
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

4.3 MINIMUM SPANNING TREES

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithm

‣ context

Last updated on 11/14/17 5:16 AM

http://algs4.cs.princeton.edu
http://algs4.cs.princeton.edu

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithm

‣ context

4.3 MINIMUM SPANNING TREES

http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne

Def. A spanning tree of G is a subgraph T that is:

A tree: connected and acyclic.

Spanning: includes all of the vertices.

3

Spanning tree

graph G
spanning tree T

Def. A spanning tree of G is a subgraph T that is:

A tree: connected and acyclic.

Spanning: includes all of the vertices.

4

Spanning tree

not connected

5

Def. A spanning tree of G is a subgraph T that is:

A tree: connected and acyclic.

Spanning: includes all of the vertices.

Spanning tree

not a tree (cyclic)

6

Def. A spanning tree of G is a subgraph T that is:

A tree: connected and acyclic.

Spanning: includes all of the vertices.

Spanning tree

not spanning

Input. Connected, undirected graph G with positive edge weights.

7

Minimum spanning tree problem

6 5

9

78 10 14

21

16

24

4 23 18

11

edge-weighted digraph G

8

Input. Connected, undirected graph G with positive edge weights.

Output. A spanning tree of minimum weight.

 
 
 
 
 
 
 
 
 
 
 
 
 
Brute force. Try all spanning trees?

Minimum spanning tree problem

minimum spanning tree T
(weight = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7)

6 5

9

78 10 14

21

16

24

4 23 18

11

Let T be a spanning tree of a connected graph G with V vertices.  
Which of the following statements are true?

A. T contains exactly V – 1 edges.

B. Removing any edge from T disconnects it.

C. Adding any edge to T creates a cycle.

D. All of the above.

9

Minimum spanning trees: quiz 1

spanning tree T of graph G

10

http://www.flickr.com/photos/quasimondo/2695389651

Image processing

MST dithering

http://www.flickr.com/photos/quasimondo/2695389651
http://www.flickr.com/photos/quasimondo/2695389651

11
http://algo.inria.fr/broutin/gallery.html

Models of nature

MST of random graph

12

MST describes arrangement of nuclei in the epithelium for cancer research

http://www.bccrc.ca/ci/ta01_archlevel.html

Medical image processing

13
https://www.youtube.com/watch?v=GwKuFREOgmo

Slime mold grows network just like Tokyo rail system

16. J. A. Burns, P. L. Lamy, S. Soter, Icarus 40, 1 (1979).
17. J. A. Burns, D. P. Hamilton, F. Mignard, S. Soter, in

Physics, Chemistry, and Dynamics of Interplanetary
Dust, ASP Conference Series 104, B. Å. S. Gustafson,
M. S. Hanner, Eds. (Astronomical Society of the Pacific,
San Francisco, 1996), pp. 179–182.

18. B. J. Buratti, M. D. Hicks, K. A. Tryka, M. S. Sittig,
R. L. Newburn, Icarus 155, 375 (2002).

19. F. Tosi et al., preprint available at http://arxiv.org/abs/
0902.3591 (2009).

20. Besides Iapetus, Hyperion, Titan, and outer-satellite
impacts were suggested; see also (12).

21. Reference (18) mentions an increase of the dust flux by ~20%,
whereas (35) finds as much as a factor of 3 for some cases.

22. D. J. Tholen, B. Zellner, Icarus 53, 341 (1983).
23. The leading sides of the moons beyond Mimas and inside

Titan should be substantially coated by E-ring particles
(24, 36, 37), making them less useful for this argument.

24. B. J. Buratti, J. A. Mosher, T. V. Johnson, Icarus 87, 339 (1990).
25. J. A. Burns et al., Science 284, 1146 (1999).
26. S. S. Sheppard, www.dtm.ciw.edu/users/sheppard/

satellites/satsatdata.html (2009).
27. D. Nesvorný, J. L. A. Alvarellos, L. Dones, H. F. Levison,

Astron. J. 126, 398 (2003).

28. D. Turrini, F. Marzari, H. Beust, Mon. Not. R. Astron. Soc.
391, 1029 (2008).

29. A. J. Verbiscer, M. F. Skrutskie, D. P. Hamilton, Nature
461, 1098 (2009).

30. This idea was developed in several papers
(18, 38, 39), but under the assumption that dust
from the outer saturnian moons formed Iapetus’
albedo dichotomy.

31. T. V. Johnson et al., J. Geophys. Res. Solid Earth 88, 5789
(1983).

32. T. Denk, R. Jaumann, G. Neukum, in Lisbon
Euroconference Jupiter After Galileo and Cassini,
Abstracts Book 17 to 21 June 2002, Lisbon, Portugal,
abstr. no. P-4.1.18, 2002, p. 118.

33. B. J. Buratti, J. A. Mosher, Icarus 90, 1 (1991).
34. M. E. Davies, F. Y. Katayama, Icarus 59, 199 (1984).
35. K. J. Zahnle, P. Schenk, H. Levison, L. Dones, Icarus 163,

263 (2003).
36. K. D. Pang, C. C. Voge, J. W. Rhoads, J. M. Ajello,

J. Geophys. Res. Solid Earth 89, 9459 (1984).
37. D. P. Hamilton, J. A. Burns, Science 264, 550 (1994).
38. P. C. Thomas, J. Veverka, Icarus 64, 414 (1985).
39. K. S. Jarvis, F. Vilas, S. M. Larson, M. J. Gaffey, Icarus

146, 125 (2000).

40. G. Neukum, B. A. Ivanov, in Hazards Due to Comets and
Asteroids, T. Gehrels, Ed. (Univ. of Arizona Press, Tucson,
AZ, 1994), pp. 359–416.

41. T. Roatsch et al., Planet. Space Sci. 57, 83 (2009).
42. We acknowledge the individuals at CICLOPS (at the Space

Science Institute in Boulder, CO) and JPL (Pasadena, CA), as
well as the members and associates of the Imaging Team for
the successful conduct of the ISS experiment onboard the
Cassini spacecraft. This paper is dedicated to Steve Ostro,
whose work helped considerably to explain the nature of
Iapetus’ dark terrain. This work has been funded by the
German Aerospace Center (DLR) and NASA/JPL.

Supporting Online Material
www.sciencemag.org/cgi/content/full/science.1177088/DC1
SOM Text
Figs. S1 to S8
Tables S1 and S2
References and Notes

1 June 2009; accepted 1 December 2009
Published online 10 December 2009;
10.1126/science.1177088
Include this information when citing this paper.

Rules for Biologically Inspired
Adaptive Network Design
Atsushi Tero,1,2 Seiji Takagi,1 Tetsu Saigusa,3 Kentaro Ito,1 Dan P. Bebber,4 Mark D. Fricker,4
Kenji Yumiki,5 Ryo Kobayashi,5,6 Toshiyuki Nakagaki1,6*
Transport networks are ubiquitous in both social and biological systems. Robust network performance
involves a complex trade-off involving cost, transport efficiency, and fault tolerance. Biological
networks have been honed by many cycles of evolutionary selection pressure and are likely to yield
reasonable solutions to such combinatorial optimization problems. Furthermore, they develop without
centralized control and may represent a readily scalable solution for growing networks in general. We
show that the slime mold Physarum polycephalum forms networks with comparable efficiency, fault
tolerance, and cost to those of real-world infrastructure networks—in this case, the Tokyo rail system.
The core mechanisms needed for adaptive network formation can be captured in a biologically
inspired mathematical model that may be useful to guide network construction in other domains.

Transport networks are a critical part of the
infrastructure needed to operate a modern
industrial society and facilitate efficient

movement of people, resources, energy, and
information. Despite their importance, most net-
works have emerged without clear global design
principles and are constrained by the priorities
imposed at their initiation. Thus, the main motiva-
tion historically was to achieve high transport
efficiency at reasonable cost, but with correspond-
ingly less emphasis on making systems tolerant to
interruption or failure. Introducing robustness
inevitably requires additional redundant pathways
that are not cost-effective in the short term. In recent
years, the spectacular failure of key infrastructure

such as power grids (1, 2), financial systems (3, 4),
airline baggage-handling systems (5), and railway
networks(6),aswellasthepredictedvulnerabilityof
systems such as information networks (7) or supply
networks (8) to attack, have highlighted the need to
develop networks with greater intrinsic resilience.

Some organisms grow in the form of an inter-
connected network as part of their normal forag-
ing strategy to discover and exploit new resources
(9–12). Such systems continuously adapt to their
environment and must balance the cost of produc-
ing an efficient network with the consequences of
even limited failure in a competitive world. Unlike
anthropogenic infrastructure systems, these biolog-
ical networks have been subjected to successive
rounds of evolutionary selection and are likely to
have reached a point at which cost, efficiency, and
resilience are appropriately balanced. Drawing in-
spiration from biology has led to useful approaches
to problem-solving such as neural networks, ge-
netic algorithms, and efficient search routines de-
veloped from ant colony optimization algorithms
(13). We exploited the slime mold Physarum
polycephalum to develop a biologically inspired
model for adaptive network development.

Physarum is a large, single-celled amoeboid
organism that forages for patchily distributed
food sources. The individual plasmodium ini-
tially explores with a relatively contiguous for-
aging margin to maximize the area searched.
However, behind the margin, this is resolved into
a tubular network linking the discovered food
sources through direct connections, additional in-
termediate junctions (Steiner points) that reduce
the overall length of the connecting network,
and the formation of occasional cross-links that
improve overall transport efficiency and resil-
ience (11, 12). The growth of the plasmodium is
influenced by the characteristics of the sub-
strate (14) and can be constrained by physical
barriers (15) or influenced by the light regime
(16), facilitating experimental investigation of
the rules underlying network formation. Thus,
for example, Physarum can find the shortest
path through a maze (15–17) or connect dif-
ferent arrays of food sources in an efficient
manner with low total length (TL) yet short
averageminimum distance (MD) between pairs
of food sources (FSs), with a high degree of
fault tolerance (FT) to accidental disconnection
(11, 18, 19). Capturing the essence of this sys-
tem in simple rules might be useful in guiding
the development of decentralized networks in
other domains.

We observed Physarum connecting a template
of 36 FSs that represented geographical locations
of cities in the Tokyo area, and compared the result
with the actual rail network in Japan. The
Physarum plasmodium was allowed to grow from
Tokyo and initially filled much of the available
land space, but then concentrated on FSs by
thinning out the network to leave a subset of larger,
interconnecting tubes (Fig. 1). An alternative
protocol, in which the plasmodium was allowed
to extend fully in the available space and the FSs
were then presented simultaneously, yielded sim-
ilar results. To complete the network formation, we
allowed any excess volume of plasmodium to

1Research Institute for Electronic Science, Hokkaido University,
Sapporo 060-0812, Japan. 2PRESTO, JST, 4-1-8 Honcho,
Kawaguchi, Saitama, Japan. 3Graduate School of Engineering,
Hokkaido University, Sapporo 060-8628, Japan. 4Department of
Plant Sciences, University of Oxford, Oxford OX1 3RB, UK.
5Department of Mathematical and Life Sciences, Hiroshima
University, Higashi-Hiroshima 739-8526, Japan. 6JST, CREST, 5
Sanbancho, Chiyoda-ku, Tokyo, 102-0075, Japan.

*To whom correspondence should be addressed. E-mail:
nakagaki@es.hokudai.ac.jp

www.sciencemag.org SCIENCE VOL 327 22 JANUARY 2010 439

REPORTS

 o
n

Ja
nu

ar
y

22
, 2

01
0

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d
fro

m

14

MST is fundamental problem with diverse applications.

Dithering.

Cluster analysis.

Max bottleneck paths.

Real-time face verification.

LDPC codes for error correction.

Image registration with Renyi entropy.

Find road networks in satellite and aerial imagery.

Reducing data storage in sequencing amino acids in a protein.

Model locality of particle interactions in turbulent fluid flows.

Autoconfig protocol for Ethernet bridging to avoid cycles in a network.

Network design (communication, electrical, hydraulic, computer, road).

Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

Applications

http://www.ics.uci.edu/~eppstein/gina/mst.html

http://www.ics.uci.edu/~eppstein/gina/mst.html

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithm

‣ context

4.3 MINIMUM SPANNING TREES

http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne

For simplicity, we assume:

The graph is connected. ⇒ MST exists.

The edge weights are distinct. ⇒ MST is unique.

 
Note. Algorithms still work correctly even if duplicate edge weights.

Simplifying assumptions

16

6

1

2
4

7
10

5

9

12

14

20

16

8

13

no two edge 
weights are equal

11

3

see Exercise 4.3.3

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.

Def. A crossing edge connects a vertex in one set with a vertex in the other.

 
Cut property. Given any cut, the crossing edge of min weight is in the MST.

Cut property

17

crossing edges connect
gray and white vertices

minimum-weight crossing edge
must be in the MST

3

10

5

20

16

11

Which is the min weight edge crossing the cut { 2, 3, 5, 6 } ?

A. 0–7 (0.16)

B. 2–3 (0.17)

C. 0–2 (0.26)

D. 5–7 (0.28)

18

Minimum spanning trees: quiz 2

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

Def. A cut is a partition of a graph’s vertices into two (nonempty) sets. 
Def. A crossing edge connects two vertices in different sets.

Cut property. Given any cut, the min-weight crossing edge e is in the MST.

Pf. Suppose e is not in the MST.

Adding e to the MST creates a cycle.

Some other edge f in cycle must be a crossing edge.

Removing f and adding e is also a spanning tree.

Since weight of e is less than the weight of f, 
that spanning tree has lower weight.

Contradiction. ▪

Cut property: correctness proof

19

e

the MST does
not contain e

adding e to MST
creates a cycle

f

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithm

‣ context

4.3 MINIMUM SPANNING TREES

http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne

21

Weighted edge API

Edge abstraction needed for weighted edges.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Idiom for processing an edge e: int v = e.either(), w = e.other(v);

 public class Edge implements Comparable<Edge>

Edge(int v, int w, double weight) create a weighted edge v-w

int either() either endpoint

int other(int v) the endpoint that's not v

int compareTo(Edge that) compare this edge to that edge

double weight() the weight

String toString() string representation

v
weight

w

22

public class Edge implements Comparable<Edge> 
{ 
 private final int v, w; 
 private final double weight;

}

Weighted edge: Java implementation

public Edge(int v, int w, double weight)  
{ 
 this.v = v; 
 this.w = w; 
 this.weight = weight;  
}

public int either()  
{ return v; }

public int other(int vertex) 
{ 
 if (vertex == v) return w; 
 else return v;  
}

public int compareTo(Edge that) 
{ 
 if (this.weight < that.weight) return -1; 
 else if (this.weight > that.weight) return +1; 
 else return 0; 
}

constructor

either endpoint

other endpoint

compare edges by weight

23

Conventions. Allow self-loops and parallel edges.

Edge-weighted graph API

 public class EdgeWeightedGraph

EdgeWeightedGraph(int V) create an empty graph with V vertices

EdgeWeightedGraph(In in) create a graph from input stream

void addEdge(Edge e) add weighted edge e to this graph

Iterable<Edge> adj(int v) edges incident to v

Iterable<Edge> edges() all edges in this graph

int V() number of vertices

int E() number of edges

String toString() string representation

24

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists.

Edge-weighted graph representation

adj[]
0

1

2

3

4

5

6

7

6 0 .58 0 2 .26 0 4 .38 0 7 .16 Bag
objects

8
16
4 5 0.35
4 7 0.37
5 7 0.28
0 7 0.16
1 5 0.32
0 4 0.38
2 3 0.17
1 7 0.19
0 2 0.26
1 2 0.36
1 3 0.29
2 7 0.34
6 2 0.40
3 6 0.52
6 0 0.58
6 4 0.93

1 3 .29 1 2 .36 1 7 .19 1 5 .32

6 2 .40 2 7 .34 1 2 .36 0 2 .26 2 3 .17

3 6 .52 1 3 .29 2 3 .17

6 4 .93 0 4 .38 4 7 .37 4 5 .35

1 5 .32 5 7 .28 4 5 .35

6 4 .93 6 0 .58 3 6 .52 6 2 .40

2 7 .34 1 7 .19 0 7 .16 5 7 .28 4 7 .37

references to the
same Edge object

tinyEWG.txt
V

E

25

public class EdgeWeightedGraph 
{ 
 private final int V;  
 private final Bag<Edge>[] adj;

}

Edge-weighted graph: adjacency-lists implementation

same as Graph, but adjacency
lists of Edges instead of integers

public EdgeWeightedGraph(int V) 
{ 
 this.V = V; 
 adj = (Bag<Edge>[]) new Bag[V]; 
 for (int v = 0; v < V; v++) 
 adj[v] = new Bag<Edge>(); 
}

public void addEdge(Edge e) 
{ 
 int v = e.either(), w = e.other(v); 
 adj[v].add(e);  
 adj[w].add(e);  
}

public Iterable<Edge> adj(int v)  
{ return adj[v]; }

add edge to both
adjacency lists

constructor

Q. How to represent the MST?

26

Minimum spanning tree API

 public class MST

MST(EdgeWeightedGraph G) constructor

Iterable<Edge> edges() edges in MST

double weight() weight of MST

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithm

‣ context

4.3 MINIMUM SPANNING TREES

http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne

Consider edges in ascending order of weight.

Add next edge to tree T unless doing so would create a cycle.

28

Kruskal’s algorithm demo

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

graph edges
sorted by weight

an edge-weighted graph

Kruskal’s algorithm: visualization

29

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.  

Pf. [Case 1] Kruskal’s algorithm adds edge e = v–w to T.

Vertices v and w are in different connected components of T.

Cut = set of vertices connected to v in T.

By construction of cut, no edge crossing cut is in T.

No edge crossing cut has lower weight. Why?

Cut property ⇒ edge e is in the MST.

30

Kruskal’s algorithm: correctness proof

adding edge to tree
would create a cycle

add edge to tree

v

w

adding edge to tree
would create a cycle

add edge to tree

Proposition. [Kruskal 1956] Kruskal’s algorithm computes the MST.  

Pf. [Case 2] Kruskal’s algorithm discards edge e = v–w.

From Case 1, all edges in T are in the MST.

The MST can’t contain a cycle. ▪

31

Kruskal’s algorithm: correctness proof

v

w

Challenge. Would adding edge v–w to tree T create a cycle? If not, add it.

How difficult to implement?

A. 1

B. log V

C. V

D. E + V

32

Kruskal’s algorithm: implementation challenge

adding edge to tree
would create a cycle

add edge to tree

Case 1: v and w in same component Case 2: v and w in different components

33

Challenge. Would adding edge v–w to tree T create a cycle? If not, add it.  

Efficient solution. Use the union–find data structure.

Maintain a set for each connected component in T.

If v and w are in same set, then adding v–w would create a cycle.

To add v–w to T, merge sets containing v and w.

Kruskal’s algorithm: implementation challenge

Case 2: adding v–w creates a cycle

v w

Case 1: add v–w to T and merge sets containing v and w

w

v

34

Kruskal’s algorithm: Java implementation

public class KruskalMST  
{
 private Queue<Edge> mst = new Queue<Edge>(); 

 public KruskalMST(EdgeWeightedGraph G) 
 {
 DirectedEdge[] edges = G.edges(); 
 Arrays.sort(edges);
 UF uf = new UF(G.V()); 

 for (int i = 0; i < G.E(); i++) 
 { 
 
 
 
 
 
 
 
  
 } 
 } 

 public Iterable<Edge> edges()  
 { return mst; }  
}

Edge e = edges[i];  
int v = e.either(), w = e.other(v);
if (uf.find(v) != uf.find(w)) 
{
 uf.union(v, w);
 mst.enqueue(e);  
}

sort edges by weight

greedily add edges to MST

edge v–w does not create cycle

merge connected components

add edge e to MST

maintain connected components

edges in the MST

35

Proposition. Kruskal’s algorithm computes MST in time proportional  
to E log E (in the worst case).

 
 
Pf.

Kruskal’s algorithm: running time

† using weighted quick union

operation frequency time per op

SORT 1 E log E

UNION V − 1 log V †

FIND 2 E log V †

Greed is good

36

Gordon Gecko (Michael Douglas) evangelizing the importance of greed (in algorithm design?) 
Wall Street (1986)

Problem. Given an undirected graph G with positive edge weights, 
find a spanning tree that maximizes the sum of the edge weights.

Running time. E log E (or better).

37

MAXIMUM SPANNING TREE

maximum spanning tree T (weight = 104)

14 19

17

712 13 6

5

8

9

18 10 15

16

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithm

‣ context

4.3 MINIMUM SPANNING TREES

http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne

Start with vertex 0 and greedily grow tree T.

Add to T the min weight edge with exactly one endpoint in T.

Repeat until V – 1 edges.

39

Prim’s algorithm demo

5

4

7

1
3

0

2

6

0-7 0.16
2-3 0.17

1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29

1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36

4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52

6-0 0.58
6-4 0.93

an edge-weighted graph

Prim’s algorithm: visualization

40

Proposition. [Jarník 1930, Dijkstra 1957, Prim 1959] 
Prim’s algorithm computes the MST. 

Pf. Let e = min weight edge with exactly one endpoint in T.

Cut = set of vertices in T.

No crossing edge is in T.

No crossing edge has lower weight.

Cut property ⇒ edge e is in the MST. ▪

41

Prim’s algorithm: proof of correctness

edge e = 7-5 added to tree

42

Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult to implement?  

A. l

B. log E

C. V

D. E

Prim’s algorithm: implementation challenge

1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T

43

Challenge. Find the min weight edge with exactly one endpoint in T.  

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.

Key = edge; priority = weight of edge.

DELETE-MIN to determine next edge e = v–w to add to T.

If both endpoints v and w are marked (both in T), disregard.

Otherwise, let w be the unmarked vertex (not in T):

– add e to T and mark w

– add to PQ any edge incident to w (assuming other endpoint not in T)

Prim’s algorithm: lazy implementation

1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

priority queue
of crossing edges

1-7 is min weight edge with
exactly one endpoint in T

Start with vertex 0 and greedily grow tree T.

Add to T the min weight edge with exactly one endpoint in T.

Repeat until V – 1 edges.

44

Prim’s algorithm: lazy implementation demo

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

an edge-weighted graph

public class LazyPrimMST
{ 
 private boolean[] marked; // MST vertices  
 private Queue<Edge> mst; // MST edges 
 private MinPQ<Edge> pq; // PQ of edges 

 public LazyPrimMST(WeightedGraph G)  
 { 
 pq = new MinPQ<Edge>(); 
 mst = new Queue<Edge>();  
 marked = new boolean[G.V()];  
 visit(G, 0);  
 
 
 
 
 
 
 
 
 
 
 
 } 
}

45

Prim’s algorithm: lazy implementation

while (!pq.isEmpty() && mst.size() < G.V() - 1) 
{ 
 Edge e = pq.delMin(); 
 int v = e.either(), w = e.other(v);
 if (marked[v] && marked[w]) continue;

 mst.enqueue(e);
 if (!marked[v]) visit(G, v); 
 if (!marked[w]) visit(G, w); 
}

repeatedly delete the
min weight edge e = v–w from PQ

ignore if both endpoints in T

add either v or w to tree

assume G is connected

add edge e to tree

 
 public Iterable<Edge> mst() 
 { return mst; }

46

Prim’s algorithm: lazy implementation

private void visit(WeightedGraph G, int v)  
{ 
 marked[v] = true;  
 for (Edge e : G.adj(v)) 
 if (!marked[e.other(v)]) 
 pq.insert(e);  
}

for each edge e = v–w, add to

PQ if w not already in T

add v to T

47

Proposition. Lazy Prim’s algorithm computes the MST in time proportional  
to E log E and extra space proportional to E (in the worst case).  

 
 
Pf.

Lazy Prim’s algorithm: running time

operation frequency binary heap

DELETE-MIN E log E

INSERT E log E

minor defect

48

Challenge. Find min weight edge with exactly one endpoint in T.

 
Observation. For each vertex v, need only lightest edge connecting v to T.

MST includes at most one edge connecting v to T. Why?

If MST includes such an edge, it must take lightest such edge. Why?

Prim’s algorithm: eager implementation

5

4

7

1
3

0

2

6

Start with vertex 0 and greedily grow tree T.

Add to T the min weight edge with exactly one endpoint in T.

Repeat until V – 1 edges.

49

Prim’s algorithm: eager implementation demo

5

4

7

1
3

0

2

6

0-7 0.16

2-3 0.17

1-7 0.19

0-2 0.26

5-7 0.28

1-3 0.29

1-5 0.32

2-7 0.34

4-5 0.35

1-2 0.36

4-7 0.37

0-4 0.38

6-2 0.40

3-6 0.52

6-0 0.58

6-4 0.93

an edge-weighted graph

Start with vertex 0 and greedily grow tree T.

Add to T the min weight edge with exactly one endpoint in T.

Repeat until V – 1 edges.

50

Prim’s algorithm: eager implementation demo

5

4

7

1
3

0

2

6

0-7 1-7 0-2 2-3 5-7 4-5 6-2

MST edges

v edgeTo[] distTo[]

0 - -

7 0–7 0.16

1 1–7 0.19

2 0–2 0.26

3 2–3 0.17

5 5–7 0.28

4 4–5 0.35

6 6–2 0.40

51

Challenge. Find min weight edge with exactly one endpoint in T.

 
 
Eager solution. Maintain a PQ of vertices connected by an edge to T, 
where priority of vertex v = weight of lightest edge connecting v to T.

Delete min vertex v; add its associated edge e = v–w to T.

Update PQ by considering all edges e = v–x incident to v
– ignore if x is already in T

– add x to PQ if not already on it

– decrease priority of x if v–x becomes lightest edge connecting x to T

Prim’s algorithm: eager implementation

0
1 1-7 0.19
2 0-2 0.26
3 1-3 0.29
4 0-4 0.38
5 5-7 0.28
6 6-0 0.58
7 0-7 0.16

black: on MST

red: on PQ

PQ has at most one entry per vertex

52

Associate an index between 0 and n – 1 with each key in a priority queue.

Insert a key associated with a given index.

Delete a minimum key and return associated index.

Decrease the key associated with a given index.

Indexed priority queue

 public class IndexMinPQ<Key extends Comparable<Key>>

IndexMinPQ(int n) create indexed PQ with indices 0, 1, … , n – 1

void insert(int i, Key key) associate key with index i

int delMin() remove a minimal key and return its associated index

void decreaseKey(int i, Key key) decrease the key associated with index i

boolean contains(int i) is i an index on the priority queue?

boolean isEmpty() is the priority queue empty?

int size() number of keys in the priority queue

for Prim’s algorithm,
n = V and index = vertex.

Binary heap implementation. [see Section 2.4 of textbook]

Start with same code as MinPQ.

Maintain parallel arrays so that:

– keys[i] is the priority of vertex i

– qp[i] is the heap position of vertex i

– pq[i] is the index of the key in heap position i

Use swim(qp[i]) to implement decreaseKey(i, key).

53

Indexed priority queue: implementation

 i 0 1 2 3 4 5 6 7 8

keys[i] A S O R T I N G -

 qp[i] 1 5 4 8 7 6 2 3 -

 pq[i] - 0 6 7 2 1 5 4 3

decrease key of vertex 2 to C

G

S I TO

R

N

A1

2 3

4 5 6 7

8

vertex 2 is at
heap index 4

54

Depends on PQ implementation: V INSERT, V DELETE-MIN, E DECREASE-KEY.

 
 
 
 
 
 
 
 
 
Bottom line.

Array implementation optimal for complete graphs.

Binary heap much faster for sparse graphs.

4-way heap worth the trouble in performance-critical situations.

Fibonacci heap best in theory, but not worth implementing.

Prim’s algorithm: which priority queue?

† amortized

PQ implementation INSERT INSERT-MIN DECREASE-KEY total

unordered array 1 V 1 V 2

binary heap log V log V log V E log V

d-way heap logd V d logd V logd V E logE/V V

Fibonacci heap 1 † log V † 1 † E + V log V

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ cut property

‣ edge-weighted graph API

‣ Kruskal’s algorithm

‣ Prim’s algorithm

‣ context

4.3 MINIMUM SPANNING TREES

http://algs4.cs.princeton.edu
http://www.cs.princeton.edu/~wayne

Remark. Linear-time randomized MST algorithm (Karger–Klein–Tarjan).

56

deterministic compare-based MST algorithms

Does a linear-time MST algorithm exist?

year worst case discovered by

1975 E log log V Yao

1976 E log log V Cheriton–Tarjan

1984 E log* V, E + V log V Fredman–Tarjan

1986 E log (log* V) Gabow–Galil–Spencer–Tarjan

1997 E α(V) log α(V) Chazelle

2000 E α(V) Chazelle

2002 optimal Pettie–Ramachandran

20xx E ???

Given n points in the plane, find MST connecting them, where the distances

between point pairs are their Euclidean distances.

 
 
 
 
 
 
 
 
 
 
 
 
Brute force. Compute ~ n 2 / 2 distances and run Prim’s algorithm.

Ingenuity. Exploit geometry; n log n using Delaunay triangulation.
57

Euclidean MST

Problem. Given an edge-weighted graph G, find a spanning tree that  
minimizes the maximum weight of its edges.

Running time. E log E (or better).

58

MINIMUM BOTTLENECK SPANNING TREE

minimum bottleneck spanning tree T (bottleneck = 9)

6 5

9

78 7 14

21

3

24

4 10 11

Note: not necessarily a MST

9

