"Princeton University

Computer Science 217: Introduction to Programming Systems

~

LT

-

Goals of this Lecture

Process Management

Help you learn about:
» Creating new processes
» Waiting for processes to terminate
« Executing new programs
 Shell structure

Why?
» Creating new processes and executing new programs are
fundamental tasks of a Unix shell
» See Assignment 7
« A power programmer knows about Unix shells

Y 2
4 N)
System-Level Functions g Agenda g
As noted in the Exceptions and Processes lecture...
Linux system-level functions for process management Creating new processes
Waiting for processes to terminate
e .
Executing new programs
exit() Terminate the process
57 fork() Create a child process Shell structure
7 wait() Wait for child process termination
1 execvp() Execute a program in current process
20 getpid() Return the process id of the current
process
> Y
4 N)
Why Create New Processes? g fork System-Level Function g

Why create a new process?
« Scenario 1: Program wants to run an additional instance of itself
» E.g., web server receives request; creates additional instance of
itself to handle the request; original instance continues listening
for requests
» Scenario 2: Program wants to run a different program
» E.g., shell receives a command; creates an additional instance of
itself; additional instance overwrites itself with requested program
to handle command; original instance continues listening for
commands

How to create a new process?
« A “parent” process forks a “child” process
» (Optionally) child process overwrite itself with a new program

pid_t fork(void);
» Create a new process by duplicating the calling process
* New (child) process is an exact duplicate of the calling (parent)
process
* In the child, return 0
* In the parent, return the process id of the child

fork() is called once in parent process

fork() returns twice
» Once in parent process
* Once in child process

S/

4 N\ 7 N
Creating New Processes o Simple fork Example b\, 4
Parent process and child process run concurrently
* Two CPUs available =
+ Parent process and child process run in parallel #include <stdio.h>
» Fewer than two CPUs available = #include <unistd.h>
» Parent process and child process run serially int main(void)
» OS provides the illusion of parallel execution { printf(one\n");
- OS causes context switches between the two processes forkQ);
+ (Recall Exceptions and Processes lecture) printf(two\n*);
return O;
Reality: Each CourselLab computer has 24 CPUs }
Slmpl|f¥|ng assuertl.on: there is only one S)PU What is the
* We’ Il speak of “which process gets the CPU output?
7 S
4 N\ 7 N
Simple fork Example Trace 1 (1) :#: Simple fork Example Trace 1 (2) :&:
Parent prints “one” Parent forks child

#include <stdio.h> #include <stdio.h> #include <stdio.h>

#include <unistd.h> #include <unistd.h> > #include <unistd.h>

int main(void) int main(void) = int main(void)

{ printf("one\n"); { printf("one\n"); “t’ { printf('one\n™);
fork(Q); fork(Q); 3 fork(Q;
printf(**two\n""); printf(**two\n""); c printf(two\n");
return O; return O; 8 return O;

H H o |}

5
(&)
Q
X
Ll
> ")
4 N\ 7 N
Simple fork Example Trace 1 (3) :#: Simple fork Example Trace 1 (4) :&:
OS gives CPU to child; child prints “two” Child exits

#include <stdio.h> #include <stdio.h> #include <stdio.h> include <stdio.h>

#include <unistd.h> > #include <unistd.h> #include <unistd.h> > #include <unistdZh>

int main(void) b= int main(void) int main(void) b= int maip(voi

{ printf("'one\n"); “t’ { printf('one\n"™); { printf("one\n"); “t’ { printR(COne\n");
fork(Q); 3 fork(Q; fork(Q); 3 fork();
printf(*two\n"); c printf(two\n"); printf(**two\n""); c prpftfCtweln') ;
return O; 8 return O; return O; 8 turn O;

H o |} } =)

5 5
(8] (&)
Q Q
x X
L L
11/ 12/

~
Simple fork Example Trace 1 (5)

~
Simple fork Example Trace 1 (6)

OS gives CPU to parent; parent prints “two”

OS gives CPU to parent; parent prints “two”

13) 14)
4 N)
Simple fork Example Trace 1 Output &!g Simple fork Example Trace 2 (1) g!g
Output: Parent prints “one”
From parent
E From child
From parent
15) 16)

~
Simple fork Example Trace 2 (2)

~
Simple fork Example Trace 2 (3)

Parent forks child

Executing concurrently

OS gives CPU to parent; parent prints “two”

Executing concurrently

-

Simple fork Example Trace 2 (4) v

et

~

-

Simple fork Example Trace 2 (5) v

~

Parent exits

{nclude <stdio.h

#i ude <uniste.h> >
int main(voi r=
{ print€Cone\n"); 2
fork@y; 3
prantfCtw\n'); c
eturn O; 8

)}

£

5

)

Q

X

L

#include <stdio.h>
#include <unistd.h>
int main(void)

{ printf('one\n™);
fork(Q;
printf('two\n");
return O;

5)

OS gives CPU to child; child prints “two”

#include <stdio.h>
#include <unistd.h>
int main(void)

{ printf('one\n");
fork(Q;
printf(*'two\n");
return O;

»)

s N N
Simple fork Example Trace 2 (6) !p Simple fork Example Trace 2 Output g
Child exits Output:
include <stdio.h> one *——_’_,,,——-Fronlparent
#include <unistglh> two « From parent
int main(voi two
{ printRCone\n™); —— From child
fork(y.
prAtECtweln') ;
turn O;
21/ 22/
s N N
Fact 1: fork and Process State g Fact 2: fork and Process lds g

identical but distinct process states
» Contents of registers
» Contents of memory
« File descriptor tables
* (Relevant later)
- Etc.

Immediately after fork(), parent and child have

» See Bryant & O’Hallaron book for details

2)

Any process has a unique nonnegative integer id
» Parent process and child processes have different process ids
* No process has process id 0

2

-
Fact 3: fork and Return Values

-
fork Example

Return value of fork has meaning
* In child, fork() returns 0
* In parent, fork() returns
process id of child

~

fork Example Trace 1 (1)

~

fork Example Trace 1 (2)

Parent forks child

Executing concurrently

~

fork Example Trace 1 (3)

~

fork Example Trace 1 (4)

Assume OS gives CPU to child

Executing concurrently

Child decrements its x, and prints “child: 0”

Executing concurrently

-~

fork Example Trace 1 (5)

-~

fork Example Trace 1 (6)

Child exits; OS gives CPU to parent

In parent, fork() returns process id of child

Process id of child

-~

fork Example Trace 1 (7)

=
=
c
[
—_
—
=]
o
c
Q
o
(@]
c
£
=]
O
()
x
L

3

/

N\)

fork Example Trace 1 (8)

Parent increments its x, and prints “parent: 2”

Parent exits

-~

fork Example Trace 1 Output

-~

fork Example Trace 2 (1)

Example trace 1 output:

~

fork Example Trace 2 (2)

~

fork Example Trace 2 (3)

Parent forks child

Executing concurrently

Assume OS gives CPU to parent

Executing concurrently

~

fork Example Trace 2 (4)

~

fork Example Trace 2 (5)

Parent increments its x and prints “parent: 2”

Executing concurrently

Parent exits; OS gives CPU to child

Executing concurrently

~

fork Example Trace 2 (6)

~

fork Example Trace 2 (7)

In child, fork() returns 0

Child decrements its x and prints “child: 0”

-
fork Example Trace 2 (8)

-
fork Example Trace 2 Output g!g

Child exits Example trace 2 output:

®)
4 N)
Agenda g!g wait System-Level Function &!g
Problem:
. » How to control execution order?
Creatlng new processes
.) Solution:
Waiting for processes to terminate « Parent should call wai t()
. (child is a “zombie” until parent does the wait(), so the parent should harvest (or
Executlng new programs reap) its children... more later)
Shell structure pid_t wait(int *status);
» Suspends execution of the calling process until one of its children
terminates
« If status is not NULL, stores status information in the int to which it
points; this integer can be inspected with macros [see man page for
details].
» On success, returns the process ID of the terminated child
* On error, returns -1 Paraphrasing man page
¥ *)

-
wait Example

-
wait Example Trace 1 (1)

~

9.

Parent forks child

Executing concurrently

-
wait Example Trace 1 (2)

§
L

-
wait Example Trace 1 (3)

OS gives CPU to parent

Executing concurrently

Parent calls wait()

Executing concurrently

-
wait Example Trace 1 (4)

§
9.

-
wait Example Trace 1 (5)

OS gives CPU to child

Executing concurrently

Child prints “child” and exits

Executing concurrently

-
wait Example Trace 1 (6)

§
9.

-
wait Example Trace 1 Output

Parent returns from call of wait(), prints “parent”, exits

2

Example trace 1 output

)

-
wait Example Trace 2 (1)

-
wait Example Trace 2 (2)

Parent forks child OS gives CPU to child
= =
= c
o o
= =
2 e
8 8
2 2
3 3
2 2
i i
o N (.)
wait Example Trace 2 (3) &!g wait Example Trace 2 (4) &!g
Child prints “child” and exits OS gives CPU to parent
>
5
=
2
8
2
3
2
i
)
o o)
wait Example Trace 2 (5) wait Example Trace 2 (6) &!g
Parent calls wai t(); returns immediately Parent prints “parent” and exits

59) 60)

s

wait Example Trace 2 Output v

s

‘]

Aside: Orphans and Zombies g,

Example trace 2 output

child
parent

Same as trace 1 output!

Y

Question:
» What happens if parent process does not wait for (reap/harvest)
child process?

Answer 1:
* In shell, could cause sequencing problems
» E.g, parent process running shell writes prompt for next command
before current command is finished executing

Answer 2:
« In general, child process becomes zombie and/or orphan

)

s

Aside: Orphans and Zombies

s

-
Aside: Orphans and Zombies g

Orphan

» A process that has no parent

Zombie

» A process that has terminated but has not been waited for (reaped)

Orphans and zombies

« Clutter Unix data structures unnecessarily
* OS maintains unnecessary PCBs

« Can become long-running processes
» Consume CPU time unnecessarily

Polychlorinated
biphenyls?
[

no, process
ontrol blocks!

°)

Terms inside boxes
indicate condition of
child process

Normal

Parent waits for
Child ex

Child exits

Parent waitsg rent exits Progess 1 adopts child
| Orphan Zombie | | Normal |
never exits
Process 1 pdopts child Child fexits

Zom@ Zom@

Process 1 detects that child ~ Process|1 detects that child
has exited, anq waits for child has exit¢d, and waits for child

%

s

Agenda

s

~

execvp System-Level Function g

Creating new processes

Waiting for processes to terminate

Executing new programs

Shell structure

“)

Problem: How to execute a new program?
« Usually, in the newly-created child process

Solution: execvp()

int execvp(const char *file, char *const argv[]);
» Replaces the current process image with a new process image
» Provides an array of pointers to null-terminated strings that
represent the argument list available to the new program
» The first argument, by convention, should point to the filename
associated with the file being executed
» The array of pointers must be terminated by a NULL pointer

Paraphrasing man page

“)

e R
execvp System-Level Function g,!g

-
execvp Failure

Example: Execute “cat readme”

« First argument: name of program to be executed
» Second argument: argv to be passed to main() of new program
» Must begin with program name, end with NULL

fork()
« If successful, returns two
times
* Once in parent
* Once in child

execvp()
« If successful, returns zero times
+ Calling program is overwritten with new program
» Corollary:
« If execvp() returns, then it must have failed

67) 68)
e N
execvp Example &!g execvp Example
®)

-
execvp Example Trace (1)

§
9.

-
execvp Example Trace (2)

Process creates arguments to be passed to execvp()

Process executes execvp()

7

-

execvp Example Trace (3)

-
execvp Example Trace (4)

cat program executes in same process

cat program writes “This is my\nreadme file.”

73) 74)
e N R
execvp Example Trace (5) g!g execvp Example Trace (6) g!g
cat program terminates Output
))
e N R
Agenda g!g Shell Structure a!g

Creating new processes

Waiting for processes to terminate

Executing new programs

Shell structure

")

Parent (shell) reads &
parses the command line
 E.g., “cat readme”

Parent forks child
Parent waits

Child calls execvp to
execute command

Child exits
Parent returns from wait

Parent repeats

shell

parent child

cat readme
|

*J

-~

Simple Shell Code

-~

Simple Shell Trace (1)

Parent Process

Parent reads and parses command line
Parent assigns values to somepgm and someargv

-~

Simple Shell Trace (2)

-~

Simple Shell Trace (3)

Parent Process

executing

Tork() creates child process

Which process gets the CPU first? Let’ s assume the parent...

concurrently

Child Process

")

Child Process

Parent Process

child’ s pid

=

c
(@]
£ 2
= o
>0 3
O O
25
o O

In parent, pid != 0; parent waits; OS gives CPU to child

-~

Simple Shell Trace (4)

~

9.

-~

Simple Shell Trace (5)

Parent Process

executing

0

concurrently

Child Process

In child, pid == 0; child calls execvp()

Parent Process Child Process

executing
concurrently

In child, somepgm overwrites shell program;
main() is called with someargv as argv parameter

*

4 N\)
Simple Shell Trace (6) g Simple Shell Trace (7) g
Parent Process Child Process Parent Process
s =0 ¢ somepgm i
/* in child */ Z‘ - /* in child */
execvp(sonepgn, soneargy): o c | |With so av execvp(sonepgn, soneargy):
fprintf(stderr, "exec failed\n"); c O fprintf(stderr, "exec failed\n");
8 exit(EXIT_FAILURE); ..g ‘% as ar pa 8 exit(EXIT_FAILURE);
/* in parent */ Q O /* in parent */
O C
wait(NULL); X O wait(NULL);
Repeat the previous O O Repeat the previous
Somepgm executes in child, and eventually exits Parent returns from wait() and repeats
85/ 86/
4 N\)
Background processes g Aside: system Function g
Unix shell lets you run a process “in the background” Common combination of operations
$ compute <my-input >my-output & = Tork() to create a new child process
o) _ ha = execvp() to execute new program in child process
How it's implemented in the shell: =wait() in the parent process for the child to complete
Don’t wait() after the fork! . .
0 Single call that combines all three
e int system(const char *cmd);
But: must clean up zombie processes
o Example
waitpid(0, &status, WNOHANG) (more info: “man 2 wait”)
) #include <stdlib.h>
When to do it? int main(void)
Every time around the main loop, or }One or the other, { iﬁzﬁﬁ(o?at readme™):
When parent receives the SIGCHLD signal. dontneed ot) .
J >
4 N\)
Aside: system Function g Aside: fork Efficiency g

Question:
* Why not use system() instead of fork()/execvp()/wait() in
Assignment 7 shell?

Shallow answer:
» Assignment requirements!

Deeper answer:
» Using system(), shell could not handle signals as specified
» See Signals reference notes

»)

Question:
= fork() duplicates an entire process (text, bss, data, rodata, stack,
heap sections)
« Isn’ t that very inefficient???!!!

Answer:

» Using virtual memory, not really!
Upon fork(), OS creates virtual pages for child process
Each child virtual page maps to physical page (in memory or on
disk) of parent
OS duplicates physical pages incrementally, and only if/when
“write” occurs (“copy-on-write”)

.

%)

s

Aside: exec Efficiency

s

Aside: Tork/exec Efficiency

Question:
= execvp() loads a new program from disk into memory

« Isn’ t that somewhat inefficient?

Answer:
» Using virtual memory, not really!

» Upon execvp(), OS changes process’ s virtual page table to point

to pages on disk containing the new program

» As page faults occur, OS swaps pages of new program into memory

incrementally as needed

The bottom line...

fork() and execvp() are efficient
» Because they were designed with virtual memory in mind!

Commentary: A beautiful intersection
of three beautiful abstractions

91/ 92/
4 N 7 N
Assignment 7 Suggestion ﬁ!g Summary ﬁ!g
A shell is mostly a big loop Creating new processes
» Read char array from stdin = fork()
 Lexically analyze char array to create token array E ti
» Parse token array to create command Xecuting new programs
= execvp()
» Execute command
« Fork child process Waiting for processes to terminate
* Parent: e wait()
» Wait for child to terminate
+ Child: Shell structure
+ Exec new program » Combination of fork(), execvp(), wait()
Start with code from earlier slides and from precepts
» And edit until it becomes a Unix shell!
93/ 94/

