4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Shortest paths in an edge-weighted digraph

Given an edge-weighted digraph, find the shortest path from s to t.

edge-weighted digraph

4→5 0.35
5→4 0.35
4→7 0.37
5→7 0.28
7→5 0.28
5→1 0.32
0→4 0.38
0→2 0.26
7→3 0.39
1→3 0.29
2→7 0.34
6→2 0.40
3→6 0.52
6→0 0.58
6→4 0.93

shortest path from 0 to 6

0→2 0.26
2→7 0.34
7→3 0.39
3→6 0.52

0.26 + 0.34 + 0.39 + 0.52 = 1.51
Google maps
Shortest path applications

- PERT/CPM.
- Map routing.
- **Seam carving.**
- Texture mapping.
- Robot navigation.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting **arbitrage** opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Shortest path variants

Which vertices?

- **Single source:** from one vertex s to every other vertex.
- Single sink: from every vertex to one vertex t.
- Source-sink: from one vertex s to another t.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Euclidean weights.
- Arbitrary weights.

Cycles?

- No directed cycles.
- No "negative cycles."

Simplifying assumption. Each vertex is reachable from s.

which variant?
4.4 Shortest Paths

- APIs
 - shortest-paths properties
 - Dijkstra's algorithm
 - edge-weighted DAGs
 - negative weights
Weighted directed edge API

public class DirectedEdge

 DirectedEdge(int v, int w, double weight) // weighted edge v→w
 int from() // vertex v
 int to() // vertex w
 double weight() // weight of this edge
 String toString() // string representation

Idiom for processing an edge e: int v = e.from(), w = e.to();
Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

```java
public class DirectedEdge {
    private final int v, w;
    private final double weight;

    public DirectedEdge(int v, int w, double weight) {
        this.v = v;
        this.w = w;
        this.weight = weight;
    }

    public int from() {
        return v;
    }

    public int to() {
        return w;
    }

    public int weight() {
        return weight;
    }
}
```

from() and to() replace either() and other()
Edge-weighted digraph API

public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) // edge-weighted digraph with V vertices
EdgeWeightedDigraph(In in) // edge-weighted digraph from input stream
void addEdge(DirectedEdge e) // add weighted directed edge e
Iterable<DirectedEdge> adj(int v) // edges adjacent from v
int V() // number of vertices
int E() // number of edges
Iterable<DirectedEdge> edges() // all edges
String toString() // string representation

Conventions. Allow self-loops and parallel edges.
Edge-weighted digraph: adjacency-lists representation

adj

0

1

2

3

4

5

6

7

tinyEWD.txt

V

8

15

4 5 0.35

5 4 0.35

4 7 0.37

5 7 0.28

7 5 0.28

5 1 0.32

0 4 0.38

0 2 0.26

7 3 0.39

1 3 0.29

2 7 0.34

6 2 0.40

3 6 0.52

6 0 0.58

6 4 0.93
Edge-weighted digraph: adjacency-lists implementation in Java

Same as EdgeWeightedGraph except replace Graph with Digraph.

```java
public class EdgeWeightedDigraph {
    private final int V;
    private final Bag<DirectedEdge>[] adj;

    public EdgeWeightedDigraph(int V) {
        this.V = V;
        adj = (Bag<DirectedEdge>[]) new Bag[V];
        for (int v = 0; v < V; v++)
            adj[v] = new Bag<DirectedEdge>();
    }

    public void addEdge(DirectedEdge e) {
        int v = e.from();
        adj[v].add(e);
    }

    public Iterable<DirectedEdge> adj(int v) {
        return adj[v];
    }
}
```

add edge e = v→w to only v's adjacency list
Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>public class SP</td>
<td></td>
</tr>
<tr>
<td><code>SP(EdgeWeightedDigraph G, int s)</code></td>
<td>shortest paths from s in graph G</td>
</tr>
<tr>
<td><code>double distTo(int v)</code></td>
<td>length of shortest path from s to v</td>
</tr>
<tr>
<td><code>Iterable <DirectedEdge> pathTo(int v)</code></td>
<td>shortest path from s to v</td>
</tr>
<tr>
<td><code>boolean hasPathTo(int v)</code></td>
<td>is there a path from s to v?</td>
</tr>
</tbody>
</table>
4.4 **Shortest Paths**

- APIs
- *shortest-paths properties*
- *Dijkstra's algorithm*
- edge-weighted DAGs
- negative weights
Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:
- $\text{distTo}[v]$ is length of shortest path from s to v.
- $\text{edgeTo}[v]$ is last edge on shortest path from s to v.

\[
\begin{array}{|c|c|c|}
\hline
\text{edgeTo[]} & \text{distTo[]} \\
\hline
0 & null & 0 \\
1 & 5\rightarrow1 & 0.32 & 1.05 \\
2 & 0\rightarrow2 & 0.26 & 0.26 \\
3 & 7\rightarrow3 & 0.37 & 0.97 \\
4 & 0\rightarrow4 & 0.38 & 0.38 \\
5 & 4\rightarrow5 & 0.35 & 0.73 \\
6 & 3\rightarrow6 & 0.52 & 1.49 \\
7 & 2\rightarrow7 & 0.34 & 0.60 \\
\hline
\end{array}
\]

shortest-paths tree from 0

parent-link representation
Data structures for single-source shortest paths

Goal. Find the shortest path from \(s \) to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- \(\text{distTo}[v] \) is length of shortest path from \(s \) to \(v \).
- \(\text{edgeTo}[v] \) is last edge on shortest path from \(s \) to \(v \).

```java
public double distTo(int v)
{
    return distTo[v];
}

public Iterable<DirectedEdge> pathTo(int v)
{
    Stack<DirectedEdge> path = new Stack<DirectedEdge>();
    for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])
        path.push(e);
    return path;
}
```
Edge relaxation

Relax edge $e = v \rightarrow w$.

- $\text{distTo}[v]$ is length of shortest known path from s to v.
- $\text{distTo}[w]$ is length of shortest known path from s to w.
- $\text{edgeTo}[w]$ is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update both $\text{distTo}[w]$ and $\text{edgeTo}[w]$.

$v \rightarrow w$ successfully relaxes
Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update both distTo[w] and edgeTo[w].

```java
private void relax(DirectedEdge e) {
    int v = e.from(), w = e.to();
    if (distTo[w] > distTo[v] + e.weight()) {
        distTo[w] = distTo[v] + e.weight();
        edgeTo[w] = e;
    }
}
```
Let $e = v \rightarrow w$ be an edge with weight 17.0. Suppose that $\text{distTo}[v] = \infty$ and $\text{distTo}[w] = 15.0$. Which is the value of $\text{distTo}[w]$ after calling $\text{relax}(e)$?

A. The program will throw a `java.lang.RuntimeException`.
B. $+\infty$
C. 17.0
D. 15.0
E. I don't know.
Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.
Then $\text{distTo}[]$ are the shortest path distances from s iff:

- $\text{distTo}[s] = 0$.
- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e$.weight().

Pf. \Leftarrow [necessary]

- Suppose that $\text{distTo}[w] > \text{distTo}[v] + e$.weight() for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than $\text{distTo}[w]$.
Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then $\text{distTo}[\cdot]$ are the shortest path distances from s iff:

- $\text{distTo}[s] = 0$.
- For each vertex v, $\text{distTo}[v]$ is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.

Pf. \Rightarrow [sufficient]

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k = w$ is a shortest path from s to w.
- Then, $\text{distTo}[v_1] \leq \text{distTo}[v_0] + e_1.\text{weight}()$
 \[\text{distTo}[v_2] \leq \text{distTo}[v_1] + e_2.\text{weight}() \]
 \[\ldots \]
 \[\text{distTo}[v_k] \leq \text{distTo}[v_{k-1}] + e_k.\text{weight}() \]

- Add inequalities; simplify; and substitute $\text{distTo}[v_0] = \text{distTo}[s] = 0$:
 \[\text{distTo}[w] = \text{distTo}[v_k] \leq e_1.\text{weight}() + e_2.\text{weight}() + \ldots + e_k.\text{weight}() \]

- Thus, $\text{distTo}[w]$ is the weight of shortest path to w. ■
Generic shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:
 - Relax an edge.

Proposition. Generic algorithm computes SPT (if it exists) from s.

Pf sketch.
- distTo[v] is always the length of a simple path from s to v.
- Each successful relaxation decreases distTo[v] for some v.
- distTo[v] can decrease at most a finite number of times. ■
Generic shortest-paths algorithm

Generic algorithm (to compute a SPT from s)

Initialize \(\text{distTo}[s] = 0 \) and \(\text{distTo}[v] = \infty \) for all other vertices.

Repeat until optimality conditions are satisfied:
- Relax an edge.

Efficient implementations. How to choose which edge to relax?

Ex 1. Dijkstra's algorithm (nonnegative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman–Ford algorithm (no negative cycles).
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Edsger W. Dijkstra: select quotes

“Do only what only you can do.”

“The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence.”

“It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration.”

“APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums.”

http://catpad.net/michael/apl
“Object-oriented programming is an exceptionally bad idea which could only have originated in California.”

-- Edsger Dijkstra
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

An edge-weighted digraph
Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges adjacent from that vertex.

shortest-paths tree from vertex s
Dijkstra's algorithm visualization
Dijkstra's algorithm: correctness proof 1

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

Pf.
- Each edge $e = v \rightarrow w$ is relaxed exactly once (when vertex v is relaxed), leaving $\text{distTo}[w] \leq \text{distTo}[v] + e.\text{weight}()$.
- Inequality holds until algorithm terminates because:
 - $\text{distTo}[w]$ cannot increase
 - $\text{distTo}[v]$ will not change

Thus, upon termination, shortest-paths optimality conditions hold. ■
Dijkstra's algorithm: Java implementation

```java
public class DijkstraSP {
    private DirectedEdge[] edgeTo;
    private double[] distTo;
    private IndexMinPQ<Double> pq;

    public DijkstraSP(EdgeWeightedDigraph G, int s) {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];
        pq = new IndexMinPQ<Double>(G.V());

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        pq.insert(s, 0.0);
        while (!pq.isEmpty()) {
            int v = pq.delMin();
            for (DirectedEdge e : G.adj(v))
                relax(e);
        }
    }
}
```

relax vertices in order of distance from s
private void relax(DirectedEdge e) {
 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight()) {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;
 if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
 else pq.insert(w, distTo[w]);
 }
}
Shortest paths: quiz 2

What is the order of growth of the running time of Dijkstra's algorithm when using a binary heap for the priority queue?

A. $V + E$
B. $V \log E$
C. $E \log V$
D. $E \log E$
E. *I don't know.*
Computing a spanning tree in a graph

Dijkstra's algorithm seem familiar?

- Prim's algorithm is essentially the same algorithm.
- Both are in a family of algorithms that compute a spanning tree.

Main distinction: rule used to choose next vertex for the tree.

- Prim: Closest vertex to the **tree** (via an undirected edge).
- Dijkstra: Closest vertex to the **source** (via a directed path).

Note: DFS and BFS are also in this family of algorithms.
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Acyclic edge-weighted digraphs

Q. Suppose that an edge-weighted digraph has no directed cycles. Is it easier to find shortest paths than in a general digraph?

A. Yes!
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

an edge-weighted DAG

0→1 5.0
0→4 9.0
0→7 8.0
1→2 12.0
1→3 15.0
1→7 4.0
2→3 3.0
2→6 11.0
3→6 9.0
4→5 4.0
4→6 20.0
4→7 5.0
5→2 1.0
5→6 13.0
7→5 6.0
7→2 7.0
Acyclic shortest paths demo

- Consider vertices in topological order.
- Relax all edges adjacent from that vertex.

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>

shortest-paths tree from vertex s
What is the order of growth of the running time of the topological sort algorithm for computing shortest paths in an edge-weighted DAG?

A. V
B. E
C. $V + E$
D. $V \log E$
E. I don't know.
Shortest paths in edge-weighted DAGs

```java
public class AcyclicSP {
    private DirectedEdge[] edgeTo;
    private double[] distTo;

    public AcyclicSP(EdgeWeightedDigraph G, int s) {
        edgeTo = new DirectedEdge[G.V()];
        distTo = new double[G.V()];

        for (int v = 0; v < G.V(); v++)
            distTo[v] = Double.POSITIVE_INFINITY;
        distTo[s] = 0.0;

        Topological topological = new Topological(G);
        for (int v : topological.order())
            for (DirectedEdge e : G.adj(v))
                relax(e);
    }
}
```
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

http://www.youtube.com/watch?v=vIFCV2spKtg
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop, Imagemagick, GIMP, ...
Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = "energy function" of 8 neighboring pixels.
- Seam = shortest path (sum of vertex weights) from top to bottom.
Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).
Content-aware resizing

To remove vertical seam:

- Delete pixels on seam (one in each row).
Shortest Path Variants in a Digraph

Q1. How to model vertex weights (along with edge weights)?

![Graph with vertex weights](image1)

Q2. How to model multiple sources and sinks?

![Graph with multiple sources and sinks](image2)
Challenge. Given an edge-weighted DAG, find the longest path from s to any other vertex

Warning. Problem in general digraphs is NP-COMPLETE.

```
longest paths input
5->4  0.35
4->7  0.37
5->7  0.28
5->1  0.32
4->0  0.38
0->2  0.26
3->7  0.39
1->3  0.29
7->2  0.34
6->2  0.40
3->6  0.52
6->0  0.58
6->4  0.93
```

```
longest path from 5 to 0
(0.32 + 0.29 + 0.52 + 0.93 + 0.38 = 2.44)
```
Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.

\[
\begin{align*}
\text{longest paths input} & \quad \text{shortest paths input} \\
5->4 & 0.35 \quad 5->4 & -0.35 \\
4->7 & 0.37 \quad 4->7 & -0.37 \\
5->7 & 0.28 \quad 5->7 & -0.28 \\
5->1 & 0.32 \quad 5->1 & -0.32 \\
4->0 & 0.38 \quad 4->0 & -0.38 \\
0->2 & 0.26 \quad 0->2 & -0.26 \\
3->7 & 0.39 \quad 3->7 & -0.39 \\
1->3 & 0.29 \quad 1->3 & -0.29 \\
7->2 & 0.34 \quad 7->2 & -0.34 \\
6->2 & 0.40 \quad 6->2 & -0.40 \\
3->6 & 0.52 \quad 3->6 & -0.52 \\
6->0 & 0.58 \quad 6->0 & -0.58 \\
6->4 & 0.93 \quad 6->4 & -0.93 \\
\end{align*}
\]

Key point. Topological sort algorithm works even with negative weights.
Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>
Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
 - begin to end (weighted by duration)
 - source to begin (0 weight)
 - end to sink (0 weight)
- One edge for each precedence constraint (0 weight).

```
<table>
<thead>
<tr>
<th>job</th>
<th>duration</th>
<th>must complete before</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41.0</td>
<td>1 7 9</td>
</tr>
<tr>
<td>1</td>
<td>51.0</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>36.0</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>38.0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>45.0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>21.0</td>
<td>3 8</td>
</tr>
<tr>
<td>7</td>
<td>32.0</td>
<td>3 8</td>
</tr>
<tr>
<td>8</td>
<td>32.0</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>29.0</td>
<td>4 6</td>
</tr>
</tbody>
</table>
```
Critical path method

CPM. Use longest path from the source to schedule each job.
4.4 Shortest Paths

- APIs
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- negative weights
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn’t work with negative edge weights.

Dijkstra selects the vertices in the order 0, 3, 2, 1
But shortest path from 0 to 3 is 0→1→2→3.

Re-weighting. Add a constant to every edge weight doesn’t work.

Adding 8 to each edge weight changes the shortest path from 0→1→2→3 to 0→3.

Conclusion. Need a different algorithm.
Negative cycles

A negative cycle is a directed cycle whose sum of edge weights is negative.

Proposition. A SPT exists iff no negative cycles.
Bellman–Ford algorithm

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.
Repeat V times:
 – Relax each edge.

for (int i = 0; i < G.V(); i++)
 for (int v = 0; v < G.V(); v++)
 for (DirectedEdge e : G.adj(v))
 relax(e);
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

an edge-weighted digraph
Bellman–Ford algorithm demo

Repeat V times: relax all E edges.

shortest-paths tree from vertex s

<table>
<thead>
<tr>
<th>v</th>
<th>distTo[]</th>
<th>edgeTo[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>5.0</td>
<td>0→1</td>
</tr>
<tr>
<td>2</td>
<td>14.0</td>
<td>5→2</td>
</tr>
<tr>
<td>3</td>
<td>17.0</td>
<td>2→3</td>
</tr>
<tr>
<td>4</td>
<td>9.0</td>
<td>0→4</td>
</tr>
<tr>
<td>5</td>
<td>13.0</td>
<td>4→5</td>
</tr>
<tr>
<td>6</td>
<td>25.0</td>
<td>2→6</td>
</tr>
<tr>
<td>7</td>
<td>8.0</td>
<td>0→7</td>
</tr>
</tbody>
</table>
Bellman–Ford algorithm: visualization

passes
4

7

10

13

SPT
Bellman–Ford algorithm: analysis

Bellman–Ford algorithm

Initialize \(\text{distTo}[s] = 0 \) and \(\text{distTo}[v] = \infty \) for all other vertices.

Repeat \(V \) times:
- Relax each edge.

Proposition. Bellman–Ford computes SPT in any edge-weighted digraph with no negative cycles in time proportional to \(E \times V \).

Pf idea. After pass \(i \), found shortest path to each vertex \(v \) for which the shortest path from \(s \) to \(v \) contains \(i \) edges (or fewer).
Bellman–Ford algorithm: practical improvement

Observation. If \(\text{distTo}[v] \) does not change during pass \(i \), no need to relax any edge adjacent from \(v \) in pass \(i+1 \).

FIFO implementation. Maintain queue of vertices whose \(\text{distTo}[] \) changed. Be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.
- The running time is still proportional to \(E \times V \) in worst case.
- But much faster than that in practice.
Single source shortest-paths implementation: cost summary

<table>
<thead>
<tr>
<th>algorithm</th>
<th>restriction</th>
<th>typical case</th>
<th>worst case</th>
<th>extra space</th>
</tr>
</thead>
<tbody>
<tr>
<td>topological sort</td>
<td>no directed cycles</td>
<td>$E + V$</td>
<td>$E + V$</td>
<td>V</td>
</tr>
<tr>
<td>Dijkstra (binary heap)</td>
<td>no negative weights</td>
<td>$E \log V$</td>
<td>$E \log V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford</td>
<td>no negative cycles</td>
<td>$E V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
<tr>
<td>Bellman–Ford (queue–based)</td>
<td></td>
<td>$E + V$</td>
<td>$E V$</td>
<td>V</td>
</tr>
</tbody>
</table>

Remark 1. Directed cycles make the problem harder.

Remark 2. Negative weights make the problem harder.

Remark 3. Negative cycles makes the problem intractable.
Finding a negative cycle

Negative cycle. Add two methods to the API for SP.

<table>
<thead>
<tr>
<th>boolean</th>
<th>hasNegativeCycle()</th>
<th>is there a negative cycle?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterable</td>
<td><DirectedEdge></td>
<td>negative cycle reachable from s</td>
</tr>
</tbody>
</table>

digraph

```
4->5  0.35  
5->4  -0.66 
4->7  0.37  
5->7  0.28  
7->5  0.28  
5->1  0.32  
0->4  0.38  
0->2  0.26  
7->3  0.39  
1->3  0.29  
2->7  0.34  
6->2  0.40  
3->6  0.52  
6->0  0.58  
6->4  0.93  
```

negative cycle (-0.66 + 0.37 + 0.28)

5->4->7->5

shortest path from 0 to 6

```
5->4->7->5...
```

graph

```
5
  `-> 7
|    |    |
|    |    v
4    6
    `-> 3
      |    v
      |    2
      |    `-> 0
      |      `-> 1
      |        v
      |        7
      |        `-> 4
```

negative cycle (-0.66 + 0.37 + 0.28)

5->4->7->5
Finding a negative cycle

Observation. If there is a negative cycle, Bellman–Ford gets stuck in loop, updating `distTo[]` and `edgeTo[]` entries of vertices in the cycle.

![Graph](image)

Proposition. If Bellman–Ford updates any vertex v in pass V, there exists a negative cycle (and can trace `edgeTo[v]` entries back to find one).

In practice. Check for negative cycles more frequently.
Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

<table>
<thead>
<tr>
<th></th>
<th>USD</th>
<th>EUR</th>
<th>GBP</th>
<th>CHF</th>
<th>CAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>USD</td>
<td>1</td>
<td>0.741</td>
<td>0.657</td>
<td>1.061</td>
<td>1.011</td>
</tr>
<tr>
<td>EUR</td>
<td>1.350</td>
<td>1</td>
<td>0.888</td>
<td>1.433</td>
<td>1.366</td>
</tr>
<tr>
<td>GBP</td>
<td>1.521</td>
<td>1.126</td>
<td>1</td>
<td>1.614</td>
<td>1.538</td>
</tr>
<tr>
<td>CHF</td>
<td>0.943</td>
<td>0.698</td>
<td>0.620</td>
<td>1</td>
<td>0.953</td>
</tr>
<tr>
<td>CAD</td>
<td>0.995</td>
<td>0.732</td>
<td>0.650</td>
<td>1.049</td>
<td>1</td>
</tr>
</tbody>
</table>

Ex. $1,000 ⇒ 741 Euros ⇒ 1,012.206 Canadian dollars ⇒ $1,007.14497.

\[1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497\]
Arbitrage

There's No Such Thing As a Free Lunch
Milton Friedman
Essays on Public Policy
Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.

Challenge. Express as a negative cycle detection problem.
Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logarithms.

- Set weight of edge $v \rightarrow w$ to $-\ln$ (exchange rate from currency v to w).
- Multiplication turns to addition; >1 turns to <0.
- Find a directed cycle whose sum of edge weights is <0 (negative cycle).

Remark. Fastest algorithm is extraordinarily valuable!
Shortest paths summary

Nonnegative weights.
- Arises in many application.
- Dijkstra's algorithm is nearly linear-time.

Acyclic edge-weighted digraphs.
- Arise in some applications.
- Topological sort algorithm is linear time.
- Edge weights can be negative.

Negative weights and negative cycles.
- Arise in some applications.
- Bellman–Ford is quadratic in worst case.
- If no negative cycles, can find shortest paths via Bellman–Ford.
- If negative cycles, can find one via Bellman–Ford.

Shortest-paths is a broadly useful problem-solving model.