
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

Last updated on 11/16/17 9:46 AM

4.4 SHORTEST PATHS

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

‣ topological sort algorithm

‣ negative weights

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Given an edge-weighted digraph, find the shortest path from s to t.

2

Shortest paths in an edge-weighted digraph

4

5

1 3

6

7

0

2

4

5

1 3

6

7

0

2

An edge-weighted digraph and a shortest path

4->5 0.35
5->4 0.35
4->7 0.37
5->7 0.28
7->5 0.28
5->1 0.32
0->4 0.38
0->2 0.26
7->3 0.39
1->3 0.29
2->7 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

0->2 0.26
2->7 0.34
7->3 0.39
3->6 0.52

edge-weighted digraph

shortest path from 0 to 6

length of path = 1.51
(0.26 + 0.34 + 0.39 + 0.52)

shortest path from 0 to 6
0 → 2 → 7 → 3 → 6

edge-weighted digraph

Google maps

3

see Assignment 7

PERT/CPM.

Map routing.

Seam carving.

Texture mapping.

Robot navigation.

Typesetting in TeX.

Currency exchange.

Urban traffic planning.

Optimal pipelining of VLSI chip.

Telemarketer operator scheduling.

Routing of telecommunications messages.

Network routing protocols (OSPF, BGP, RIP).

Optimal truck routing through given traffic congestion pattern.

4

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path applications

http://en.wikipedia.org/wiki/Seam_carving

Shortest path variants

Which vertices?

Single source: from one vertex s to every other vertex.

Single sink: from every vertex to one vertex t.
Source–sink: from one vertex s to another t.
All pairs: between all pairs of vertices.

 
Restrictions on edge weights?

Non-negative weights.

Euclidean weights.

Arbitrary weights.

 
Cycles?

No directed cycles.

No “negative cycles.”

 
Simplifying assumption. Each vertex is reachable from s.

5

Which variant in car GPS?

A. Single source: from one vertex s to every other vertex.

B. Single sink: from every vertex to one vertex t.

C. Source–sink: from one vertex s to another t.

D. All pairs: between all pairs of vertices.

6

Shortest paths: quiz 1

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

‣ topological sort algorithm

4.4 SHORTEST PATHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

8

Weighted directed edge API

Idiom for processing an edge e: int v = e.from(), w = e.to();

v
weight

w

 public class DirectedEdge

DirectedEdge(int v, int w, double weight) weighted edge v→w

int from() vertex v

int to() vertex w

double weight() weight of this edge

String toString() string representation

9

Weighted directed edge: implementation in Java

Similar to Edge for undirected graphs, but a bit simpler.

public class DirectedEdge 
{ 
 private final int v, w; 
 private final double weight;

 

}

public DirectedEdge(int v, int w, double weight) 
{ 
 this.v = v; 
 this.w = w; 
 this.weight = weight;  
}

public int from()  
{ return v; }

public int to() 
{ return w; }

public double weight()  
{ return weight; }

from() and to() replace 
either() and other()

10

Edge-weighted digraph API

Conventions. Allow self-loops and parallel edges.

 public class EdgeWeightedDigraph

EdgeWeightedDigraph(int V) edge-weighted digraph with V vertices

EdgeWeightedDigraph(In in) edge-weighted digraph from input stream

void addEdge(DirectedEdge e) add weighted directed edge e

Iterable<DirectedEdge> adj(int v) edges adjacent from v

int V() number of vertices

int E() number of edges

Iterable<DirectedEdge> edges() all edges

String toString() string representation

11

Edge-weighted digraph: adjacency-lists representation

Edge-weighted digraph representation

adj
0

1

2

3

4

5

6

7

0 2 .26 0 4 .38

Bag objects

reference to a
DirectedEdge

object

8
15
4 5 0.35
5 4 0.35
4 7 0.37
5 7 0.28
7 5 0.28
5 1 0.32
0 4 0.38
0 2 0.26
7 3 0.39
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

1 3 .29

2 7 .34

3 6 .52

4 7 .37 4 5 .35

5 1 .32 5 7 .28 5 4 .35

6 4 .93 6 0 .58 6 2 .40

7 3 .39 7 5 .28

tinyEWD.txt
V

E

12

Edge-weighted digraph: adjacency-lists implementation in Java

Almost identical to EdgeWeightedGraph.

public class EdgeWeightedDigraph  
{ 
 private final int V;  
 private final Bag<DirectedEdge>[] adj;

}

public EdgeWeightedDigraph(int V) 
{ 
 this.V = V; 
 adj = (Bag<Edge>[]) new Bag[V]; 
 for (int v = 0; v < V; v++) 
 adj[v] = new Bag<DirectedEdge>(); 
}

public void addEdge(DirectedEdge e) 
{ 
 int v = e.from(), w = e.to(); 
 adj[v].add(e);  
}

public Iterable<DirectedEdge> adj(int v)  
{ return adj[v]; }

add edge e = v→w to

only v's adjacency list

13

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

 public class SP

SP(EdgeWeightedDigraph G, int s) shortest paths from s in graph G

double distTo(int v) length of shortest path from s to v

Iterable <DirectedEdge> pathTo(int v) shortest path from s to v

boolean hasPathTo(int v) is there a path from s to v?

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

‣ topological sort algorithm

4.4 SHORTEST PATHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Goal. Find a shortest path from s to every other vertex. 

Observation. A shortest-paths tree (SPT) solution exists. Why?

 
Consequence. Can represent the SPT with two vertex-indexed arrays:

 distTo[v] is length of a (shortest) path from s to v.
 edgeTo[v] is last edge on a (shortest) path from s to v.

15

Data structures for single-source shortest paths

shortest-paths tree from 0
Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

parent-link representation
Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

Shortest paths data structures

 edgeTo[] distTo[]
 0 null 0
 1 5->1 0.32 1.05
 2 0->2 0.26 0.26
 3 7->3 0.37 0.97
 4 0->4 0.38 0.38
 5 4->5 0.35 0.73
 6 3->6 0.52 1.49
 7 2->7 0.34 0.60

Goal. Find a shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

 distTo[v] is length of a (shortest) path from s to v.
 edgeTo[v] is last edge on a (shortest) path from s to v.

16

Data structures for single-source shortest paths

 public double distTo(int v)

 { return distTo[v]; }

 public Iterable<DirectedEdge> pathTo(int v)

 {

 Stack<DirectedEdge> path = new Stack<DirectedEdge>();

 for (DirectedEdge e = edgeTo[v]; e != null; e = edgeTo[e.from()])

 path.push(e);

 return path;

 }

Relax edge e = v→w.
 distTo[v] is length of shortest known path from s to v.

 distTo[w] is length of shortest known path from s to w.

 edgeTo[w] is last edge on shortest known path from s to w.

If e = v→w yields shorter path to w, update distTo[w] and edgeTo[w].

17

Edge relaxation

black edges

are in edgeTo[]

s

3.1

7.2 4.4

relax edge v→w

1.3

v

w

18

Edge relaxation

Relax edge e = v→w.
 distTo[v] is length of shortest known path from s to v.

 distTo[w] is length of shortest known path from s to w.

 edgeTo[w] is last edge on shortest known path from s to w.

If e = v→w yields shorter path to w, update distTo[w] and edgeTo[w].

 private void relax(DirectedEdge e)
 {

 int v = e.from(), w = e.to();
 if (distTo[w] > distTo[v] + e.weight())
 {
 distTo[w] = distTo[v] + e.weight();

 edgeTo[w] = e;
 }
 }

What are the values of distTo[v] and distTo[w] after relaxing v→w ?  

A. 10.0 and 15.0

B. 10.0 and 17.0

C. 12.0 and 15.0

D. 12.0 and 17.0

19

Shortest paths: quiz 2

s

5.0

v

w

distTo[v] = 10.0

distTo[w] = 17.0

 
 
 
 
 
 
 
 
 

Key properties.

 distTo[v] is the length of a simple path from s to v.

 distTo[v] cannot increase.

20

Framework for shortest-paths algorithm

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.
distTo[s] = 0.

Repeat until done: 
 - Relax any edge.

Generic algorithm (to compute a SPT from s)

 
 
 
 
 
 
 
 
 
Efficient implementations.

How to choose which edge to relax next?

How many edge relaxations needed?

 
Ex 1. Dijkstra’s algorithm (non-negative weights).

Ex 2. Topological sort algorithm (no directed cycles).

Ex 3. Bellman–Ford algorithm (no negative cycles).

21

Framework for shortest-paths algorithm

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.
distTo[s] = 0.

Repeat until done: 
 - Relax any edge.

Generic algorithm (to compute a SPT from s)

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

‣ topological sort algorithm

4.4 SHORTEST PATHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

23

Bellman–Ford algorithm

for (int i = 1; i < G.V(); i++)

 for (int v = 0; v < G.V(); v++)

 for (DirectedEdge e : G.adj(v))

 relax(e);

pass i (relax each edge)

For each vertex v: distTo[v] = ∞.

For each vertex v: edgeTo[v] = null.
distTo[s] = 0.

Repeat V-1 times: 
 - Relax each edge.

Bellman–Ford algorithm

Repeat V − 1 times: relax all E edges.

Bellman–Ford algorithm demo

24

0

4

7

1 3

5

2

6

s

6
9

8

4

5

7

1

5
4

15

3
12

20

13

11

9

an edge-weighted digraph

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

Repeat V − 1 times: relax all E edges.

Bellman–Ford algorithm demo

25

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

26

Bellman–Ford algorithm: visualization

Bellman-Ford (250 vertices)

4 7 10

13 SPT

 passes

Proposition. Let s = v0 → v1 → v2 → … → vk = v be a shortest path from s to v. 
Then, after pass i, distTo[vi] = d*(vi).
 
Pf. [by induction on i]

Suppose distTo[vi] = d*(vi) after pass i.
Since distTo[vi+1] is the length of some path from s to vi+1, 
we must have distTo[vi+1] ≥ d*(vi+1).
Immediately after relaxing edge vi→vi+1 in pass i+1, we have  
 distTo[vi+1] ≤ distTo[vi] + weight(vi, vi+1)

 = d*(vi) + weight(vi, vi+1)
 = d*(vi+1).

Thus, at the end of pass i+1, distTo[vi+1] = d*(vi+1). !

 

Corollary. Bellman–Ford computes shortest path distances.

Pf. There exists a shortest path from s to v with at most V – 1 edges. 
 ⇒ ≤ V – 1 passes.

27

Bellman–Ford algorithm: correctness proof

length of shortest

path from s to vi

v0 v1 vk…

s v

28

Observation. If distTo[v] does not change during pass i, no need to relax

any edge pointing from v in pass i + 1.

 
FIFO implementation. Maintain queue of vertices whose distTo[] values

needs updating.

 
 
 
 
 
 
 
 
Impact.

In the worst case, the running time is still proportional to E × V.

But much faster in practice.

Bellman–Ford algorithm: practical improvement

distTo[] changed in pass idistTo[] changed in pass i+1

Created by Gan Khoon Lay
from the Noun Project

relax vertex v

1 47 935

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

‣ topological sort algorithm

4.4 SHORTEST PATHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

30

Edsger W. Dijkstra: select quotes

Edsger W. Dijkstra
Turing award 1972

“ Do only what only you can do. ”
 
“ The use of COBOL cripples the mind; its teaching should,  
 therefore, be regarded as a criminal offence. ”
 
“ It is practically impossible to teach good programming to  
 students that have had a prior exposure to BASIC: as potential  
 programmers they are mentally mutilated beyond hope of  
 regeneration. ”
 
“ APL is a mistake, carried through to perfection. It is the  
 language of the future for the programming techniques  
 of the past: it creates a new generation of coding bums. ”

Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra’s algorithm demo

32

0

4

7

1 3

5

2

6

s

6
9

8

4

5

7

1

5
4

15

3
12

20

13

11

9

an edge-weighted digraph

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

Consider vertices in increasing order of distance from s 
(non-tree vertex with the lowest distTo[] value).

Add vertex to tree and relax all edges adjacent from that vertex.

Dijkstra’s algorithm demo

33

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

Dijkstra’s algorithm visualization

34

Dijkstra’s algorithm visualization

35

Invariant. For each vertex v in T, distTo[v] = d*(v).
Pf. [by induction on | T |]

Let w be next vertex added to T.

Let P be the s ↝ w path of length distTo[w].

Consider any other s ↝ w path P ʹ.
Let x→y be first edge in P ʹ that leaves T.

P ʹ is no shorter than P :

Dijkstra’s algorithm: correctness proof

36

P ʹ

T P

length(P) = distTo[w]

≤ distTo[y]

≤ distTo[x] + weight(x, y)

≤ length(Pʹ)

Dijkstra chose 
w instead of y

yx

w

s

length of shortest s ↝ v path

= d *(x) + weight(x, y)

by construction

relax vertex x

induction

weight are

non-negative ▪

37

Dijkstra’s algorithm: Java implementation

public class DijkstraSP  
{
 private DirectedEdge[] edgeTo;  
 private double[] distTo; 
 

 public DijkstraSP(EdgeWeightedDigraph G, int s) 
 { 
 edgeTo = new DirectedEdge[G.V()]; 
 distTo = new double[G.V()];  

 
 for (int v = 0; v < G.V(); v++)  
 distTo[v] = Double.POSITIVE_INFINITY;  
 distTo[s] = 0.0;  
 
 
 
 
 
 
 
 
 } 
}

private IndexMinPQ<Double> pq;

pq = new IndexMinPQ<Double>(G.V());

pq.insert(s, 0.0);
while (!pq.isEmpty())
{
 int v = pq.delMin();
 for (DirectedEdge e : G.adj(v))
 relax(e);
}

relax vertices in order 
of distance from s

38

Dijkstra’s algorithm: Java implementation

private void relax(DirectedEdge e)
{
 int v = e.from(), w = e.to();

 if (distTo[w] > distTo[v] + e.weight())
 {
 distTo[w] = distTo[v] + e.weight();
 edgeTo[w] = e;  
 
 

 }

}

if (pq.contains(w)) pq.decreaseKey(w, distTo[w]);
else pq.insert (w, distTo[w]);

update PQ

What is the order of growth of the running time of Dijkstra’s algorithm
when using a binary heap for the priority queue?

A. V + E

B. V log E

C. E log V

D. E log E

39

Shortest paths: quiz 3

40

Depends on PQ implementation: V INSERT, V DELETE-MIN, ≤ E DECREASE-KEY.

 
 
 
 
 
 
 
 
 
 
Bottom line.

Array implementation optimal for complete graphs.

Binary heap much faster for sparse graphs.

4-way heap worth the trouble in performance-critical situations.

Fibonacci heap best in theory, but not worth implementing.

Dijkstra’s algorithm: which priority queue?

† amortized

PQ implementation INSERT DELETE-MIN DECREASE-KEY total

unordered array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap logd V d logd V logd V E logE/V V

Fibonacci heap 1 † log V † 1 † E + V log V

Priority-first search

Dijkstra’s algorithm seem familiar?

Prim’s algorithm is essentially the same algorithm.

Both in same family of algorithms.

 
Main distinction: rule used to choose next vertex for the tree.

Prim: Closest vertex to the tree (via an undirected edge).

Dijkstra: Closest vertex to the source (via a directed path).

 
 
 
 
 
 
 
 
Note: DFS and BFS are also in same family.

41

Goal. Given a digraph G, let p(e) be the probability that edge e succeeds.

Find a path from s to t that maximizes the probability of success 
(assuming edge failures are independent).

42

MOST RELIABLE PATH

s t

0.6

0.9 0.9

0.7

0.7

0.8

0.8
s t

0.80.5

probability = 0.5 ! 0.9 ! 0.9 ! 0.8 = 0.324

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ APIs

‣ properties

‣ Bellman–Ford algorithm

‣ Dijkstra’s algorithm

‣ topological sort algorithm

4.4 SHORTEST PATHS

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

Q. Suppose that an edge-weighted digraph has no directed cycles.  
 Is it easier to find shortest paths than in a general digraph?

 
 
 
 
 
 
 
 
 
 
 
 
 
A. Yes!

45

Edge-weighted DAGs

0

4

7

1 3

5

2

6

s

6
9

8

4

5

7

1

5
4

15

3
12

20

13

11

9

Consider vertices in topological order.

Relax all edges adjacent from that vertex.

Topological sort algorithm demo

46

0

4

7

1 3

5

2

6

s

6
9

8

4

5

7

1

5
4

15

3
12

20

13

11

9

an edge-weighted digraph

0→1 5.0

0→4 9.0

0→7 8.0

1→2 12.0

1→3 15.0

1→7 4.0

2→3 3.0

2→6 11.0

3→6 9.0

4→5 4.0

4→6 20.0

4→7 5.0

5→2 1.0

5→6 13.0

7→5 6.0

7→2 7.0

Consider vertices in topological order.

Relax all edges adjacent from that vertex.

Topological sort algorithm demo

47

0 1 4 7 5 2 3 6

0

4

7

1

5

2

6

v distTo[] edgeTo[]

0 0.0 -

1 5.0 0→1

2 14.0 5→2

3 17.0 2→3

4 9.0 0→4

5 13.0 4→5

6 25.0 2→6

7 8.0 0→7

3

shortest-paths tree from vertex s

s

48

Shortest paths in edge-weighted DAGs

public class AcyclicSP
{
 private DirectedEdge[] edgeTo;

 private double[] distTo;

 public AcyclicSP(EdgeWeightedDigraph G, int s)
 {

 edgeTo = new DirectedEdge[G.V()];
 distTo = new double[G.V()];

 for (int v = 0; v < G.V(); v++)

 distTo[v] = Double.POSITIVE_INFINITY;
 distTo[s] = 0.0;

 
 
 
 
 }

 }

Topological topological = new Topological(G);
for (int v : topological.order()) 
 for (DirectedEdge e : G.adj(v))
 relax(e);

topological order

What is the order of the running time of the topological sort algorithm
for computing a SPT in an edge-weighted DAG?

A. V

B. E

C. V + E

D. V log E

49

Shortest paths: quiz 4

Invariant. For each vertex v in T, distTo[v] = d*(v).
Pf. [by induction on | T |]

Let w be next vertex (in topological order) added to T.

Let P be the s ↝ w path of length distTo[w].

Consider any other s ↝ w path P ʹ.
P ʹ must be a path to a vertex in T plus one extra edge, say x→w. Why?

P ʹ is no shorter than P :

Topological sort algorithm: correctness proof

50

P ʹ

T P

length(P) = distTo[w]

≤ distTo[x] + weight(x, w)

≤ length(Pʹ)

w

length of shortest path from s to v

= d *(x) + weight(x, w)

by construction

relax vertex x

induction

P ʹ is some path

to x plus edge x→w ▪

x

s

Seam carving. [Avidan–Shamir] Resize an image without distortion for

display on cell phones and web browsers.

51

Content-aware resizing

http://www.youtube.com/watch?v=vIFCV2spKtg

http://www.youtube.com/watch?v=vIFCV2spKtg

Seam carving. [Avidan–Shamir] Resize an image without distortion for

display on cell phones and web browsers.

 
 
 
 
 
 
 
 
 
 
 
 
 
In the wild. Photoshop, Imagemagick, GIMP, ...

52

Content-aware resizing

To find vertical seam:

Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.

Weight of pixel = “energy function” of 8 neighboring pixels.

Seam = shortest path (sum of vertex weights) from top to bottom.

53

Content-aware resizing

To find vertical seam:

Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.

Weight of pixel = “energy function” of 8 neighboring pixels.

Seam = shortest path (sum of vertex weights) from top to bottom.

54

Content-aware resizing

seam

To remove vertical seam:

Delete pixels on seam (one in each row).

55

Content-aware resizing

seam

To remove vertical seam:

Delete pixels on seam (one in each row).

56

Content-aware resizing

Q1. How to model vertex weights (along with edge weights)?

 
 
 
 
 
Q2. How to model multiple sources and sinks?

58

SHORTEST PATH VARIANTS IN A DIGRAPH

a

b

x

c

e

d
v

Challenge. Given an edge-weighted DAG, find the longest path from 
s to every other vertex.

59

LONGEST PATH IN A DAG

5->4 0.35
4->7 0.37
5->7 0.28
5->1 0.32
4->0 0.38
0->2 0.26
3->7 0.39
1->3 0.29
7->2 0.34
6->2 0.40
3->6 0.52
6->0 0.58
6->4 0.93

longest paths input

4

5

1 3

6

7

0

2

4

5

1 3

6

7

0

2

(0.32 + 0.29 + 0.52 + 0.93 + 0.38 = 2.44)

longest path from 5 to 0

Algorithm for shortest paths

Variations on a theme: vertex relaxations.

Bellman–Ford: relax all vertices; repeat V − 1 times.

Dijkstra: relax vertices in order of distance from s.
Topological sort: relax vertices in topological order.

60

algorithm worst-case
running time

negative
weights †

directed 
cycles

Bellman–Ford E V ✔ ✔

Dijkstra E log V ✔

topological sort E ✔

† no negative cycles

