1.4 **Analysis of Algorithms**

- introduction
- observations
- mathematical models
- order-of-growth classifications
- memory
As soon as an Analytical Engine exists, it will necessarily guide the future course of the science. Whenever any result is sought by its aid, the question will then arise—By what course of calculation can these results be arrived at by the machine in the shortest time? — Charles Babbage (1864)
Reasons to analyze algorithms

Predict performance.

Compare algorithms.

Provide guarantees.

Understand theoretical basis.

Primary practical reason: avoid performance bugs.
An algorithmic success story

N-body simulation.

- Simulate gravitational interactions among N bodies.
- Applications: cosmology, fluid dynamics, semiconductors, ...
- Brute force: N^2 steps.
- Barnes-Hut algorithm: $N \log N$ steps, enables new research.
Another algorithmic success story

Discrete Fourier transform.

- Express signal as weighted sum of sines and cosines.
- Applications: DVD, JPEG, MRI, astrophysics,
- Brute force: N^2 steps.
- FFT algorithm: $N \log N$ steps, enables new technology.

![Graph showing time vs. size for different algorithmic complexities: quadratic, linearithmic, and linear, with limit on available time indicated.]
1.4 Analysis of Algorithms

- introduction
- observations
- mathematical models
- order-of-growth classifications
- memory
The challenge

Q. Will my program be able to solve a large practical input?

Insight. [Knuth 1970s] Use scientific method to understand performance.
Scientific method applied to the analysis of algorithms

A framework for predicting performance and comparing algorithms.

Scientific method.
- **Observe** some feature of the natural world.
- **Hypothesize** a model that is consistent with the observations.
- **Predict** events using the hypothesis.
- **Verify** the predictions by making further observations.
- **Validate** by repeating until the hypothesis and observations agree.

Principles.
- Experiments must be **reproducible**.
- Hypotheses must be **falsifiable**.

Feature of the natural world. Computer itself.
Example: 3-SUM

3-SUM. Given \(N \) distinct integers, how many triples sum to exactly zero?

Context. Deeply related to problems in computational geometry.

% more 8ints.txt
8
30 -40 -20 -10 40 0 10 5

% java ThreeSum 8ints.txt
4

<table>
<thead>
<tr>
<th></th>
<th>a[i]</th>
<th>a[j]</th>
<th>a[k]</th>
<th>sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30</td>
<td>-40</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>30</td>
<td>-20</td>
<td>-10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>-40</td>
<td>40</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>-10</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>
public class ThreeSum
{
 public static int count(int[] a)
 {
 int N = a.length;
 int count = 0;
 for (int i = 0; i < N; i++)
 for (int j = i+1; j < N; j++)
 for (int k = j+1; k < N; k++)
 if (a[i] + a[j] + a[k] == 0)
 count++;
 return count;
 }

 public static void main(String[] args)
 {
 In in = new In(args[0]);
 int[] a = in.readAllInts();
 StdOut println(count(a));
 }
}
Measuring the running time

Q. How to time a program?
A. Manual.
Measuring the running time

Q. How to time a program?
A. Automatic.

```java
public class Stopwatch {
    // (part of stdlib.jar)

    public Stopwatch() {
        // create a new stopwatch
    }

    public double elapsedTime() {
        // time since creation (in seconds)
    }
}

public static void main(String[] args) {
    In in = new In(args[0]);
    int[] a = in.readAllInts();
    Stopwatch stopwatch = new Stopwatch();
    StdOut.println(ThreeSum.count(a));
    double time = stopwatch.elapsedTime();
    StdOut.println("elapsed time = " + time);
}
```
Empirical analysis

Run the program for various input sizes and measure running time.
Empirical analysis

Run the program for various input sizes and measure running time.

<table>
<thead>
<tr>
<th>N</th>
<th>time (seconds) †</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.0</td>
</tr>
<tr>
<td>500</td>
<td>0.0</td>
</tr>
<tr>
<td>1,000</td>
<td>0.1</td>
</tr>
<tr>
<td>2,000</td>
<td>0.8</td>
</tr>
<tr>
<td>4,000</td>
<td>6.4</td>
</tr>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
</tbody>
</table>

† on a 2.8GHz Intel PU-226 with 64GB DDR E3 memory and 32MB L3 cache; running Oracle Java 1.7.0_45-b18 on Springdale Linux v. 6.5
Data analysis

Standard plot. Plot running time $T(N)$ vs. input size N.

![Graph showing running time versus input size]

- **y-axis:** Running time $T(N)$
- **x-axis:** Problem size N
- **Legend:** Standard plot

- The graph shows a curve indicating exponential growth in running time with increasing input size.
- A straight line of slope 3 is also present, suggesting a lower bound on the growth rate.

Standard plot. Plot running time $T(N)$ vs. input size N. The graph illustrates the exponential growth in running time with increasing input size. A straight line with a slope of 3 is also depicted, indicating a lower bound on the growth rate.
Data analysis

Log-log plot. Plot running time \(T(N) \) vs. input size \(N \) using log-log scale.

Regression. Fit straight line through data points: \(a N^b. \)

Hypothesis. The running time is about \(1.006 \times 10^{-10} \times N^{2.999} \) seconds.
Prediction and validation

Hypothesis. The running time is about $1.006 \times 10^{-10} \times N^{2.999}$ seconds.

Predictions.
- 51.0 seconds for $N = 8,000$.
- 408.1 seconds for $N = 16,000$.

Observations.

<table>
<thead>
<tr>
<th>N</th>
<th>time (seconds) †</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
<tr>
<td>8,000</td>
<td>51.0</td>
</tr>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
<tr>
<td>16,000</td>
<td>410.8</td>
</tr>
</tbody>
</table>

validates hypothesis!
Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Run program, **doubling** the size of the input.

<table>
<thead>
<tr>
<th>N</th>
<th>time (seconds)</th>
<th>ratio</th>
<th>lg ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>0.0</td>
<td></td>
<td>–</td>
</tr>
<tr>
<td>500</td>
<td>0.0</td>
<td>4.8</td>
<td>2.3</td>
</tr>
<tr>
<td>1000</td>
<td>0.1</td>
<td>6.9</td>
<td>2.8</td>
</tr>
<tr>
<td>2000</td>
<td>0.8</td>
<td>7.7</td>
<td>2.9</td>
</tr>
<tr>
<td>4000</td>
<td>6.4</td>
<td>8.0</td>
<td>3.0</td>
</tr>
<tr>
<td>8000</td>
<td>51.1</td>
<td>8.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

\[
\frac{T(N)}{T(N/2)} = \frac{a N^b}{a (N/2)^b} = 2^b
\]

\[
\text{lg (6.4 / 0.8) = 3.0}
\]

\[
\text{seems to converge to a constant } b \approx 3
\]

Hypothesis. Running time is about $a N^b$ with $b = \text{lg ratio}$.

Caveat. Cannot identify logarithmic factors with doubling hypothesis.
Doubling hypothesis

Doubling hypothesis. Quick way to estimate b in a power-law relationship.

Q. How to estimate a (assuming we know b)?

A. Run the program (for a sufficient large value of N) and solve for a.

<table>
<thead>
<tr>
<th>N</th>
<th>time (seconds) †</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
<tr>
<td>8,000</td>
<td>51.0</td>
</tr>
<tr>
<td>8,000</td>
<td>51.1</td>
</tr>
</tbody>
</table>

51.1 = $a \times 8000^3$

$\Rightarrow a = 0.998 \times 10^{-10}$

Hypothesis. Running time is about $0.998 \times 10^{-10} \times N^3$ seconds.

almost identical hypothesis to one obtained via regression
Estimate the running time to solve a problem of size $N = 96,000$.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>39</td>
<td>0.02</td>
</tr>
<tr>
<td>B</td>
<td>52</td>
<td>0.05</td>
</tr>
<tr>
<td>C</td>
<td>117</td>
<td>0.20</td>
</tr>
<tr>
<td>D</td>
<td>350</td>
<td>0.81</td>
</tr>
<tr>
<td>E</td>
<td>I don't know</td>
<td>3.25</td>
</tr>
<tr>
<td></td>
<td>16,000</td>
<td>13.00</td>
</tr>
<tr>
<td></td>
<td>32,000</td>
<td></td>
</tr>
</tbody>
</table>
Experimental algorithmics

System independent effects.
- Algorithm.
- Input data.

\[a \text{ in power law } a N^b \]

System dependent effects.
- Hardware: CPU, memory, cache, ...
- Software: compiler, interpreter, garbage collector, ...
- System: operating system, network, other apps, ...

\[b \text{ determines exponent} \]

Bad news. Sometimes difficult to get precise measurements.

Good news. Much easier and cheaper than other sciences.
An aside

Algorithmic experiments are virtually free by comparison with other sciences.

Chemistry
(1 experiment)

Biology
(1 experiment)

Computer Science
(1 million experiments)

Physics
(1 experiment)

Bottom line. No excuse for not running experiments to understand costs.
1.4 **Analysis of Algorithms**

- introduction
- observations
- *mathematical models*
- order-of-growth classifications
- memory
Mathematical models for running time

Total running time: sum of cost \times frequency for all operations.
- Need to analyze program to determine set of operations.
- Cost depends on machine, compiler.
- Frequency depends on algorithm, input data.

In principle, accurate mathematical models are available.
Example: 1-SUM

Q. How many instructions as a function of input size N?

```c
int count = 0;
for (int i = 0; i < N; i++)
    if (a[i] == 0)
        count++;
```

<table>
<thead>
<tr>
<th>operation</th>
<th>cost (ns) †</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>$2/5$</td>
<td>2</td>
</tr>
<tr>
<td>assignment statement</td>
<td>$1/5$</td>
<td>2</td>
</tr>
<tr>
<td>less than compare</td>
<td>$1/5$</td>
<td>$N + 1$</td>
</tr>
<tr>
<td>equal to compare</td>
<td>$1/10$</td>
<td>N</td>
</tr>
<tr>
<td>array access</td>
<td>$1/10$</td>
<td>N</td>
</tr>
<tr>
<td>increment</td>
<td>$1/10$</td>
<td>N to $2\times N$</td>
</tr>
</tbody>
</table>

† representative estimates (with some poetic license)
Example: 2-SUM

Q. How many instructions as a function of input size N?

```java
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        if (a[i] + a[j] == 0)
            count++;
```

\[
0 + 1 + 2 + \ldots + (N-1) = \frac{1}{2} N (N-1)
\]

Pf. [Gauss]

\[
T(N) = 0 + 1 + \ldots + (N-2) + (N-1) \\
+ T(N) = (N-1) + (N-2) + \ldots + 1 + 0 \\
\hline
2 T(N) = (N-1) + (N-1) + \ldots + (N-1) + (N-1)
\]

\[
\Rightarrow T(N) = \frac{N (N-1)}{2}
\]
Example: 2-SUM

Q. How many instructions as a function of input size N?

```java
int count = 0;
for (int i = 0; i < N; i++)
  for (int j = i+1; j < N; j++)
    if (a[i] + a[j] == 0)
      count++;
```

$$0 + 1 + 2 + \ldots + (N - 1) = \frac{1}{2} N (N - 1)$$

<table>
<thead>
<tr>
<th>operation</th>
<th>cost (ns)</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>2/5</td>
<td>$N + 2$</td>
</tr>
<tr>
<td>assignment statement</td>
<td>1/5</td>
<td>$N + 2$</td>
</tr>
<tr>
<td>less than compare</td>
<td>1/5</td>
<td>$\frac{1}{2} (N + 1) (N + 2)$</td>
</tr>
<tr>
<td>equal to compare</td>
<td>1/10</td>
<td>$\frac{1}{2} N (N - 1)$</td>
</tr>
<tr>
<td>array access</td>
<td>1/10</td>
<td>$N (N - 1)$</td>
</tr>
<tr>
<td>increment</td>
<td>1/10</td>
<td>$\frac{1}{2} N (N + 1)$ to N^2</td>
</tr>
</tbody>
</table>

1/4 $N^2 + 13/20 N + 13/10$ ns to $3/10 N^2 + 3/5 N + 13/10$ ns (tedious to count exactly)
Simplifying the calculations

“It is convenient to have a measure of the amount of work involved in a computing process, even though it be a very crude one. We may count up the number of times that various elementary operations are applied in the whole process and then given them various weights. We might, for instance, count the number of additions, subtractions, multiplications, divisions, recording of numbers, and extractions of figures from tables. In the case of computing with matrices most of the work consists of multiplications and writing down numbers, and we shall therefore only attempt to count the number of multiplications and recordings.” — Alan Turing
Simplification 1: cost model

Cost model. Use some basic operation as a proxy for running time.

```java
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        if (a[i] + a[j] == 0)
            count++;
```

$$0 + 1 + 2 + \ldots + (N - 1) = \frac{1}{2} N (N - 1) = \binom{N}{2}$$

<table>
<thead>
<tr>
<th>operation</th>
<th>cost (ns)</th>
<th>frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>2/5</td>
<td>$N + 2$</td>
</tr>
<tr>
<td>assignment statement</td>
<td>1/5</td>
<td>$N + 2$</td>
</tr>
<tr>
<td>less than compare</td>
<td>1/5</td>
<td>$\frac{1}{2} (N + 1) (N + 2)$</td>
</tr>
<tr>
<td>equal to compare</td>
<td>1/10</td>
<td>$\frac{1}{2} N (N - 1)$</td>
</tr>
<tr>
<td>array access</td>
<td>1/10</td>
<td>$N (N - 1)$</td>
</tr>
<tr>
<td>increment</td>
<td>1/10</td>
<td>$\frac{1}{2} N (N + 1)$ to N^2</td>
</tr>
</tbody>
</table>

cost model = array accesses
(we assume compiler/JVM do not optimize any array accesses away!)
Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
 - when N is large, terms are negligible
 - when N is small, we don't care

Ex 1. $\frac{1}{6}N^3 + 20N + 16 \quad \sim \quad \frac{1}{6}N^3$

Ex 2. $\frac{1}{6}N^3 + 100N^{4/3} + 56 \quad \sim \quad \frac{1}{6}N^3$

Ex 3. $\frac{1}{6}N^3 - \frac{1}{2}N^2 + \frac{1}{3}N \quad \sim \quad \frac{1}{6}N^3$

discard lower-order terms
(e.g., $N = 1000$: 166.67 million vs. 166.17 million)

Technical definition. $f(N) \sim g(N)$ means $\lim_{N \to \infty} \frac{f(N)}{g(N)} = 1$
Simplification 2: tilde notation

- Estimate running time (or memory) as a function of input size N.
- Ignore lower order terms.
 - when N is large, terms are negligible
 - when N is small, we don't care

<table>
<thead>
<tr>
<th>operation</th>
<th>frequency</th>
<th>tilde notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>variable declaration</td>
<td>$N + 2$</td>
<td>$\sim N$</td>
</tr>
<tr>
<td>assignment statement</td>
<td>$N + 2$</td>
<td>$\sim N$</td>
</tr>
<tr>
<td>less than compare</td>
<td>$\frac{1}{2} (N + 1) (N + 2)$</td>
<td>$\sim \frac{1}{2} N^2$</td>
</tr>
<tr>
<td>equal to compare</td>
<td>$\frac{1}{2} N (N - 1)$</td>
<td>$\sim \frac{1}{2} N^2$</td>
</tr>
<tr>
<td>array access</td>
<td>$N (N - 1)$</td>
<td>$\sim N^2$</td>
</tr>
<tr>
<td>increment</td>
<td>$\frac{1}{2} N (N + 1)$ to N^2</td>
<td>$\sim \frac{1}{2} N^2$ to $\sim N^2$</td>
</tr>
</tbody>
</table>
Q. Approximately how many array accesses as a function of input size N?

```java
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        if (a[i] + a[j] == 0)
            count++;
```

A. $\sim N^2$ array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.
Q. Approximately how many array accesses as a function of input size N?

A. $\sim \frac{1}{2} N^3$ array accesses.

Bottom line. Use cost model and tilde notation to simplify counts.
Estimating a discrete sum

Q. How to estimate a discrete sum?
A1. Take a discrete mathematics course (COS 340).
Estimating a discrete sum

Q. How to estimate a discrete sum?
A2. Replace the sum with an integral, and use calculus!

Ex 1. \(1 + 2 + \ldots + N.\)
\[
\sum_{i=1}^{N} i \sim \int_{x=1}^{N} x \, dx \sim \frac{1}{2} N^2
\]

Ex 2. \(1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{N}.\)
\[
\sum_{i=1}^{N} \frac{1}{i} \sim \int_{x=1}^{N} \frac{1}{x} \, dx = \ln N
\]

Ex 3. 3-sum triple loop.
\[
\sum_{i=1}^{N} \sum_{j=i}^{N} \sum_{k=j}^{N} 1 \sim \int_{x=1}^{N} \int_{y=x}^{N} \int_{z=y}^{N} dz \, dy \, dx \sim \frac{1}{6} N^3
\]

Ex 4. \(1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots\)
\[
\int_{x=0}^{\infty} \left(\frac{1}{2}\right)^x \, dx = \frac{1}{\ln 2} \approx 1.4427
\]
\[
\sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^i = 2
\]

integral trick doesn't always work!
Mathematical models for running time

In principle, accurate mathematical models are available.

In practice, formulas can be complicated.

\[T_N = c_1 A + c_2 B + c_3 C + c_4 D + c_5 E \]

- \(A = \) array access
- \(B = \) integer add
- \(C = \) integer compare
- \(D = \) increment
- \(E = \) variable assignment

costs (depend on machine, compiler)

\[N \sim c N^3 \]

frequencies (depend on algorithm, input)

Bottom line. We use approximate models in this course: \(T(N) \sim c N^3 \).
How many array accesses does the following code fragment make as a function of N?

```c
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        for (int k = 1; k < N; k = k*2)
            if (a[i] + a[j] >= a[k])
                count++;
```

A. $\sim N^2 \lg N$

B. $\sim \frac{3}{2} N^2 \lg N$

C. $\sim \frac{1}{2} N^3$

D. $\sim \frac{3}{2} N^3$

E. I don't know.
1.4 Analysis of Algorithms

- introduction
- observations
- mathematical models
- order-of-growth classifications
- memory
Common order-of-growth classifications

Definition. If \(f(N) \sim c g(N) \) for some constant \(c > 0 \), then the order of growth of \(f(N) \) is \(g(N) \).
- Ignores leading coefficient.
- Ignores lower-order terms.

Ex. The order of growth of the running time of this code is \(N^3 \).

```c
int count = 0;
for (int i = 0; i < N; i++)
    for (int j = i+1; j < N; j++)
        for (int k = j+1; k < N; k++)
            if (a[i] + a[j] + a[k] == 0)
                count++;
```

Typical usage. Mathematical analysis of running times.

where leading coefficient depends on machine, compiler, JVM, ...
Commonly-used notations in the theory of algorithms

<table>
<thead>
<tr>
<th>notation</th>
<th>provides</th>
<th>example</th>
<th>shorthand for</th>
<th>used to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Theta</td>
<td>asymptotic order of growth</td>
<td>$\Theta(N^2)$</td>
<td>$\frac{1}{2} N^2$ $10 N^2$ $5 N^2 + 22 N \log N + 3N$ \vdots</td>
<td>classify algorithms</td>
</tr>
<tr>
<td>Big O</td>
<td>$\Theta(N^2)$ and smaller</td>
<td>$O(N^2)$</td>
<td>$10 N^2$ $100 N$ $22 N \log N + 3N$ \vdots</td>
<td>develop upper bounds</td>
</tr>
<tr>
<td>Big Omega</td>
<td>$\Theta(N^2)$ and larger</td>
<td>$\Omega(N^2)$</td>
<td>$\frac{1}{2} N^2$ N^5 $N^3 + 22 N \log N + 3N$ \vdots</td>
<td>develop lower bounds</td>
</tr>
</tbody>
</table>
Common order-of-growth classifications

Good news. The set of functions

\[1, \log N, N, N \log N, N^2, N^3, \text{ and } 2^N \]
suffices to describe the order of growth of most common algorithms.
Common order-of-growth classifications

<table>
<thead>
<tr>
<th>order of growth</th>
<th>name</th>
<th>typical code framework</th>
<th>description</th>
<th>example</th>
<th>$T(2N) / T(N)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>constant</td>
<td>$a = b + c;$</td>
<td>statement</td>
<td>add two numbers</td>
<td>1</td>
</tr>
<tr>
<td>$\log N$</td>
<td>logarithmic</td>
<td>while ($N > 1$)</td>
<td>divide in half</td>
<td>binary search</td>
<td>~ 1</td>
</tr>
<tr>
<td>N</td>
<td>linear</td>
<td>for (int $i = 0$; $i < N$; $i++$)</td>
<td>single loop</td>
<td>find the maximum</td>
<td>2</td>
</tr>
<tr>
<td>$N \log N$</td>
<td>linearithmic</td>
<td>see mergesort lecture</td>
<td>divide and conquer</td>
<td>mergesort</td>
<td>~ 2</td>
</tr>
<tr>
<td>N^2</td>
<td>quadratic</td>
<td>for (int $i = 0$; $i < N$; $i++$)</td>
<td>double loop</td>
<td>check all pairs</td>
<td>4</td>
</tr>
<tr>
<td>N^3</td>
<td>cubic</td>
<td>for (int $i = 0$; $i < N$; $i++$)</td>
<td>triple loop</td>
<td>check all triples</td>
<td>8</td>
</tr>
<tr>
<td>2^N</td>
<td>exponential</td>
<td>see combinatorial search lecture</td>
<td>exhaustive search</td>
<td>check all subsets</td>
<td>2^N</td>
</tr>
</tbody>
</table>
Binary search

Goal. Given a sorted array and a key, find index of the key in the array?

Binary search. Compare key against middle entry.

- Too small, go left.
- Too big, go right.
- Equal, found.
Trivial to implement?

- First binary search published in 1946.
- First bug-free one in 1962.
- Bug in Java's Arrays.binarySearch() discovered in 2006.

Extra, Extra - Read All About It: Nearly All Binary Searches and Mergesorts are Broken

Posted by Joshua Bloch, Software Engineer

I remember vividly Jon Bentley's first Algorithms lecture at CMU, where he asked all of us incoming Ph.D. students to write a binary search, and then dissected one of our implementations in front of the class. Of course it was broken, as were most of our implementations. This made a real impression on me, as did the treatment of this material in his wonderful Programming Pearls (Addison-Wesley, 1986; Second Edition, 2000). The key lesson was to carefully consider the invariants in your programs.

http://googleresearch.blogspot.com/2006/06/extra-extra-read-all-about-it-nearly.html
Binary search: Java implementation

Invariant. If key appears in array a[], then a[lo] \(\leq \) key \(\leq \) a[hi].

```java
public static int binarySearch(int[] a, int key) {
    int lo = 0, hi = a.length - 1;
    while (lo <= hi)
    {
        int mid = lo + (hi - lo) / 2;
        if   (key < a[mid]) hi = mid - 1;
        else if (key > a[mid]) lo = mid + 1;
        else                    return mid;
    }
    return -1;
}
```

why not mid = (lo + hi) / 2 ?

one "3-way compare"
Binary search: mathematical analysis

Proposition. Binary search uses at most $1 + \lg N$ key compares to search in a sorted array of size N.

Def. $T(N) = \#$ key compares to binary search a sorted subarray of size $\leq N$.

Binary search recurrence. $T(N) \leq T(N / 2) + 1$ for $N > 1$, with $T(1) = 1$.

Pf sketch. [assume N is a power of 2]

\[
\begin{align*}
T(N) & \leq T(N / 2) + 1 \quad \text{[given]} \\
& \leq T(N / 4) + 1 + 1 \quad \text{[apply recurrence to first term]} \\
& \leq T(N / 8) + 1 + 1 + 1 \quad \text{[apply recurrence to first term]} \\
& \vdots \\
& \leq T(N / N) + 1 + 1 + \ldots + 1 \quad \text{[stop applying, $T(1) = 1$]} \\
& = 1 + \lg N \quad \text{[$\lg N$ }]
\end{align*}
\]
1.4 **Analysis of Algorithms**

- introduction
- observations
- mathematical models
- order-of-growth classifications
- memory
Basics

Bit. 0 or 1.

Byte. 8 bits.

Megabyte (MB). 1 million or 2^{20} bytes.

Gigabyte (GB). 1 billion or 2^{30} bytes.

64-bit machine. We assume a 64-bit machine with 8-byte pointers.

NIST most computer scientists

some JVMs "compress" ordinary object pointers to 4 bytes to avoid this cost
Typical memory usage for primitive types and arrays

<table>
<thead>
<tr>
<th>type</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean</td>
<td>1</td>
</tr>
<tr>
<td>byte</td>
<td>1</td>
</tr>
<tr>
<td>char</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>8</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
</tr>
</tbody>
</table>

primitive types

<table>
<thead>
<tr>
<th>type</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>char[]</td>
<td>$2N + 24$</td>
</tr>
<tr>
<td>int[]</td>
<td>$4N + 24$</td>
</tr>
<tr>
<td>double[]</td>
<td>$8N + 24$</td>
</tr>
</tbody>
</table>

one-dimensional arrays

<table>
<thead>
<tr>
<th>type</th>
<th>bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>char[][]</td>
<td>$\sim 2MN$</td>
</tr>
<tr>
<td>int[][]</td>
<td>$\sim 4MN$</td>
</tr>
<tr>
<td>double[][]</td>
<td>$\sim 8MN$</td>
</tr>
</tbody>
</table>

two-dimensional arrays
Typical memory usage for objects in Java

Object overhead. 16 bytes.

Reference. 8 bytes.

Padding. Each object uses a multiple of 8 bytes.

Ex 1. A Date object uses 32 bytes of memory.

```java
public class Date {
    private int day;
    private int month;
    private int year;
    ...
}
```

16 bytes (object overhead)

- 4 bytes (int)
- 4 bytes (int)
- 4 bytes (padding)

32 bytes
Typical memory usage summary

Total memory usage for a data type value:

- Primitive type: 4 bytes for `int`, 8 bytes for `double`, ...
- Object reference: 8 bytes.
- Array: 24 bytes + memory for each array entry.
- Object: 16 bytes + memory for each instance variable.
- Padding: round up to multiple of 8 bytes.

Note. Depending on application, we may want to count memory for any referenced objects (recursively).
How much memory does a WeightedQuickUnionUF use as a function of N?

A. $\sim 4N$ bytes

B. $\sim 8N$ bytes

C. $\sim 4N^2$ bytes

D. $\sim 8N^2$ bytes

E. I don't know.

```java
public class WeightedQuickUnionUF {
    private int[] parent;
    private int[] size;
    private int count;

    public WeightedQuickUnionUF(int N) {
        parent = new int[N];
        size = new int[N];
        count = 0;
        for (int i = 0; i < N; i++)
            parent[i] = i;
        for (int i = 0; i < N; i++)
            size[i] = 1;
    }
    ...
}
```
THE 3-SUM PROBLEM

3-Sum. Given \(N \) distinct integers, find three such that \(a + b + c = 0 \).

Version 0. \(N^3 \) time, \(N \) space.
Version 1. \(N^2 \log N \) time, \(N \) space.
Version 2. \(N^2 \) time, \(N \) space.

Note. For full credit, running time should be worst case.

*Fastest known algorithm (published in 2014): \(N^2 / (\log N / \log \log N)^{2/3} \) time
The 3-Sum Problem: An $N^2 \log N$ Algorithm

Algorithm.
- Step 1: Sort the N (distinct) numbers.
- Step 2: For each pair of numbers $a[i]$ and $a[j]$, binary search for $-(a[i] + a[j])$.

Analysis. Order of growth is $N^2 \log N$.
- Step 1: N^2 with insertion sort (or $N \log N$ with mergesort).
- Step 2: $N^2 \log N$ with binary search.

Input

```
30 -40 -20 -10 40 0 10 5
```

Sort

```
-40 -20 -10 0 5 10 30 40
```

Binary Search

```
(-40, -20) 60
(-40, -10) 50
(-40, 0) 40
(-40, 5) 35
(-40, 10) 30
(10, 30) -40
(10, 40) -50
(30, 40) -70
```

only count if $a[i] < a[j] < a[k]$ to avoid double counting
Turning the crank: summary

Empirical analysis.
- Execute program to perform experiments.
- Assume power law.
- Formulate a hypothesis for running time.
- Model enables us to make predictions.

Mathematical analysis.
- Analyze algorithm to count frequency of operations.
- Use tilde notation to simplify analysis.
- Model enables us to explain behavior.

Scientific method.
- Mathematical model is independent of a particular system; applies to machines not yet built.
- Empirical analysis is necessary to validate mathematical models and to make predictions.