
1

Memory Hierarchy

Princeton University
Computer Science 217: Introduction to Programming Systems

2

Goals of this Lecture

Help you learn about:
Locality and caching
Typical storage hierarchy
Virtual memory

How the hardware and OS give application pgms
the illusion of a large, contiguous, private address space

Virtual memory is one of the most important concepts in
system programming

Agenda

Locality and caching

Typical storage hierarchy

Virtual memory

3

Storage Device speed vs. size

Facts:
CPU needs subnanosecond
instructions fast enough)
Fast memories (subnanosecond) are small (1000 bytes),
Big memories (gigabytes) are slow (60 nanoseconds)
Huge memories (terabytes) are very slow (milliseconds)

Goal:
Need many gigabytes of memory,
but with fast (subnanosecond) average access time

Solution: locality allows caching
Most programs exhibit good locality
A program that exhibits good locality will benefit from proper
caching

4

5

Locality

Two kinds of locality
Temporal locality

If a program references item X now, it probably will reference X
again soon

Spatial locality
If a program references item X now, it probably will reference
item at address X 1 soon

Most programs exhibit good temporal and spatial locality

6

Locality Example

Locality example

Temporal locality
Data: Whenever the CPU accesses sum, it accesses sum again
shortly thereafter
Instructions: Whenever the CPU executes sum += a[i], it
executes sum += a[i] again shortly thereafter

Spatial locality
Data: Whenever the CPU accesses a[i], it accesses a[i+1]
shortly thereafter
Instructions: Whenever the CPU executes sum += a[i], it
executes i++ shortly thereafter

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];

Typical code
(good locality)

Caching

Cache
Fast access, small capacity storage device
Acts as a staging area for a subset of the items in a slow access,
large capacity storage device

Good locality + proper caching
Most storage accesses can be satisfied by cache
Overall storage performance improved

7

Caching in a Storage Hierarchy

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Larger, slower device at
level k+1 is partitioned
into blocks

Blocks copied
between levels

9 3

Smaller, faster device at
level k caches a subset of
the blocks from level k+1

Level k:

Level k+1:

4

4 10

10

8

9

Cache Hits and Misses

Cache hit
E.g., request for block 10
Access block 10 at level k
Fast!

Cache miss
E.g., request for block 8
Evict some block from
level k to level k+1
Load block 8 from level
k+1 to level k
Access block 8 at level k
Slow!

Caching goal:
Maximize cache hits
Minimize cache misses

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3

Level k:

Level k+1:

4

4 10

10

Level k is a cache
for level k+1

10

Cache Eviction Policies

Best eviction policy: clairvoyant policy
Always evict a block that is never
Always evict the block accessed the furthest in the future
Impossible in the general case

Worst eviction policy
Always evict the block that will be accessed next!
Causes thrashing
Impossible in the general case!

11

Cache Eviction Policies

Reasonable eviction policy: LRU policy
Evict the least recently used (LRU) block

With the assumption that it will not be used again (soon)
Good for straight-line code
(can be) bad for loops
Expensive to implement

Often simpler approximations are used
See Wikipedia Page replacement algorithm topic

12

Locality/Caching Example: Matrix Mult

Matrix multiplication
Matrix = two-dimensional array
Multiply n-by-n matrices A and B
Store product in matrix C

Performance depends upon
Effective use of caching (as implemented by system)
Good locality (as implemented by you)

Locality/Caching Example: Matrix Mult

Two-dimensional arrays are stored in either row-major or
column-major order

C uses row-major order
Access in row-major order good spatial locality
Access in column-major order poor spatial locality

13

18 19

21 22

20

23

24 25 26

0 1 2

0

1

2

18

19

21

22

20

23

24

25

26

a[0][0]

a[0][1]

a[0][2]

a[1][0]

a[1][1]

a[1][2]

a[2][0]

a[2][1]

a[2][2]

18

21

19

22

24

25

20

23

26

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

row-major col-major

a

14

Locality/Caching Example: Matrix Mult

for (i=0; i<n; i++)

for (j=0; j<n; j++)

for (k=0; k<n; k++)

c[i][j] += a[i][k] * b[k][j];

Reasonable cache effects
Good locality for A
Bad locality for B
Good locality for C a b c

i k k

j

i

j

15

Locality/Caching Example: Matrix Mult

Poor cache effects
Bad locality for A
Bad locality for B
Bad locality for C

for (j=0; j<n; j++)

for (k=0; k<n; k++)

for (i=0; i<n; i++)

c[i][j] += a[i][k] * b[k][j];

a b c

j

ii k k

j

16

Locality/Caching Example: Matrix Mult

Good cache effects
Good locality for A
Good locality for B
Good locality for C

for (i=0; i<n; i++)

for (k=0; k<n; k++)

for (j=0; j<n; j++)

c[i][j] += a[i][k] * b[k][j];

a b c

i k k

j

i

Agenda

Locality and caching

Typical storage hierarchy

Virtual memory

17

Typical Storage Hierarchy

registers

main memory (RAM)

local secondary storage
(local disks, SSDs)

Larger
slower
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk
blocks retrieved from local
disks

L1 cache

CPU registers hold words retrieved
from L1/L2/L3 cache

L1/L2/L3 cache holds cache lines
retrieved from main memory

Smaller
faster

storage
devices

18

Level 2 cache

Level 3 cache

Typical Storage Hierarchy

Registers
Latency: 0 cycles
Capacity: 8-256 registers

8 general purpose registers in IA-32;
32 in typical RISC machine (ARM, MIPS, RISC-V)

L1/L2/L3 Cache
Latency: 1 to 30 cycles
Capacity: 32KB to 32MB

Main memory (RAM)
Latency: ~100 cycles

100 times slower than registers
Capacity: 256MB to 64GB

19 https://www.anandtech.com/show/6993/intel-iris-pro-5200-graphics-review-core-i74950hq-tested/3

L1
L2

L3

DRAM

(L4)

1 clock = 3·10-10 sec

Typical Storage Hierarchy

Local secondary storage: disk drives
Latency: ~100,000 cycles

1000 times slower than
main mem
Limited by nature of disk

Must move heads and wait
for data to rotate under heads
Faster when accessing many
bytes in a row

Capacity: 1GB to 256TB

21

Disks

1 ns

1 s

1 ms

Kb Mb Gb Tb

DRAM

HDD

SSD

Typical Storage Hierarchy

Remote secondary storage
Latency: ~10,000,000 cycles

100 times slower than disk
Limited by network bandwidth

Capacity: essentially unlimited

23

Aside: Persistence

Another dimension: persistence
Do data persist in the absence of power?

Lower levels of storage hierarchy store data persistently
Remote secondary storage
Local secondary storage

Higher levels of storage hierarchy do not store data
persistently

Main memory (RAM)
L1/L2/L3 cache
Registers

24

Aside: Persistence

Admirable goal: Move persistence upward in hierarchy

Solid state (flash) drives
Use solid state technology (as
does main memory)
Persistent, as is disk
Viable replacement for disk as
local secondary storage

25

Storage Hierarchy & Caching Issues

Issue: Block size?
Slow data transfer between levels k and k+1

use large block sizes at level k (do data transfer less often)
Fast data transfer between levels k and k+1

use small block sizes at level k (reduce risk of cache miss)
Lower in pyramid slower data transfer larger block sizes

26

Device Block Size

Register 8 bytes

L1/L2/L3 cache line 64 bytes

Main memory page 4KB (4096 bytes)

Disk block 4KB (4096 bytes)

Disk transfer block 4KB (4096 bytes) to
64MB (67108864 bytes)

Storage Hierarchy & Caching Issues

Issue: Who manages the cache?

27

Device Managed by:

Registers
(cache of L1/L2/L3 cache and
main memory)

Compiler, using complex code-
analysis techniques
Assembly lang programmer

L1/L2/L3 cache
(cache of main memory)

Hardware, using simple
algorithms

Main memory
(cache of local sec storage)

Hardware and OS, using virtual
memory with complex
algorithms (since accessing
disk is expensive)

Local secondary storage
(cache of remote sec storage)

End user, by deciding which
files to download

Agenda

Locality and caching

Typical storage hierarchy

Virtual memory

28

29

Main Memory: Illusion

Process 1 Process 2

Memory
for

Process
1

0000000000000000

FFFFFFFFFFFFFFFF

Memory
for

Process
2

0000000000000000

FFFFFFFFFFFFFFFF

Each process sees main memory as
Huge: 264 = 16 EB (16 exabytes) of memory
Uniform: contiguous memory locations from 0 to 264-1

30

Main Memory: Reality

Process 1 VM Process 2 VM

Memory is divided into pages
At any time some pages are in physical memory, some on disk
OS and hardware swap pages between physical memory and disk

Multiple processes share physical memory

unmapped

unmapped

Physical Memory

Disk

Virtual & Physical Addresses

Question
How do OS and hardware implement virtual memory?

Answer (part 1)
Distinguish between virtual addresses and physical addresses

31

Virtual & Physical Addresses (cont.)

Virtual address
Identifies a location in a particular process s virtual memory

Independent of size of physical memory
Independent of other concurrent processes

Consists of virtual page number & offset
Used by application programs

Physical address
Identifies a location in physical memory
Consists of physical page number & offset
Known only to OS and hardware

Note:
Offset is same in virtual addr and corresponding physical addr

32

virtual page num offset

physical page num offset

CourseLab Virtual & Physical Addresses

On CourseLab:
Each offset is 12 bits

Each page consists of 212 bytes
Each virtual page number consists of 52 bits

There are 252 virtual pages
Each virtual address consists of 64 bits

There are 264 bytes of virtual memory (per process)
33

virtual page num offset

52 bits 12 bits

virtual
addr

physical page num offsetphysical
addr

CourseLab Virtual & Physical Addresses

On CourseLab:
Each offset is 12 bits

Each page consists of 212 bytes
Each physical page number consists of 25 bits

There are 225 physical pages
Each physical address consists of 37 bits

There are 237 (128G) bytes of physical memory (per computer)
34

virtual page num offset

52 bits 12 bits

virtual
addr

physical page num offsetphysical
addr

12 bits25 bits

Page Tables

Question
How do OS and hardware implement virtual memory?

Answer (part 2)
Maintain a page table for each process

35

Page Tables (cont.)

Page table maps each
in-use virtual page to:

A physical page, or
A spot (track & sector)
on disk

36

Virtual Page
Num

Physical Page
Num or Disk Addr

0 Physical page 5

1 (unmapped)

2 Spot X on disk

Page Table for Process 1234

3 Physical page 8

Virtual Memory Example 1

37

Process 1234 accesses mem at virtual addr 16386
16386 =

000000000010B =
Virtual page num = 4; offset = 2

VP 3

VP 4

VP 0

VP 6

Physical MemProcess 1234
Virtual Mem

VP 2

VP 5

0

1

2

3

4

5

6

0

1

2

3

Disk

VP PP

0 2

1

2 X

3 0

4 1

5 Y

6 3

Process 1234
Page Table

X

Y

Virtual Memory Example 1 (cont.)

38

Hardware consults page table
Hardware notes that virtual page 4 maps to phys page 1
Page hit!

VP 3

VP 4

VP 0

VP 6

Physical MemProcess 1234
Virtual Mem

VP 2

VP 5

0

1

2

3

4

5

6

0

1

2

3

Disk

VP PP

0 2

1

2 X

3 0

4 1

5 Y

6 3

Process 1234
Page Table

X

Y

Virtual Memory Example 1 (cont.)

39

Hardware forms physical addr
Physical page num = 1; offset = 2
= 0000000000000000000001000000000010B

= 4098
Hardware fetches/stores data from/to phys addr 4098

VP 3

VP 4

VP 0

VP 6

Physical MemProcess 1234
Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 X

3 0

4 1

5 Y

6 3

Process 1234
Page Table

VP 2

VP 5

Disk

X

Y

Virtual Memory Example 2

40

Process 1234 accesses mem at virtual addr 8200
8200 =

000000001000B =
Virtual page num = 2; offset = 8

VP 3

VP 4

VP 0

VP 6

Physical MemProcess 1234
Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 X

3 0

4 1

5 Y

6 3

Process 1234
Page Table

VP 2

VP 5

Disk

X

Y

Virtual Memory Example 2 (cont.)

41

VP 3

VP 4

VP 0

VP 6

Physical MemProcess 1234
Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 X

3 0

4 1

5 Y

6 3

Process 1234
Page Table

VP 2

VP 5

Disk

X

Y

Hardware consults page table
Hardware notes that virtual page 2 maps to spot X on disk
Page miss!
Hardware generates page fault

Virtual Memory Example 2 (cont.)

42

VP 3

VP 4

VP 0

VP 2

Physical MemProcess 1234
Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 3

3 0

4 1

5 Y

6 X

Process 1234
Page Table

VP 6

VP 5

Disk

X

YOS gains control of CPU
OS swaps virtual pages 6 and 2
This takes a long while (disk latency), run another process for the time being; then eventually...

OS updates page table accordingly
Control returns to process 1234
Process 1234 re-executes same instruction

Virtual Memory Example 2 (cont.)

43

Process 1234 accesses mem at virtual addr 8200
8200 =

000000001000B =
Virtual page num = 2; offset = 8

VP 3

VP 4

VP 0

VP 2

Physical MemProcess 1234
Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 3

3 0

4 1

5 Y

6 X

Process 1234
Page Table

VP 6

VP 5

Disk

X

Y

Virtual Memory Example 2 (cont.)

44

VP 3

VP 4

VP 0

VP 2

Physical MemProcess 1234
Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 3

3 0

4 1

5 Y

6 X

Process 1234
Page Table

VP 6

VP 5

Disk

X

Y

Hardware consults page table
Hardware notes that virtual page 2 maps to phys page 3
Page hit!

Virtual Memory Example 2 (cont.)

45

Hardware forms physical addr
Physical page num = 3; offset = 8
= 0000000000000000000011000000001000B

= 12296
Hardware fetches/stores data from/to phys addr 12296

VP 3

VP 4

VP 0

VP 2

Physical MemProcess 1234
Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 3

3 0

4 1

5 Y

6 X

Process 1234
Page Table

VP 6

VP 5

Disk

X

Y

Virtual Memory Example 3

46

Process 1234 accesses mem at virtual addr 4105
4105 =

000000001001B =
Virtual page num = 1; offset = 9

VP 3

VP 4

VP 0

VP 2

Physical MemProcess 1234
Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 3

3 0

4 1

5 Y

6 X

Process 1234
Page Table

VP 6

VP 5

Disk

X

Y

Virtual Memory Example 3 (cont.)

47

VP 3

VP 4

VP 0

VP 2

Physical MemProcess 1234
Virtual Mem

0

1

2

3

4

5

6

0

1

2

3

VP PP

0 2

1

2 3

3 0

4 1

5 Y

6 X

Process 1234
Page Table

VP 6

VP 5

Disk

X

Y
Hardware consults page table
Hardware notes that virtual page 1 is unmapped
Page miss!
Hardware generates segmentation fault
(See Signals lecture for remainder!)

Storing Page Tables

Question
Where are the page tables themselves stored?

Answer
In main memory

Question
What happens if a page table is swapped out to disk???!!!

Answer
OS is responsible for swapping
Special logic in OS pins page tables to physical memory

So they never are swapped out to disk

48

Storing Page Tables (cont.)

Question
t that mean that each logical memory access requires two

physical memory accesses one to access the page table, and one
to access the desired datum?

Answer
Yes!

Question
t that inefficient?

Answer

49

Storing Page Tables (cont.)

Note 1
Page tables are accessed frequently
Likely to be cached in L1/L2/L3 cache

Note 2
X86-64 architecture provides special-purpose hardware support for

50

Translation Lookaside Buffer

Translation lookaside buffer (TLB)
Small cache on CPU
Each TLB entry consists of a page table entry
Hardware first consults TLB

Hit no need to consult page table in L1/L2/L3 cache or memory
Miss swap relevant entry from page table in L1/L2/L3 cache or
memory into TLB; try again

Hallaron book for details

Caching again!!!

51 52

Additional Benefits of Virtual Memory

Virtual memory concept facilitates/enables many other OS

Context switching (as described last lecture)

Illusion: To context switch from process X to process Y, OS must save
contents of registers and memory for process X, restore contents of
registers and memory for process Y

Reality: To context switch from process X to process Y, OS must save
contents of registers and virtual memory for process X, restore contents of
registers and virtual memory for process Y

Implementation: To context switch from process X to process Y, OS must
save contents of registers and page table for process X, restore contents of
registers and page table for process Y

pointer to thepointer to the

53

Additional Benefits of Virtual Memory

Memory protection among processes
s page table references only physical memory pages that

the process currently owns
Impossible for one process to accidentally/maliciously affect physical
memory used by another process

Memory protection within processes
Permission bits in page-table entries indicate whether page is read-
only, etc.
Allows CPU to prohibit

Writing to RODATA & TEXT sections
Access to protected (OS owned) virtual memory

54

Additional Benefits of Virtual Memory

Linking
Same memory layout for each process

E.g., TEXT section always starts at virtual addr 0x08048000
E.g., STACK always grows from virtual addr 0x0bfffffff to
lower addresses

Linker is independent of physical location of code

Code and data sharing
User processes can share some code and data

E.g., single physical copy of stdio library code (e.g. printf)
Mapped into the virtual address space of each process

55

Additional Benefits of Virtual Memory

Dynamic memory allocation
User processes can request additional memory from the heap

E.g., using malloc() to allocate, and free() to deallocate
OS allocates contiguous

anywhere in physical memory

56

Additional Benefits of Virtual Memory

Creating new processes
Easy for parent process to fork a new child process

Initially: make new PCB containing copy of parent page table
Incrementally: change child page table entries as required

See Process Management lecture for details
fork() system-level function

Overwriting one program with another
Easy for a process to replace its program with another program

Initially: set page table entries to point to program pages that
already exist on disk!
Incrementally: swap pages into memory as required

See Process Management lecture for details
execvp() system-level function

57

Measuring Memory Usage

$ ps l

F UID PID PPID PRI NI VSZ RSS WCHAN STAT TTY TIME COMMAND

0 42579 9655 9696 30 10 167568 13840 signal TN pts/1 0:00 emacs nw

0 42579 9696 9695 30 10 24028 2072 wait SNs pts/1 0:00 -bash

0 42579 9725 9696 30 10 11268 956 - RN+ pts/1 0:00 ps l

VSZ (virtual memory size): virtual memory usage
RSS (resident set size): physical memory usage
(both measured in kilobytes)

On CourseLab computers:

58

Summary

Locality and caching
Spatial & temporal locality
Good locality caching is effective

Typical storage hierarchy
Registers, L1/L2/L3 cache, main memory, local secondary storage
(esp. disk), remote secondary storage

Virtual memory
Illusion vs. reality
Implementation

Virtual addresses, page tables, translation lookaside buffer (TLB)
Additional benefits (many!)

Virtual memory concept permeates the design of
operating systems and computer hardware

