C
suffix of txt[0..6] prefix of pat[]
A

’ \
—Aj @ > — B—

\/C

B, C A'W A\ B
@(A ‘/ c (5
B,C/

22

Substring search: quiz 2

Which state is the DFA in after processing the following input?

B AA B A B A B

t
A 0
B. 1
C. 3
D. 4

Substring search: quiz 3

Which state is the DFA in after processing the following input?

ABAABBABABBABAABAABAAABABABAABAABAABABAB

A. O
B. 1
C. 3
D. 4
E. 5

Knuth-Morris-Pratt substring search: Java implementation

Key differences from brute-force implementation.
« Need to precompute dfa[][] from pattern.
« Text pointer i never decrements.

public 1int search(String txt)

{
int i, j, n = txt.lengthQ;
for (i =0, j=0; 1i<n&j<m i+t
j = dfa[txt.charAt(i)]1[jl;
if (J == m) return i1 - m; ™~~~

no backup
else return n;

Running time.
« Simulate DFA on text: at most n character accesses.

T

« Build DFA: how to do efficiently? [warning: tricky algorithm ahead]

Knuth-Morris-Pratt substring search: Java implementation

Key differences from brute-force implementation.
« Need to precompute dfa[][] from pattern.
« Text pointer i never decrements.
Could use input stream.

public 1nt search(In 1n)

{
int i, j;
for (i =0, j =0; !in.isEmpty() && j < m; i++)
j = dfa[in.readChar()][3];
it (J == m) return 1 - m;
else return NOT_FOUND; o backup
}

26

Knuth-Morris-Pratt demo: DFA construction

®

© O — » O
O N — W —

Constructing the DFA for KMP substring search for ABABAC

OO W > N

© ~h = W W

O O v > H
SO b — N U

o

27

How to build DFA from pattern?

Include one state for each character in pattern (plus accept state).

28

How to build DFA from pattern?

Match transition. If in state j and next char c == pat.charAt(j), go to j+1.

1 1 1

first j characters of pattern next char matches now first j +1 characters of
have already been matched pattern have been matched
0) 1 2 3 4 5
A B A B
A |1 3 5
B 2 4
C 6

O 1> (D 15O 4> 1= A >E— c>®

29

How to build DFA from pattern?

Mismatch transition. If in state j and next char c != pat.charAt(j),
then the last j-1 characters of input are pat[1..j-1], followed by c.

To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c.
Running time. Seems to require j steps. ™ still under construction ()

Ex. dfa['A'1[5] =1 dfa['B'I[5] = 4
simulate BABAA simulate BABAB 0] > 3

simulation
of BABA

/A\/ /' 4

B

A

30

How to build DFA from pattern?

Mismatch transition. If in state j and next char c != pat.charAt(j),
then the last j-1 characters of input are pat[1..j-1], followed by c.

P
To compute dfa[c][j]: Simulate pat[1..j-1] on DFA and take transition c.

state X

Running time. Takes only constant time if we maintain state x.

Ex. dfa['A'][5] = 1 dfa['B'][5] = 4 x'=0
from state x, from state x, from state X, 0 1 2 3 4 5
take transition 'A’ take transition 'B' take transition 'C' A B A B A C

= dfa['A'][x] = dfa['B'][x] = dfa['C'][x]

ey

A
_—'"

B

A

31

Knuth-Morris-Pratt demo: DFA construction in linear time

®

o O — >» O
O N — I —
O O W > N
O ~h —m W W
O O v > H
SO b — N U

Constructing the DFA for KMP substring search for ABABAC

32

Constructing the DFA for KMP substring search: Java implementation

For each state j:
« Copy dfa[]l[x] to dfa[][j] for mismatch case.
« Set dfa[pat.charAt(j)]1[j] to j+1 for match case.
- Update x.

public KMP(String pat)
{
this.pat = pat;
m = pat.length();
dfa = new int[R][m];
dfa[pat.charAt(0)][0] = 1;
for (Aint x =0, J =1; J <m; J++)

{
for (int c = 0; ¢ < R; c++)
dfalc][j] = dfalc][x]; <«—— copy mismatch cases
dfa[pat.charAt(j)]1[3j] = j+1; <«—— set match case
x = dfa[pat.charAt(3)][x]; <«— update restart state
}

Running time. m character accesses (but space/time proportional to R m).

33

KMP substring search analysis

Proposition. KMP substring search accesses no more than m + n chars
to search for a pattern of length m in a text of length =.

Pf. Each pattern character accessed once when constructing the DFA; each
text character accessed once (in the worst case) when simulating the DFA.
Proposition. KMP constructs dfa[][] in time and space proportional to R m.

Larger alphabets. Improved version of KMP constructs nfa[] in time and
space proportional to m.

R
SIS U

KMP NFA for ABABAC

34

Knuth-Morris-Pratt: brief history

« Independently discovered by two theoreticians and a hacker.
— Knuth: inspired by esoteric theorem, discovered linear algorithm
— Pratt: made running time independent of alphabet size
— Morris: built a text editor for the CDC 6400 computer

« Theory meets practice.

SIAM J. COMPUT.
Vol. 6, No. 2, June 1977

FAST PATTERN MATCHING IN STRINGS*

DONALD E. KNUTH*, JAMES H. MORRIS, JR.{ AND VAUGHAN R. PRATTY

Abstract. An algorithm is presented which finds all occurrences of one given string within
another, in running time proportional to the sum of the lengths of the strings. The constant of
proportionality is low enough to make this algorithm of practical use, and the procedure can also be
extended to deal with some more general pattern-matching problems. A theoretical application of the
algorithm shows that the set of concatenations of even palindromes, i.e., the language {aa®}*, can be
recognized in linear time. Other algorithms which run even faster on the average are also considered.

Don Knuth Jim Morris Vaughan Pratt

35

CYCLIC ROTATION

A string s is a cyclic rotation of ¢ if s and ¢ have the same length and
s is a suffix of ¢ followed by a prefix of +.

yes yes ho
ROTATEDSTRING ABABABBABBABA ROTATEDSTRING
STRINGROTATED BABBABBABAABA GNIRTSDETATOR

Problem. Given two binary strings s and ¢, design a linear-time algorithm
to determine if sis a cyclic rotation of .

36

CYCLIC ROTATION

A string s is a cyclic rotation of ¢ if s and ¢ have the same length and
s is a suffix of ¢ followed by a prefix of +.

yes yes no
ROTATEDSTRING ABABABBABBABA ROTATEDSTRING
STRINGROTATED BABBABBABAABA GNIRTSDETATOR

Problem. Given two binary strings s and ¢, design a linear-time algorithm
to determine if sis a cyclic rotation of .

Solution.
« Check that s and r are the same length.
« Search for s in ¢ + r using Knuth—-Morris—Pratt.

t+t —> STRINGROTATEDSTRINGROTATED
s —> ROTATEDSTRING

37

5.3 SUBSTRING SEARCH

Algorithms

» Boyer-Moore

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Robert Boyer J. Strother Moore

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Boyer-Moore: mismatched character heuristic

Intuition.
« Scan characters in pattern from right to left.

« Can skip as many as m text chars when finding one not in the pattern.

1 J O 1 2 3 4 5 o6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 22 23

txt— F I N D I N A H A Y S T A CK N E E D L E

0 5 E <~— pattern

5 5 E no S in pattern
11 4 align N in text with L E
15\ 0 N in pattern NE E D L E
returni = 15 align N in text with

N in pattern

39

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 1. Mismatch character not in pattern.

before l
txt T L E
pat D L E
|
after l
txt T L E
pat NE E D L E

mismatch character T not in pattern: increment i one character beyond T

40

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2a. Mismatch character in pattern.

before l
txt N L E
pat D L E
i
after l
txt N L E
pat N E E D L E

mismatch character N in pattern: align text N with rightmost (why?) pattern N

41

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

before l
Ext E L E
pat D L E
i
aligned with rightmost E? l
txt E L E
pat NE E D L E

mismatch character E in pattern: align text E with rightmost pattern E ?

42

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

Case 2b. Mismatch character in pattern (but heuristic no help).

before l
txt E L E
pat D L E
[
after l
txt E L E
pat N E E D L E

mismatch character E in pattern: incrementi by 1

43

Substring search: quiz 4

Which text character is compared with the E next in Boyer-Moore?

A. R (index 5)
B. O (index 6)
C. O (index 12)

D. O (index 13)

txt —- B O O Y E R O B E R T M O O R E |

pattern —> R E

Substring search: quiz 5

Which text character is compared with the E next in Boyer-Moore?

A. O
B. R
C. E
D.]

txt —- B O O Y E R O B E R T M O O R E |

pattern —» E

Boyer-Moore: mismatched character heuristic

Q. How much to skip?

A. Precompute index of rightmost occurrence of character c in pattern.
(—1 if character not in pattern)

C

A -1 -1

right = new int[R]; B -1 -1

for (int c = 0; c < R; c++) C -1 -1
right[c] = -1; D -1 @

for (int 3 =0; j < m; j++) E -1 @ @ @ 5

right[pat.charAt(j)] = J; o -1

L -1 (4 4

M -1 -1

N -1 O 0

-1

Boyer-Moore skip table computation

46

Boyer-Moore: Java implementation

public int search(String txt)

{

int n = txt.length(Q);
int m = pat.length();

int skip;
for (int 1 = 0; 1 <= n-m; 1 += skip)
{
skip = 0;
for (int j =m-1; j >= 0; j--)
{
if (pat.charAt(j) != txt.charAt(i+j)) compute

skip value
{ A///

skip = Math.max(1l, j - right[txt.charAt(i+3)]1);

break; \

} in case other term is zero or negative
}
if (skip == 0) return i; <«—— match
}
return n;

47

Boyer-Moore: analysis

Property. Substring search with the Boyer—-Moore mismatched character
heuristic takes about ~n/m character compares to search for a pattern of
length m in a text of IengthYn.\ <ublinear!

Worst-case. Can be as bad as ~ m n.

1 skip O 1 2 3 4 5 6 7 8 9
txt— B B B B B B B B B

0O O A B B B B «——pat

1 1 A B B B B

2 1 A B B B B

3 1 A B B B B

4 1 A B B B B

5 1 A B B B B

Boyer—Moore variant. Can improve worst case to ~ 3 n character compares
by adding a KMP-like rule to guard against repetitive patterns.

48

