
1

Dynamic Memory

Management

Princeton University
Computer Science 217: Introduction to Programming Systems

Goals of this Lecture

Help you learn about:
• The need for dynamic* memory mgmt (DMM)

• Implementing DMM using the heap section

• Implementing DMM using virtual memory

* During program execution

2

System-Level Functions Covered

As noted in the Exceptions and Processes lecture…

Linux system-level functions for dynamic memory

management (DMM)

3

Number Function Description

12 brk() Move the program break, thus changing the

amount of memory allocated to the HEAP

12 sbrk() (Variant of previous)

9 mmap() Map a virtual memory page

11 munmap() Unmap a virtual memory page

Goals for DMM

Goals for effective DMM:
• Time efficiency

• Allocating and freeing memory should be fast

• Space efficiency

• Pgm should use little memory

Note
• Easy to reduce time or space

• Hard to reduce time and space

4

Agenda

The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: doubly linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 5

Why Allocate Memory Dynamically?

Why allocate memory dynamically?

Problem
• Number of objects needed not known in advance

(e.g., how many elements of linked list or tree?)

• Unknown object size

(e.g., how large should the array be, in hash table?)

How much memory to allocate?

Solution 1
• Guess!

Solution 2
• Allocate memory dynamically

6

Why Free Memory Dynamically?

Why free memory dynamically?

Problem
• Pgm should use little memory, i.e.

• Pgm should map few pages of virtual memory

• Mapping unnecessary VM pages bloats page tables, wastes

memory/disk space

Solution
• Free dynamically allocated memory that is no longer needed

7

Option 1: Automatic Freeing

Run-time system frees unneeded memory
• Java, Python, …

• Garbage collection

Pros:
• Easy for programmer

• Fewer bugs

• Simpler interfaces between modules

• Fewer bugs

Cons:
• Performed constantly ⇒ overhead

• Performed periodically ⇒ unexpected pauses
(these days, high-performance garbage collectors minimize overhead and pause latency)

8

Car c;

Plane p;

...

c = new Car();

p = new Plane();

...

c = new Car();

...

Original Car

object can’t

be accessed

Option 2: Manual Freeing

Programmer frees unneeded memory
• C, C++, Objective-C, …

Pros
• Less overhead

• No unexpected pauses

Cons
• More complex for programmer

• Opens possibility of memory-related bugs

• Dereferences of dangling pointers, double frees, memory leaks

9

Conclusion:

Program in a safe,

garbage-collected

language!

(not in C)

Use unsafe languages with

manual memory

management (such as C)

only for low-level programs

where the overhead or

latency of garbage collection

is intolerable

such as: OS kernels,

device drivers,

garbage collectors,

memory managers

10

All right then, let’s see how manual memory

management works in C

C memory allocation library

Standard C dynamic-memory-management functions:

Collectively define a dynamic memory manager (DMMgr)

We’ll focus on malloc() and free()

11

void *malloc(size_t size);

void free(void *ptr);

void *calloc(size_t nmemb, size_t size);

void *realloc(void *ptr, size_t size);

Implementing malloc() and free()

Question:
• How to implement malloc() and free()?

• How to implement a DMMgr?

Answer 1:
• Use the heap section of memory

Answer 2:
• (Later in this lecture)

12

Agenda

The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: doubly linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 13

The Heap Section of Memory

14

Supported by Unix/Linux, MS Windows, …

Heap start is stable

Program break points to end

At process start-up, heap start == program break

Can grow dynamically

By moving program break to higher address

Thereby (indirectly) mapping pages of virtual mem

Can shrink dynamically

By moving program break to lower address

Thereby (indirectly) unmapping pages of virtual mem

Heap start Program break

Low

memory

High

memory

Unix Heap Management

Unix system-level functions for heap mgmt:

int brk(void *p);

• Move the program break to address p

• Return 0 if successful and -1 otherwise

void *sbrk(intptr_t n);

• Increment the program break by n bytes

• Return previous break if successful and (void*)-1 otherwise
• [therefore] If n is 0, return the current location of the program break

• Beware: On Linux has a known bug (overflow not handled);

should call only with argument 0.

Note: minimal interface (good!)

15

Agenda

The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: doubly linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 16

Minimal Impl

Data structures
• One word: remember the current value of program break

Algorithms (by examples)…

17

Minimal Impl malloc(n) Example

18

p

Remember the current program break (p) (initialize using sbrk(0))

p

n bytes

Call brk(p+n) to increase heap size

return

n bytes

Return p, remember new p = p+n

p

Minimal Impl free(p) Example

19

Do nothing!

p

Minimal Impl

Algorithms

20

static void *current_break;

void *malloc(size_t n)

{ char *p = current_break;

if (!p) p=(char *)sbrk(0);

if (brk(p+n) == -1)

return NULL;

current_break = p+n;

return (void*)p;

}

void free(void *p)

{

}

Minimal Impl Performance

Performance (general case)
• Time: bad

• One system call per malloc()

• Space: bad

• Each call of malloc() extends heap size

• No reuse of freed chunks

21

What’s Wrong?

Problem
• malloc() executes a system call every time

Solution
• Redesign malloc() so it does fewer system calls

• Maintain a pad at the end of the heap…

22

Agenda

The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: doubly linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 23

Pad Impl

Data structures

• pBrk: address of end of heap (i.e. the program break)

• pPad: address of beginning of pad

Algorithms (by examples)…

24

inuse

pPad

pad

pBrk

char *pPad = NULL;

char *pBrk = NULL;

Pad lmpl malloc(n) Example 1

25

Are there at least n bytes between pPad and pBrk? Yes!

Save pPad as p; add n to pPad

pPad

≥ n bytes

pBrk

Return p

p pBrk

n bytes

pPad

p pBrk

n bytes

pPad

Pad lmpl malloc(n) Example 2

26

Are there at least n bytes between pPad and pBrk? No!

Call brk() to allocate (more than) enough additional memory

pPad

< n bytes

pBrk

Set pBrk to new program break

pBrk

≥ n bytes

pPad

Proceed as previously!

pBrk

≥ n bytes

pPad

Pad Impl free(p) Example

27

Do nothing!

Pad Impl

Algorithms

28

inuse

pPad

pad

pBrk

void *malloc(size_t n)

{ enum {MIN_ALLOC = 8192};

char *p;

char *pNewBrk;

if (pBrk == NULL)

{ pBrk = sbrk(0);

pPad = pBrk;

}

if (pPad + n > pBrk) /* move pBrk */

{ pNewBrk =

max(pPad + n, pBrk + MIN_ALLOC);

if (brk(pNewBrk) == -1) return NULL;

pBrk = pNewBrk;

}

p = pPad;

pPad += n;

return p;

}

void free(void *p)

{

}

Pad Impl Performance

Performance (general case)
• Time: good

• malloc() calls sbrk() initially

• malloc() calls brk() infrequently thereafter

• Space: bad

• No reuse of freed chunks

29

What’s Wrong?

Problem
• malloc() doesn’t reuse freed chunks

Solution
• free() marks freed chunks as “free”

• malloc() uses marked chunks whenever possible

• malloc() extends size of heap only when necessary

30

Agenda

The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: doubly linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 31

Fragmentation

32

DMMgr must be concerned about fragmentation…

inuse free

At any given time, some heap memory chunks are

in use, some are marked “free”

Internal Fragmentation

33

Internal fragmentation: waste within chunks

Example

Generally

Program asks for n bytes

DMMgr provides chunk of size n+Δ bytes

Δ bytes wasted

Space efficiency ⇒
DMMgr should reduce internal fragmentation

100 bytes

Client asks for 90 bytes

DMMgr provides chunk of size 100 bytes

10 bytes wasted

External Fragmentation

34

External fragmentation: waste between chunks

Example

Generally

Program asks for n bytes

n bytes are available, but not contiguously

DMMgr must extend size of heap to satisfy request

Space efficiency ⇒
DMMgr should reduce external fragmentation

100 bytes

Client asks for 150 bytes

150 bytes are available, but not contiguously

DMMgr must extend size of heap

50 bytes

DMMgr Desired Behavior Demo

35

char *p1 = malloc(3);

char *p2 = malloc(1);

char *p3 = malloc(4);

free(p2);

char *p4 = malloc(6);

free(p3);

char *p5 = malloc(2);

free(p1);

free(p4);

free(p5);

DMMgr Desired Behavior Demo

36

0

0xffffffff

Stack

}

Heap

Heap

char *p1 = malloc(3);

char *p2 = malloc(1);

char *p3 = malloc(4);

free(p2);

char *p4 = malloc(6);

free(p3);

char *p5 = malloc(2);

free(p1);

free(p4);

free(p5);

p1

DMMgr Desired Behavior Demo

37

0

0xffffffff

Stack

}

Heap

Heap

char *p1 = malloc(3);

char *p2 = malloc(1);

char *p3 = malloc(4);

free(p2);

char *p4 = malloc(6);

free(p3);

char *p5 = malloc(2);

free(p1);

free(p4);

free(p5);

p1

p2

DMMgr Desired Behavior Demo

38

0

0xffffffff

Stack

}

Heap

Heap

char *p1 = malloc(3);

char *p2 = malloc(1);

char *p3 = malloc(4);

free(p2);

char *p4 = malloc(6);

free(p3);

char *p5 = malloc(2);

free(p1);

free(p4);

free(p5);

p1

p2
p3

DMMgr Desired Behavior Demo

39

0

0xffffffff

Stack

}

Heap

Heap

char *p1 = malloc(3);

char *p2 = malloc(1);

char *p3 = malloc(4);

free(p2);

char *p4 = malloc(6);

free(p3);

char *p5 = malloc(2);

free(p1);

free(p4);

free(p5);

p1

p2
p3

External fragmentation occurred

DMMgr Desired Behavior Demo

40

0

0xffffffff

Stack

}

Heap

Heap

char *p1 = malloc(3);

char *p2 = malloc(1);

char *p3 = malloc(4);

free(p2);

char *p4 = malloc(6);

free(p3);

char *p5 = malloc(2);

free(p1);

free(p4);

free(p5);

p1

p2
p3

p4

DMMgr Desired Behavior Demo

41

0

0xffffffff

Stack

}

Heap

Heap

char *p1 = malloc(3);

char *p2 = malloc(1);

char *p3 = malloc(4);

free(p2);

char *p4 = malloc(6);

free(p3);

char *p5 = malloc(2);

free(p1);

free(p4);

free(p5);

p1

p2
p3

p4

DMMgr coalesced two free chunks

DMMgr Desired Behavior Demo

42

0

0xffffffff

Stack

}

Heap

Heap

char *p1 = malloc(3);

char *p2 = malloc(1);

char *p3 = malloc(4);

free(p2);

char *p4 = malloc(6);

free(p3);

char *p5 = malloc(2);

free(p1);

free(p4);

free(p5);

p1

p5, p2
p3

p4

DMMgr reused previously freed chunk

DMMgr Desired Behavior Demo

43

0

0xffffffff

Stack

}

Heap

Heap

char *p1 = malloc(3);

char *p2 = malloc(1);

char *p3 = malloc(4);

free(p2);

char *p4 = malloc(6);

free(p3);

char *p5 = malloc(2);

free(p1);

free(p4);

free(p5);

p1

p5, p2
p3

p4

DMMgr Desired Behavior Demo

44

0

0xffffffff

Stack

}

Heap

Heap

char *p1 = malloc(3);

char *p2 = malloc(1);

char *p3 = malloc(4);

free(p2);

char *p4 = malloc(6);

free(p3);

char *p5 = malloc(2);

free(p1);

free(p4);

free(p5);

p1

p5, p2
p3

p4

DMMgr Desired Behavior Demo

45

0

0xffffffff

Stack

}

Heap

Heap

char *p1 = malloc(3);

char *p2 = malloc(1);

char *p3 = malloc(4);

free(p2);

char *p4 = malloc(6);

free(p3);

char *p5 = malloc(2);

free(p1);

free(p4);

free(p5);

p1

p5, p2
p3

p4

DMMgr Desired Behavior Demo

DMMgr cannot:
• Reorder requests

• Client may allocate & free in arbitrary order

• Any allocation may request arbitrary number of bytes

• Move memory chunks to improve performance

• Client stores addresses

• Moving a memory chunk would invalidate client pointer!

Some external fragmentation is unavoidable

46

Agenda

The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: doubly linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 47

List Impl

Data structures

Algorithms (by examples)… 48

Free list contains all free chunks

In order by mem addr

Each chunk contains header & payload

Payload is used by client

Header contains chunk size & (if free) addr of next chunk in free list

size

header

chunk

Next chunk in free list

payload

Free list

List Impl: malloc(n) Example 1

49

Search list for big-enough chunk

Note: first-fit (not best-fit) strategy

Found & reasonable size ⇒
Remove from list and return payload

< n >= n

too small reasonable

Free list

< n >= n

return this

Free list

List Impl: malloc(n) Example 2

50

Search list for big-enough chunk

Found & too big ⇒
Split chunk, return payload of tail end

Note: Need not change links

< n >> n

too small too big

Free list

< n n

return this

Free list

List Impl: free(p) Example

51

Search list for proper insertion spot

Insert chunk into list

(Not finished yet!)

free this

Free list

Free list

List Impl: free(p) Example (cont.)

52

Look at current chunk

Next chunk in memory == next chunk in list ⇒
Remove both chunks from list

Coalesce

Insert chunk into list

(Not finished yet!)

current

chunk

Free list

Free list

next chunk

In list

coalesced chunk

List Impl: free(p) Example (cont.)

53

Look at prev chunk in list

Next in memory == next in list ⇒
Remove both chunks from list

Coalesce

Insert chunk into list

(Finished!)

prev chunk

in list

Free list

Free list

current chunk

coalesced chunk

List Impl: malloc(n) Example 3

54

Search list for big-enough chunk

None found ⇒
Call brk() to increase heap size

Insert new chunk at end of list

(Not finished yet!)

too small too small

Free list

≥ n

new large

chunk

Free list

too small

List Impl: malloc(n) Example 3 (cont.)

55

Look at prev chunk in list

Next chunk memory == next chunk in list ⇒
Remove both chunks from list

Coalesce

Insert chunk into list

Then proceed to use the new chunk, as before

(Finished!)

prev chunk

In list

≥ n

new large

chunk

Free list

≥ n

new large

chunk

Free list

List Impl

Algorithms (see precepts for more precision)

malloc(n)

• Search free list for big-enough chunk

• Chunk found & reasonable size ⇒ remove, use

• Chunk found & too big ⇒ split, use tail end

• Chunk not found ⇒ increase heap size, create new chunk

• New chunk reasonable size ⇒ remove, use

• New chunk too big ⇒ split, use tail end

free(p)

• Search free list for proper insertion spot

• Insert chunk into free list

• Next chunk in memory also free ⇒ remove both, coalesce, insert

• Prev chunk in memory free ⇒ remove both, coalesce, insert

56

List Impl Performance

Space
• Some internal & external fragmentation is unavoidable

• Headers are overhead

• Overall: good

Time: malloc()

• Must search free list for big-enough chunk

• Bad: O(n)

• But often acceptable

Time: free()

• Must search free list for insertion spot

• Bad: O(n)

• Often very bad

57

58

Dynamic Memory

Management,

continued

Princeton University
Computer Science 217: Introduction to Programming Systems

Minimal Impl Performance

Performance (general case)
• Time: bad

• One system call per malloc()

• Space: bad

• Each call of malloc() extends heap size

• No reuse of freed chunks

59

Pad Impl Performance

Performance (general case)
• Time: good

• malloc() calls sbrk() initially

• malloc() calls brk() infrequently thereafter

• Space: bad

• No reuse of freed chunks

60

Unsorted-list-no-coalesce performance

61

Space

Time: malloc()

Time: free()

List Impl Performance

Space
• Some internal & external fragmentation is unavoidable

• Headers are overhead

• Overall: good

Time: malloc()

• Must search free list for big-enough chunk

• Bad: O(n)

• But often acceptable

Time: free()

• Must search free list for insertion spot

• Bad: O(n)

• Often very bad

62

What’s Wrong?

Problem
• free() must traverse (long) free list, so can be (very) slow

Solution
• Use a doubly linked list…

63

Agenda

The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: doubly linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 64

doubly linked List Impl

Data structures

65

Free list is doubly linked

Each chunk contains header, payload, footer

Payload is used by client

Header contains status bit, chunk size, & (if free) addr of next chunk in list

Footer contains redundant chunk size & (if free) addr of prev chunk in list

Free list is unordered

1

size

header

chunk

Next chunk in free list

payload

size

Prev chunk in free list

footer

Status bit:

0 ⇒ free

1 ⇒ in use

doubly linked List Impl

Typical heap during program execution:

66

Free list

doubly linked List Impl

Algorithms (see precepts for more precision)

malloc(n)

• Search free list for big-enough chunk

• Chunk found & reasonable size ⇒ remove, set status, use

• Chunk found & too big ⇒ remove, split, insert tail, set status, use

front

• Chunk not found ⇒ increase heap size, create new chunk, insert

• New chunk reasonable size ⇒ remove, set status, use

• New chunk too big ⇒ remove, split, insert tail, set status, use front

67

doubly linked List Impl

Algorithms (see precepts for more precision)

free(p)

• Set status

• Search free list for proper insertion spot

• Insert chunk into free list

• Next chunk in memory also free ⇒ remove both, coalesce, insert

• Prev chunk in memory free ⇒ remove both, coalesce, insert

68

doubly linked List Impl Performance

Consider sub-algorithms of free()…

Insert chunk into free list
• Linked list version: slow

• Traverse list to find proper spot

• doubly linked list version: fast

• Insert at front!

Remove chunk from free list
• Linked list version: slow

• Traverse list to find prev chunk in list

• doubly linked list version: fast

• Use backward pointer of current chunk to find prev chunk in list

69

doubly linked List Impl Performance

Consider sub-algorithms of free()…

Determine if next chunk in memory is free
• Linked list version: slow

• Traverse free list to see if next chunk in memory is in list

• doubly linked list version: fast

70

current next

Use current chunk’s size to find next chunk

Examine status bit in next chunk’s header

Free list

doubly linked List Impl Performance

Consider sub-algorithms of free()…

Determine if prev chunk in memory is free
• Linked list version: slow

• Traverse free list to see if prev chunk in memory is in list

• doubly linked list version: fast

71

currentprev

Fetch prev chunk’s size from its footer

Do ptr arith to find prev chunk’s header

Examine status bit in prev chunk’s header

Free list

Using payload space for management
or, only free chunks need to be in the free-list

72

1

size

header

Next chunk in free list

payload

size

Prev chunk in free list

footer

Status

1

size

header payload

size

footer

Status

1

size

header

Next chunk in free list

payload

size

Prev chunk in free list

footer

Status

This trick is NOT part of assignment 6!

Another use for the extra size field: error checking

73

1

size

header payload

size

footer

Status

char *s = (char *)malloc(32);

. . .

strcpy(s, "The rain in Spain is mainly in the plain.");

. . .

printf("%s\n", s);

free(s);

The rain in Spain is mainly in the plain

doubly linked List Impl Performance

Observation:
• All sub-algorithms of free() are fast

• free() is fast!

74

doubly linked List Impl Performance

Space
• Some internal & external fragmentation is unavoidable

• Headers & footers are overhead

• Overall: Good

Time: free()

• All steps are fast

• Good: O(1)

Time: malloc()

• Must search free list for big-enough chunk

• Bad: O(n)

• Often acceptable

• Subject to bad worst-case behavior

• E.g. long free list with big chunks at end

75

doubly linked List Impl Performance
with use-payload-space-for-management

Space
• Some internal & external fragmentation is unavoidable

• Headers & footers are overhead

• Overall: Good

Time: free()

• All steps are fast

• Good: O(1)

Time: malloc()

• Must search free list for big-enough chunk

• Bad: O(n)

• Often acceptable

• Subject to bad worst-case behavior

• E.g. long free list with big chunks at end

76

What’s Wrong?

Problem
• malloc() must traverse doubly linked list, so can be slow

Solution
• Use multiple doubly linked lists (bins)…

77

Agenda

The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: doubly linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 78

Data structures

Bins Impl

79

Use an array; each element is a bin

Each bin is a doubly linked list of free chunks

As in previous implementation

bin[i] contains free chunks of size i

Exception: Final bin contains chunks of size MAX_BIN or larger

(More elaborate binning schemes are common)

doubly linked list containing free chunks of size 10

…

…

doubly linked list containing free chunks of size 11

doubly linked list containing free chunks of size 12

10

11

12

MAX_BIN doubly linked list containing free chunks of size >= MAX_BIN

…

Bins Impl

Algorithms (see precepts for more precision)

malloc(n)

• Search free list proper bin(s) for big-enough chunk

• Chunk found & reasonable size ⇒ remove, set status, use

• Chunk found & too big ⇒ remove, split, insert tail, set status, use

front

• Chunk not found ⇒ increase heap size, create new chunk

• New chunk reasonable size ⇒ remove, set status, use

• New chunk too big ⇒ remove, split, insert tail, set status, use front

free(p)

• Set status

• Insert chunk into free list proper bin

• Next chunk in memory also free ⇒ remove both, coalesce, insert

• Prev chunk in memory free ⇒ remove both, coalesce, insert
80

Bins Impl Performance

Space
• Pro: For small chunks, uses best-fit (not first-fit) strategy

• Could decrease internal fragmentation and splitting

• Con: Some internal & external fragmentation is unavoidable

• Con: Headers, footers, bin array are overhead

• Overall: good

Time: malloc()

• Pro: Binning limits list searching

• Search for chunk of size i begins at bin i and proceeds downward

• Con: Could be bad for large chunks (i.e. those in final bin)

• Performance degrades to that of list version

• Overall: very good: O(1)

Time: free()

• Very good: O(1)
81

DMMgr Impl Summary (so far)

Implementation Space Time

(1) Minimal Bad Malloc: Bad

Free: Good

(2) Pad Bad Malloc: Good

Free: Good

(3) List Good Malloc: Bad (but could be OK)

Free: Bad

(4) doubly linked

List

Good Malloc: Bad (but could be OK)

Free: Good

(5) Bins Good Malloc: Good

Free: Good

82

Assignment 6: Given (3), compose (4) and (5)

Agenda

The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: doubly linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 83

Unix VM Mapping Functions

Unix allows application programs to map/unmap VM

explicitly

void *mmap(void *p, size_t n, int prot, int flags, int

fd, off_t offset);

• Creates a new mapping in the virtual address space of the calling

process

• p: the starting address for the new mapping

• n: the length of the mapping

• If p is NULL, then the kernel chooses the address at which to create

the mapping; this is the most portable method of creating a new

mapping

• On success, returns address of the mapped area

int munmap(void *p, size_t n);

• Deletes the mappings for the specified address range

84

85

Unix VM Mapping Functions

Typical call of mmap() for allocating memory
p = mmap(NULL, n, PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANON, 0, 0);

• Asks OS to map a new read/write area of virtual memory containing
n bytes

• Returns the virtual address of the new area on success, (void*)-1

on failure

Typical call of munmap()
status = munmap(p, n);

• Unmaps the area of virtual memory at virtual address p consisting of

n bytes

• Returns 0 on success, -1 on failure

See Bryant & O’Hallaron book and man pages for details

Agenda

The need for DMM

DMM using the heap section

DMMgr 1: Minimal implementation

DMMgr 2: Pad implementation

Fragmentation

DMMgr 3: List implementation

DMMgr 4: doubly linked list implementation

DMMgr 5: Bins implementation

DMM using virtual memory

DMMgr 6: VM implementation 86

VM Mapping Impl

Data structures

87

size

header

chunk

payload

Each chunk consists of a header and payload

Each header contains size

VM Mapping Impl

Algorithms

88

void *malloc(size_t n)

{ size_t *p;

if (n == 0) return NULL;

p = mmap(NULL, n + sizeof(size_t), PROT_READ|PROT_WRITE,

MAP_PRIVATE|MAP_ANONYMOUS, 0, 0);

if (p == (void*)-1) return NULL;

p = n + sizeof(size_t); / Store size in header */

p++; /* Move forward from header to payload */

return p;

}

void free(void *p)

{ if (p == NULL) return;

p--; /* Move backward from payload to header */

munmap(p, *p);

}

VM Mapping Impl Performance

Space
• Fragmentation problem is delegated to OS

• Overall: Depends on OS

Time
• For small chunks

• One system call (mmap()) per call of malloc()

• One system call (munmap()) per call of free()

• Overall: bad

• For large chunks

• free() unmaps (large) chunks of memory, and so shrinks page

table

• Overall: good

89

The GNU Implementation

Observation
• malloc() and free() on CourseLab are from the

GNU (the GNU Software Foundation)

Question
• How are GNU malloc() and free() implemented?

Answer
• For small chunks

• Use heap (sbrk() and brk())

• Use bins implementation

• For large chunks

• Use VM directly (mmap() and munmap())

90

Segregated metadata

91

2

4

6

Data layout: no “size” field, no header at all!

Malloc: look up in bins array, use first element of linked list

Free: find size (somehow), put back at head of that bin’s list

contiguous

How free() finds the size

92

↓006FA8B0000 ↓006FA8BFFFF

↓00381940000 ↓0038194FFFF

Hash table:
006FA8B → 2

0038194 → 4

0058217 → 6

etc.

006FA8B0080

“page” number offset in page

Segregated metadata performance

Space
• No overhead for header: very very good, O(1)

• No coalescing, fragmentation may occur, possibly bad

Time
• malloc: very very good, O(1)

• free: hash-table lookup, good, O(1)

93

Summary

The need for dynamic memory management
• Unknown object size

DMM using the heap section
• On Unix: sbrk() and brk()

• Complicated data structures and algorithms

• Good for managing small memory chunks

DMM using virtual memory
• On Unix: mmap() and munmap()

• Good for managing large memory chunks

See Appendix for additional approaches/refinements

94

