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Definition.  A BST is a binary tree in symmetric order. 

 
 
A binary tree is either: 

Empty. 

Two disjoint binary trees (left and right). 

 
 
 
Symmetric order.  Each node has a key, 
and every node’s key is: 

Larger than all keys in its left subtree. 

Smaller than all keys in its right subtree.

3

Binary search trees

right child
of root

a left link

a subtree

root

null links

Anatomy of a binary tree

value
associated

with R

parent of A and R

left link
of E

keys smaller than E keys larger than E

key

A
C

E

H
R

S
X

9

Anatomy of a binary search tree



Search.  If less, go left; if greater, go right; if equal, search hit.
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Insert.  If less, go left; if greater, go right; if null, insert.
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Java definition.  A BST is a reference to a root Node. 

A Node is composed of four fields: 

A Key and a Value. 

A reference to the left and right subtree.
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BST representation in Java

smaller keys larger keys

Binary search tree

BST with smaller keys BST with larger keys

key

left right

val

BST

Node

Key and Value are generic types; Key is Comparable

private class Node 
{ 
 
 
 

   public Node(Key key, Value val)  
   { 
      this.key = key;  
      this.val = val;  
   } 
}

private Key key; 
private Value val; 
private Node left, right;
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BST implementation (skeleton)

public class BST<Key extends Comparable<Key>, Value> 
{ 
 

   private class Node 
   {  /* see previous slide */  } 
  
   public void put(Key key, Value val)  
   {  /* see next slide */  } 

   public Value get(Key key) 
   {  /* see next slide */  } 

   public Iterable<Key> iterator() 
   {  /* see slides in next section */  } 

   public void delete(Key key) 
   {  /* see textbook */  } 

}

private Node root; root of BST



Get.  Return value corresponding to given key, or null if no such key. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Cost.  Number of compares = 1 + depth of node.
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BST search:  Java implementation

 public Value get(Key key) 
 { 
    Node x = root; 
    while (x != null) 
    { 
       int cmp = key.compareTo(x.key); 
       if      (cmp  < 0) x = x.left; 
       else if (cmp  > 0) x = x.right; 
       else if (cmp == 0) return x.val; 
    } 
    return null; 
 }



Put.  Associate value with key. 

Search for key, then two cases: 

Key in tree  ⇒  reset value. 

Key not in tree ⇒  add new node.
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Put.  Associate value with key.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Cost.  Number of compares = 1 + depth of node.
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BST insert:  Java implementation

 public void put(Key key, Value val) 
 {  root = put(root, key, val);  } 

 private Node put(Node x, Key key, Value val) 
 { 
    if (x == null) return new Node(key, val); 
    int cmp = key.compareTo(x.key); 
 
 
 
 
 
 
 

    return x; 
 }

 if      (cmp  < 0) x.left  = put(x.left,  key, val); 
 else if (cmp  > 0) x.right = put(x.right, key, val); 
 else if (cmp == 0) x.val   = val;

Warning: concise but tricky code; read carefully!



Many BSTs correspond to same set of keys. 

Number of compares for search/insert = 1 + depth of node. 

 
 
 
 
 
 
 
 
 
 
 
 
Bottom line.  Tree shape depends on order of insertion.
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BST insertion:  random order visualization

Ex.  Insert keys in random order. 



What is the expected number of compares to sort n distinct keys  
using the following sorting algorithm?
 
 
 
 
 
 

A.  ~ n lg n 

B.  ~ n ln n 

C.  ~ 2 n lg n 

D.  ~ 2 n ln n
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Binary search trees:  quiz 1

1.  Shuffle the keys.

2.  Insert the keys into a BST, one at a time.

3.  Do an inorder traversal of the BST.



Remark.  Correspondence is 1–1 if array has no duplicate keys.
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Correspondence between BSTs and quicksort partitioning
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Proposition.  If n distinct keys are inserted into a BST in random order,  
the expected number of compares for a search/insert is ~ 2 ln n. 

Pf.  1–1 correspondence with quicksort partitioning. 

 
 
Proposition.  [Reed, 2003]  If n distinct keys are inserted into a BST  
in random order, the expected height is ~ 4.311 ln n. 

 
 
 
 
 
 
 
But…   Worst-case height is n – 1. 
[ exponentially small chance when keys are inserted in random order ]
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BSTs:  mathematical analysis

How Tall is a Tree? 

Bruce Reed 
CNRS, Paris, France 

reed@moka.ccr.jussieu.fr 

ABSTRACT 
Let H~ be the height of a random binary search tree on n 
nodes. We show that  there exists constants a = 4.31107.. .  
and/3 = 1.95.. .  such that E(H~) = c~logn - / 3 1 o g l o g n  + 
O(1), We also show that  Var(H~) = O(1). 

Categories and Subject Descriptors 
E.2 [Data  S t ruc tu res ] :  Trees 

1. THE RESULTS 
A binary search tree is a binary tree to each node of which 
we have associated a key; these keys axe drawn from some 
totally ordered set and the key at v cannot be larger than 
the key at its right child nor smaller than the key at its left 
child. Given a binary search tree T and a new key k, we 
insert k into T by traversing the tree starting at the root 
and inserting k into the first empty position at which we 
arrive. We traverse the tree by moving to the left child of the 
current node if k is smaller than the current key and moving 
to the right child otherwise. Given some permutation of 
a set of keys, we construct a binary search tree from this 
permutation by inserting them in the given order into an 
initially empty tree. 
The height Hn of a random binary search tree T,~ on n 
nodes, constructed in this manner starting from a random 
equiprobable permutation of 1 , . . . ,  n, is known to be close 
to a l o g n  where a = 4.31107...  is the unique solution on 
[2, ~ )  of the equation a log((2e)/a) = 1 (here and elsewhere, 
log is the natural logarithm). First, Pittel[10] showed that  
H,~/log n --~ 3' almost surely as n --+ c~ for some positive 
constant 7. This constant was known not to exceed c~ [11], 
and Devroye[3] showed that "7 = a, as a consequence of the 
fact that E(Hn) ~ c~logn. Robson[12] has found that Hn 
does not vary much from experiment to experiment, and 
seems to have a fixed range of width not depending upon n. 
Devroye and Reed[5] proved that  Var(Hn) = O((log log n)2), 
but this does not quite confirm Robson's findings. It is the 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
STOC 2000 Portland Oregon USA 
Copyright ACM 2000 1-58113-184-4/00/5...$5.00 

3 purpose of this note to prove that  for /3 -- ½ + ~ ,  we 
have: 

THEOREM 1. E(H~) = ~ l o g n  - / 3 1 o g l o g n  + O(1) and 
Var(Hn) = O(1) . 

R e m a r k  By the definition of a,  /3 = 3~ 7"g~" The first defi- 
nition given is more suggestive of why this value is correct, 
as we will see. 
For more information on random binary search trees, one 
may consult [6],[7], [1], [2], [9], [4], and [8]. 
R e m a r k  After I announced these results, Drmota(unpublished) 
developed an alternative proof of the fact that  Var(Hn) = 
O(1) using completely different techniques. As our two 
proofs illuminate different aspects of the problem, we have 
decided to submit the journal versions to the same journal 
and asked that they be published side by side. 

2. A MODEL 
If we construct a binary search tree from a permutation 
of 1, ..., n and i is the first key in the permutation then: 
i appears at the root of the tree, the tree rooted at the 
left child of i contains the keys 1, ..., i - 1 and its shape 
depends only on the order in which these keys appear in 
the permutation, mad the tree rooted at the right child of i 
contains the keys i + 1, ..., n and its shape depends only on 
the order in which these keys appear in the permutation. 
From this observation, one deduces that  Hn is also the num- 
ber of levels of recursion required when Vazfilla Quicksort 
(i.e. the version of Quicksort in which the first element in 
the permuation is chosen as the pivot) is applied to a random 
permutation of 1, ..., n. 
Our observation also allows us to construct Tn from the top 
down. To ease our exposition, we think of T,~ as a labelling 
of a subtree of T~,  the complete infinite binary tree. 
We will expose the key associated with each node t of T~. 
To underscore the relationship with Quicksort, we refer to 
the key at t as the pivot at t. Suppose then that we have 
exposed the pivots for some of the nodes forming a subtree 
of Too, rooted at the root of T~.  Suppose further that for 
some node t of T~¢, all of the ancestors of t are in T,~ and 
we have chosen their pivots. Then, these choices determine 
the set of keys Kt which will appear at the (possibly empty) 
subtree of T,~ rooted at t, but  will have no effect on the order 
in which we expect the keys in Kt to appear. Indeed each 
permutation of Kt is equally likely. Thus, each of the keys 
in Kt will be equally likely to be the pivot. We let nt be 
the number of keys in this set and specify the pivot at t by 
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ST implementations:  summary

implementation

guarantee average case
operations

on keys
search insert search hit insert

sequential search
(unordered list)

n n n n equals()

binary search
(ordered array) log n n log n n compareTo()

BST n n log n log n compareTo()

Why not shuffle to ensure a (probabilistic) guarantee of log n?
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In which order does traverse(root) print the keys in the BST?
 
 
 
 
 
 
 
 

A.   A C E H M R S X 

B.   S E A C R H M X 

C.   C A M H R E X S 

D.   S E X A R C H M
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Binary search trees:  quiz 2

private void traverse(Node x)  
{ 
   if (x == null) return;  
   traverse(x.left); 
   StdOut.println(x.key); 
   traverse(x.right);  
} 
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X

root



Inorder traversal
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output: A C E H M R S X

               print M

         inorder(C)
            print C
            done C

      inorder(A)

inorder(S)
   inorder(E)

         print A

         done A
      print E
      inorder(R)
         inorder(H)
            print H
            inorder(M)

               done M
            done H
         print R 
         done R 
      done E 
   print S 
   inorder(X)
      print X
      done X
   done S

X

RA

C H

E

S

M



Traverse left subtree. 

Enqueue key. 

Traverse right subtree. 

Property.  Inorder traversal of a BST yields keys in ascending order.

key

key

val

BST with smaller keys

smaller keys, in order larger keys, in order

all keys, in order

BST with larger keys

left right

BST

Inorder traversal
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 public Iterable<Key> keys()  
 {  
    Queue<Key> q = new Queue<Key>();  
    inorder(root, q);  
    return q; 
 } 

private void inorder(Node x, Queue<Key> q)  
{  
   if (x == null) return;  
   inorder(x.left, q);  
   q.enqueue(x.key);  
   inorder(x.right, q);  
} 



Running time

Property.  Inorder traversal of a BST takes linear time.
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Silicon Valley, Season 4, Episode 5



Level-order traversal of a binary tree. 

Process root. 

Process children of root, from left to right. 

Process grandchildren of root, from left to right. 

…

M
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LEVEL-ORDER TRAVERSAL

level-order traversal:

T

RA

C H

E

S

M

S E T A R C H



S

Q2.  Given the level-order traversal of a BST, how to (uniquely) reconstruct? 

Ex.  S E T A R C H M

E
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LEVEL-ORDER TRAVERSAL

T

RA

C H

M
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Minimum.  Smallest key in BST. 

Maximum.  Largest key in BST. 

Q.  How to find the min / max?  

Minimum and maximum
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Examples of BST order queries

A
C

E

H
M

R

S
X

min()
max()max

min



Floor.  Largest key in BST  ≤  query key. 

Ceiling.  Smallest key in BST  ≥  query key. 

Q.  How to find the floor / ceiling?

Floor and ceiling
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Examples of BST order queries
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Floor.  Largest key in BST ≤ k ? 
 
Key idea. 

To compute floor(key), search for key. 

On search path, must encounter floor(key) and ceiling(key). Why?

Computing the floor
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Examples of BST order queries
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public Key floor(Key key) 
{  return floor(root, key, null);  } 

private Key floor(Node x, Key key, Key best)  
{   
   if (x == null) return best; 
   int cmp = key.compareTo(x.key); 
   if      (cmp  < 0) return floor(x.left, key, best); 
   else if (cmp  > 0) return floor(x.right, key, x.key); 
   else if (cmp == 0) return x.key;  
} 

Computing the floor
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key in node is too big 
(so look in left subtree)

key in node is best candidate for floor 
(but maybe better one in right subtree)



Rank.  How many keys < key ? 
Select.  Key of rank k. 

Q.  How to implement rank() and select() efficiently for BSTs?  

A.  In each node, store the number of nodes in its subtree.

A
C

E

H
M

R

S
X
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Rank and select

subtree count

8
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2

1
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BST implementation:  subtree counts

private class Node 
{ 
   private Key key; 
   private Value val; 
   private Node left; 
   private Node right; 
   private int count; 
}

 private int count;

number of  nodes in subtree

private Node put(Node x, Key key, Value val) 
{ 
   if (x == null) return new Node(key, val, 1); 
   int cmp = key.compareTo(x.key); 
   if      (cmp  < 0) x.left  = put(x.left,  key, val); 
   else if (cmp  > 0) x.right = put(x.right, key, val); 
   else if (cmp == 0) x.val = val; 

   x.count = 1 + size(x.left) + size(x.right); 

   return x; 
 }

 x.count = 1 + size(x.left) + size(x.right);

initialize subtree 
count to 1

  public int size() 
  {  return size(root);  }

 private int size(Node x) 
 { 
    if (x == null) return 0; 
    return x.count; 
 }

ok to call 
when x is null
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Computing the rank

Rank.  How many keys < key ? 
 
Case 1.  [ key  <  key in node ] 

Keys in left subtree?   count  
Key in node?    0 

Keys in right subtree?   0 

 
Case 2.  [ key  >  key in node ] 

Keys in left subtree?   all 
Key in node.    1 

Keys in right subtree?   count 
 
Case 3.  [ key =  key in node ] 

Keys in left subtree?   count 
Key in node.    0 

Keys in right subtree?   0

A
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1

1

1

3

2

node count
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Rank

Rank.  How many keys < key ? 

Easy recursive algorithm (3 cases!)

A
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6

8

1

1

1

3

2

node count

public int rank(Key key)  
{  return rank(key, root);  }  

private int rank(Key key, Node x)  
{  
 
 
 
 
 
 
}

if (x == null) return 0;  
int cmp = key.compareTo(x.key); 
if      (cmp  < 0) return rank(key, x.left);  
else if (cmp  > 0) return 1 + size(x.left) + rank(key, x.right);  
else if (cmp == 0) return size(x.left); 
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BST:  ordered symbol table operations summary

sequential  
search

binary 
search BST

search n log n h

insert n n h

min / max n 1 h

floor / ceiling n log n h

rank n log n h

select n 1 h

ordered iteration n log n n n

h = height of BST

order of growth of running time of ordered symbol table operations



Next week.  Guarantee logarithmic performance for all operations.

implementation

guarantee average case
ordered

ops?
key

interface
search insert search hit insert

sequential search 
(unordered list) n n n n equals()

binary search 
(ordered array) log n n log n n ✔ compareTo()

BST n n log n log n ✔ compareTo()

red-black BST log n log n log n log n ✔ compareTo()
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ST implementations:  summary


