
COS 226 Algorithms and Data Structures Fall 2014

Midterm Solutions

1. Memory and data structures.

∼ 64N bytes.

Each of the N Node objects uses 64 bytes: 16 (object overhead) + 8 (inner class overhead) +
16 (reference to two Node) + 8 (reference to Key) + 8 (reference to Value) + 4 (integer) + 1
(boolean) + 3 (padding).

2. Seven sorting algorithms and a shuffling algorithm.

0 6 7 5 4 2 8 3 1 9

6. Quicksort (3-way, no shuffle) after first partitioning step

7. Heapsort after heap construction phase and putting 12 keys into place

5. Quicksort (standard, no shuffle) after first partitioning step

4. Mergesort (bottom-up) after forming sorted subarrays of size 8

2. Insertion sort after 16 iterations

8. Knuth shuffle after 16 iterations

3. Mergesort (top-down) just before the last call to merge()

1. Selection sort after 16 iterations

3. Analysis of algorithms.

(a) ∼ 1
2N

2

Selection makes 1
2N

2 compares on any array of N keys.

(b) ∼ 3
32N

2

The total number of inversions is 3 + 6 + 9 + . . .+ 3
4N = 3(1 + 2 + 3 + . . .+ 1

4N) ∼ 3
32N

2

because the ith A is inverted with 3i Bs.

(c) ∼ 5
8N log2N

In general, we will be merging two arrays of the form AAAABBBBBBBBBBBB and
AAAABBBBBBBBBBBB, k As followed by 3k Bs. If the merged array is of length
N , then this will take 5

8N compares. Thus, the total number of compares satisfies the
recurrence T (N) = 2T (N/2) + 5

8N

1



4. Balanced search trees.

insertion key color flips rotations key in root

17 2 0 18

1 2 2 18

31 2 3 28

19 0 0 18

5. Hash tables.

A D X

• A could be last (L S M N X D A)

• D could be last (L S M N A X D)

• L could not be last (otherwise S would end up in 6)

• M could not be last (otherwise N or A would end up in 1)

• N could not be last (otherwise A would not end up after 2)

• S could not be last (otherwise M would end up in 0)

• X could be last (L S M N A D X)

6. Problem identification.

P Determine whether there are any intersections among a set of N axis-aligned rectangles
in N logN time.

This was done in the geometric applications of BST lecture.

P Stably sort a singly linked list of N comparable keys using only a constant amount of
extra memory and ∼ N log2N compares.

Merging two sorted linked lists of total length N can be done with at most N compares
and constant extra space. Bottom-up mergesort avoids extra memory association with
the function-call stack.

I Given a binary heap of N distinct comparable keys, create a binary search tree on the
same set of N keys, using at most 2N compares.

This would violate the sorting lower bound. To see why, recall that you can construct a
heap from N keys using at most 2N compares. Then, you could use the (hypothetical
algorithm for creating a BST from the heap using 2N compares. Finally, an inorder
traversal of the BST yields the keys in sorted order, using no extra compares. Thus, we
could sort using at most 4N compares.

P Uniformly shuffle an array in linear time using only constant memory (other than the
input array), assuming access to a random number generator.

The Knuth shuffle accomplishes this.

P Find the kth smallest key in a left-leaning red-black BST in logarithmic time.

This is the select operation in an ordered symbol table.

2



P Implement a FIFO queue using a resizing array, in constant amortized time per opera-
tion.

This was described in lecture and the textbook.

P Given an array a[] of N ≥ 2 distinct comparable keys (not necessarily in sorted order)
with a[0] < a[N − 1], find an an index i such that a[i] < a[i + 1] in logarithmic time.

Use the following algorithm, similar to binary search. Maintain the invariant that a[i] <
a[j]; initially i = 0 and j = N − 1. Pick mid = (i + j)/2. There are three cases

– if j = i + 1, return i

– else if a[mid] < a[j], then set i = mid

– else if a[mid] > a[j], then set j = mid

7. Multiway merge.

(a) This is similar to multiway merging algorithm on pp. 321–322 of the textbook.

• Initialize a min-oriented priority queue with k items, one corresponding to the first
key in each of the k arrays. An item consists of a

– a comparable key (from one of the k arrays)

– an integer index (to indicate from which of the k arrays the key comes)

– another integer index (to indicate its position in that array)

and its natural order is based on the comparable key.

• Repeat until the priority queue is empty:

– Delete the minimum item from the priority queue.

– Prints its key.

– If the key in the deleted item is not the last key in its array, insert into the
priority queue a new item corresponding to the next key from its array.

For efficiency, implement the priority queue with a binary heap.

(b) N log k

The binary heap never has more than k items at any one time. Thus, every operation
takes time proportional to log k. Each item is inserted and deleted exactly once, so the
order of growth of the overall running time is N log k.

(c) k

The algorithm uses extra memory both for the binary heap and for the items. The
algorithm creates a total of N items but there are never more than k in existence at any
one time.

It is possible to achieve the same performance guarantees using a red-black BST, but some
care is needed to handle duplicate keys.

3



8. Move-to-front.

The core idea is to use an ordered symbol table to store the items in the sequence, where the
ith largest item in the symbol table is the ith item in the sequence. The symbol table keys
are integers (that we assign to achieve the desired ordering) and the symbol table values are
the items. To assist with dispensing symbol table keys, we maintain an instance variable min

that is the minimum key used so far.

• item-at-index: To get the ith item in the sequence, we use the select operation.

• add: Whenever we add a new item, we want it to be smaller than any existing key, so
that it becomes the first item in the sequence.

• move-to-front: Delete the ith item in the sequence and then add it back to the front of
the sequence.

For efficiency, implement the ordered symbol table with a red-black BST.

Note: this technique is similar to the solution for question 7 on the Spring 2014 midterm.

public class MoveToFront {

private long min;

private RedBlackBST<Integer, Item> st;

public MoveToFront() {

min = 0;

st = new RedBlackBST<Integer, Item>();

}

public void add(Item item) {

st.put(--min, item);

}

public Item itemAtIndex(int i) {

return st.get(st.select(i));

}

public void mtf(int i) {

int r = st.select(i);

Item item = st.get(r); // itemAtIndex(i)

st.delete(r);

add(item);

}

}

The add, item-at-index, and move-to-front operations each take logarithmic time in the worst
case (because put, get, select, and delete take logarithmic time in the worst case).

4


