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Data Structures

Princeton University
Computer Science 217: Introduction to Programming Systems



“Programming in the Large” Steps

Design & Implement
• Program & programming style  (done)

• Common data structures and algorithms  <-- we are here

• Modularity

• Building techniques & tools  (done)

Debug
• Debugging techniques & tools  (done)

Test
• Testing techniques  (done)

Maintain
• Performance improvement techniques & tools
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Goals of this Lecture

Help you learn (or refresh your memory) about:
• Common data structures: linked lists and hash tables

Why?  Deep motivation:
• Common data structures serve as “high level building blocks”

• A power programmer:

• Rarely creates programs from scratch

• Often creates programs using high level building blocks

Why?  Shallow motivation:
• Provide background pertinent to Assignment 3

• … esp. for those who have not taken COS 226
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Common Task

Maintain a collection of key/value pairs
• Each key is a string; each value is an int

• Unknown number of key-value pairs

Examples
• (student name, grade)

• (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81)

• (baseball player, number)

• (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)

• (variable name, value)

• (“maxLength”, 2000), (“i”, 7), (“j”, -10)
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Agenda

Linked lists

Hash tables

Hash table issues
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Linked List Data Structure

struct Node

{  const char *key;

int value;

struct Node *next;

};

struct List

{  struct Node *first;

};
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Linked List Data Structure
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Linked List Algorithms

Create
• Allocate List structure; set first to NULL

• Performance:  O(1) ⇒ fast 

Add (no check for duplicate key required)
• Insert new node containing key/value pair at front of list

• Performance:  O(1) ⇒ fast

Add (check for duplicate key required)
• Traverse list to check for node with duplicate key

• Insert new node containing key/value pair into list

• Performance:  O(n) ⇒ slow
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Linked List Algorithms

Search
• Traverse the list, looking for given key

• Stop when key found, or reach end

• Performance:  O(n) ⇒ slow

Free
• Free Node structures while traversing

• Free List structure

• Performance:  O(n) ⇒ slow
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Agenda

Linked lists

Hash tables

Hash table issues
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Hash Table Data Structure

enum {BUCKET_COUNT = 1024};

struct Binding

{  const char *key;

int value;

struct Binding *next;

};

struct Table

{  struct Binding *buckets[BUCKET_COUNT];

};

NULL
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Hash Table Data Structure

Hash function maps given key to an integer

Mod integer by BUCKET_COUNT to determine proper bucket 
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Binding

Bucket



Hash Table Example

Example: BUCKET_COUNT = 7

Add (if not already present) bindings with these keys:
• the, cat, in, the, hat

13



Hash Table Example (cont.)

First key:  “the”
• hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; not found
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Hash Table Example (cont.)

Add binding with key “the” and its value to buckets[1]
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Hash Table Example (cont.)

Second key:  “cat”
• hash(“cat”) = 3895848756; 3895848756 % 7 = 2

Search buckets[2] for binding with key “cat”; not found
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Hash Table Example (cont.)

Add binding with key “cat” and its value to buckets[2]
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Hash Table Example (cont.)

Third key:  “in”
• hash(“in”) = 6888005; 6888005% 7 = 5

Search buckets[5] for binding with key “in”; not found
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Hash Table Example (cont.)

Add binding with key “in” and its value to buckets[5]
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Hash Table Example (cont.)

Fourth word:  “the”
• hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; found it!

• Don’t change hash table
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Hash Table Example (cont.)

Fifth key:  “hat”
• hash(“hat”) = 865559739; 865559739 % 7 = 2

Search buckets[2] for binding with key “hat”; not found
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Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets[2]

• At front or back?  Doesn’t matter

• Inserting at the front is easier, so add at the front
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Hash Table Algorithms

Create
• Allocate Table structure; set each bucket to NULL

• Performance:  O(1) ⇒ fast

Add
• Hash the given key

• Mod by BUCKET_COUNT to determine proper bucket

• Traverse proper bucket to make sure no duplicate key

• Insert new binding containing key/value pair into proper bucket

• Performance:  O(1) ⇒ fast
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Hash Table Algorithms

Search
• Hash the given key

• Mod by BUCKET_COUNT to determine proper bucket

• Traverse proper bucket, looking for binding with given key

• Stop when key found, or reach end

• Performance:  O(1) ⇒ fast

Free
• Traverse each bucket, freeing bindings

• Free Table structure

• Performance:  O(n) ⇒ slow
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Agenda

Linked lists

Hash tables

Hash table issues
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How Many Buckets?

Many!
• Too few ⇒ large buckets ⇒ slow add, slow search

But not too many!
• Too many ⇒ memory is wasted

This is OK:
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What Hash Function?

Should distribute bindings across the buckets well
• Distribute bindings over the range 0, 1, …, BUCKET_COUNT-1

• Distribute bindings evenly to avoid very long buckets

This is not so good:

0

BUCKET_COUNT-1
What would be the 

worst possible hash 

function?



28

How to Hash Strings?

Simple hash schemes don’t distribute the keys evenly 

enough
• Number of characters, mod BUCKET_COUNT

• Sum the numeric codes of all characters, mod BUCKET_COUNT

• …

A reasonably good hash function:
• Weighted sum of characters si in the string s

•(Σ aisi) mod BUCKET_COUNT

• Best if a and BUCKET_COUNT are relatively prime

• E.g., a = 65599, BUCKET_COUNT = 1024
Why?

Footnote:  I originally designed this homework so that BUCKET_COUNT is a prime number.

In 2016 I wondered, “wouldn’t it work just as well if a and BUCKET_COUNT are just relatively

prime?  Measurements show no: using a prime number of buckets leads to more even

distribution of bucket contents.”
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How to Hash Strings?

Potentially expensive to compute Σ aisi

So let’s do some algebra (“Horner’s rule”)
• (by example, for string s of length 5, a=65599):

h = Σ65599i*si

h = 655990*s0 + 655991*s1 + 655992*s2 + 655993*s3 + 655994*s4

Direction of traversal of s doesn’t matter, so…

h = 655990*s4 + 655991*s3 + 655992*s2 + 655993*s1 + 655994*s0

h = 655994*s0 + 655993*s1 + 655992*s2 + 655991*s3 + 655990*s4

h = (((((s0) * 65599 + s1) * 65599 + s2) * 65599 + s3) * 65599) + s4
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How to Hash Strings?

Yielding this function

size_t hash(const char *s, size_t bucketCount)

{  size_t i;

size_t h = 0;

for (i=0; s[i]!='\0'; i++)

h = h * 65599 + (size_t)s[i];

return h % bucketCount;

}



31

How to Protect Keys?

Suppose Table_add() function contains this code:

void Table_add(struct Table *t, const char *key, int value)

{  …

struct Binding *p = 

(struct Binding*)malloc(sizeof(struct Binding));

p->key = key;

…

}
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How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);
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How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);

strcpy(k, "Gehrig");

What happens if the 

client searches t for 

“Ruth”?  For Gehrig?
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How to Protect Keys?

Solution: Table_add() saves a defensive copy of the 

given key

void Table_add(struct Table *t, const char *key, int value)

{  …

struct Binding *p = 

(struct Binding*)malloc(sizeof(struct Binding));

p->key = (const char*)malloc(strlen(key) + 1);

strcpy((char*)p->key, key);

…

} Why add 1?
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How to Protect Keys?

Now consider same calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);
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How to Protect Keys?

Now consider same calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);

strcpy(k, "Gehrig");
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Who Owns the Keys?

Then the hash table owns its keys
• That is, the hash table owns the memory in

which its keys reside

• Hash_free() function must free the memory

in which the key resides



Summary

Common data structures and associated algorithms
• Linked list

• (Maybe) fast add

• Slow search

• Hash table

• (Potentially) fast add

• (Potentially) fast search

• Very common

Hash table issues
• Hashing algorithms

• Defensive copies

• Key ownership
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Debugging (Part 2)

Princeton University
Computer Science 217: Introduction to Programming Systems



“Programming in the Large” Steps

Design & Implement
• Program & programming style  (done)

• Common data structures and algorithms

• Modularity

• Building techniques & tools  (done)

Test
• Testing techniques  (done)

Debug
• Debugging techniques & tools  <-- we are still here

Maintain
• Performance improvement techniques & tools

40



41

Goals of this Lecture

Help you learn about:
• Debugging strategies & tools related to dynamic memory 

management (DMM) *

Why?
• Many bugs occur in code that does DMM

• DMM errors can be difficult to find

• DMM error in one area can manifest itself in a distant area

• A power programmer knows a wide variety of DMM debugging 

strategies

• A power programmer knows about tools that facilitate DMM 

debugging

* Management of heap memory via malloc(), calloc(), 

realloc(), and free()
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Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind 



43

Look for Common DMM Bugs

Some of our favorites:

int *p; /* value of p undefined */

…

*p = somevalue;

char *p; /* value of p undefined */

…

fgets(p, 1024, stdin);

int *p;

…

p = (int*)malloc(sizeof(int));

…

*p = 5;

…

free(p);

…

*p = 6;

What are 

the 

errors?
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Look for Common DMM Bugs

Some of our favorites:

int *p;

…

p = (int*)malloc(sizeof(int));

…

*p = 5;

…

p = (int*)malloc(sizeof(int));

int *p;

…

p = (int*)malloc(sizeof(int));

…

*p = 5;

…

free(p);

…

free(p);

What are 

the 

errors?
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Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind 



Diagnose Seg Faults Using GDB

Segmentation fault => make it happen in gdb
• Then issue the gdb where command

• Output will lead you to the line that caused the fault

• But that line may not be where the error resides!
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Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind 
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Manually Inspect Malloc Calls

Manually inspect each call of malloc()

• Make sure it allocates enough memory

Do the same for calloc() and realloc()
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Manually Inspect Malloc Calls

Some of our favorites:

char *s1 = "hello, world";

char *s2;

s2 = (char*)malloc(strlen(s1));

strcpy(s2, s1);

long double *p;

p = (long double*)malloc(sizeof(long double*));

char *s1 = "Hello";

char *s2;

s2 = (char*)malloc(sizeof(s1));

strcpy(s2, s1);

long double *p;

p = (long double*)malloc(sizeof(p));

What are 

the 

errors?
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Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind 



Hard-Code Malloc Calls

Temporarily change each call of malloc() to request a 

large number of bytes
• Say, 10000 bytes

• If the error disappears, then at least one of your calls is requesting 

too few bytes

Then incrementally restore each call of malloc() to its 

previous form
• When the error reappears, you might have found the culprit

Do the same for calloc() and realloc()
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Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind 



Comment-Out Free Calls 

Temporarily comment-out every call of free()

• If the error disappears, then program is

• Freeing memory too soon, or

• Freeing memory that already has been freed, or

• Freeing memory that should not be freed,

• Etc.

Then incrementally “comment-in” each call of free()

• When the error reappears, you might have found the culprit
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Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind 



Use Meminfo

Use the Meminfo tool
• Simple tool

• Initial version written by Dondero

• Current version written by COS 217 alumnus RJ Liljestrom

• Reports errors after program execution

• Memory leaks

• Some memory corruption

• User-friendly output

Appendix 1 provides example buggy programs

Appendix 2 provides Meminfo analyses

55



56

Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind 



Use Valgrind

Use the Valgrind tool
• Complex tool

• Written by multiple developers, worldwide

• See www.valgrind.org

• Reports errors during program execution

• Memory leaks

• Multiple frees

• Dereferences of dangling pointers

• Memory corruption

• Comprehensive output

• But not always user-friendly
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Use Valgrind

Appendix 1 provides example buggy programs

Appendix 3 provides Valgrind analyses
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Summary

Strategies and tools for debugging the DMM aspects of your 

code:
• Look for common DMM bugs

• Diagnose seg faults using gdb

• Manually inspect malloc calls

• Hard-code malloc calls

• Comment-out free calls

• Use Meminfo

• Use Valgrind 

59



Appendix 1: Buggy Programs

leak.c

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main(void)

4. {  int *pi;  

5.    pi = (int*)malloc(sizeof(int));

6.    *pi = 5;

7.    printf("%d\n", *pi);

8.    pi = (int*)malloc(sizeof(int));

9.    *pi = 6;

10.    printf("%d\n", *pi);

11.    free(pi);

12.    return 0;

13. }

60

Memory leak:

Memory allocated at line 5 is leaked



Appendix 1: Buggy Programs

doublefree.c

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main(void)

4. {  int *pi;

5.    pi = (int*)malloc(sizeof(int));

6.    *pi = 5;

7.    printf("%d\n", *pi);

8.    free(pi);

9.    free(pi);

10.    return 0;

11. }

61

Multiple free:

Memory allocated at line 5 is freed twice



Appendix 1: Buggy Programs

danglingptr.c

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main(void)

4. {  int *pi;

5.    pi = (int*)malloc(sizeof(int));

6.    *pi = 5;

7.    printf("%d\n", *pi);

8.    free(pi);

9.    printf("%d\n", *pi); 

10.    return 0;

11. }

62

Dereference of dangling pointer:

Memory accessed at line 9 already was freed



Appendix 1: Buggy Programs

toosmall.c

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main(void)

4. {  int *pi; 

5.    pi = (int*)malloc(1);  

6.    *pi = 5;

7.    printf("%d\n", *pi);

8.    free(pi);

9.    return 0;

10. }

63

Memory corruption:

Too little memory is allocated at line 5

Line 6 corrupts memory



Appendix 2: Meminfo

Meminfo can detect memory leaks:

$ gcc217m leak.c -o leak

$ leak

5

6

$ ls

.  ..  leak.c  leak  meminfo30462.out  

$ meminforeport meminfo30462.out 

Errors:

** 4 un-freed bytes (1 block) allocated at leak.c:5

Summary Statistics:

Maximum bytes allocated at once: 8

Total number of allocated bytes: 8

Statistics by Line:

Bytes   Location

-4   leak.c:11

4   leak.c:5

4   leak.c:8

4 TOTAL

Statistics by Compilation Unit:

4   leak.c

4 TOTAL
64



Appendix 2: Meminfo

Meminfo can detect memory corruption:

$ gcc217m toosmall.c -o toosmall

$ toosmall

5

$ ls

.  ..  toosmall.c  toosmall  meminfo31891.out  

$ meminforeport meminfo31891.out 

Errors:

** Underflow detected at toosmall.c:8 for memory allocated at toosmall.c:5

Summary Statistics:

Maximum bytes allocated at once: 1

Total number of allocated bytes: 1

Statistics by Line:

Bytes   Location

1   toosmall.c:5

-1   toosmall.c:8

0   TOTAL

Statistics by Compilation Unit:

0   toosmall.c

0   TOTAL
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Appendix 2: Meminfo

Meminfo caveats:

• Don’t mix .o files built with gcc217 and gcc217m

• meminfo*.out files can be large

• Should delete frequently

• Programs built with gcc217m run slower than those built with 

gcc217

• Don’t build with gcc217m when doing timing tests
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Appendix 3: Valgrind

Valgrind can detect memory leaks:

$ gcc217 leak.c -o leak

$ valgrind leak

==31921== Memcheck, a memory error detector

==31921== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==31921== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==31921== Command: leak

==31921== 

5

6

==31921== 

==31921== HEAP SUMMARY:

==31921==     in use at exit: 4 bytes in 1 blocks

==31921==   total heap usage: 2 allocs, 1 frees, 8 bytes allocated

==31921== 

==31921== LEAK SUMMARY:

==31921==    definitely lost: 4 bytes in 1 blocks

==31921==    indirectly lost: 0 bytes in 0 blocks

==31921==      possibly lost: 0 bytes in 0 blocks

==31921==    still reachable: 0 bytes in 0 blocks

==31921==         suppressed: 0 bytes in 0 blocks

==31921== Rerun with --leak-check=full to see details of leaked memory

==31921== 

==31921== For counts of detected and suppressed errors, rerun with: -v

==31921== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 6 from 6)
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Appendix 3: Valgrind

Valgrind can detect memory leaks:

$ valgrind --leak-check=full leak

==476== Memcheck, a memory error detector

==476== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==476== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==476== Command: leak

==476== 

5

6

==476== 

==476== HEAP SUMMARY:

==476==     in use at exit: 4 bytes in 1 blocks

==476==   total heap usage: 2 allocs, 1 frees, 8 bytes allocated

==476== 

==476== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1

==476==    at 0x4A069EE: malloc (vg_replace_malloc.c:270)

==476==    by 0x400565: main (leak.c:5)

==476== 

==476== LEAK SUMMARY:

==476==    definitely lost: 4 bytes in 1 blocks

==476==    indirectly lost: 0 bytes in 0 blocks

==476==      possibly lost: 0 bytes in 0 blocks

==476==    still reachable: 0 bytes in 0 blocks

==476==         suppressed: 0 bytes in 0 blocks

==476== 

==476== For counts of detected and suppressed errors, rerun with: -v

==476== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6) 68



Appendix 3: Valgrind

Valgrind can detect multiple frees:

$ gcc217 doublefree.c -o doublefree

$ valgrind doublefree

==31951== Memcheck, a memory error detector

==31951== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==31951== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==31951== Command: doublefree

==31951== 

5

==31951== Invalid free() / delete / delete[] / realloc()

==31951==    at 0x4A063F0: free (vg_replace_malloc.c:446)

==31951==    by 0x4005A5: main (doublefree.c:9)

==31951==  Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd

==31951==    at 0x4A063F0: free (vg_replace_malloc.c:446)

==31951==    by 0x400599: main (doublefree.c:8)

==31951== 

==31951== 

==31951== HEAP SUMMARY:

==31951==     in use at exit: 0 bytes in 0 blocks

==31951==   total heap usage: 1 allocs, 2 frees, 4 bytes allocated

==31951== 

==31951== All heap blocks were freed -- no leaks are possible

==31951== 

==31951== For counts of detected and suppressed errors, rerun with: -v

==31951== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)
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Appendix 3: Valgrind

Valgrind can detect dereferences of dangling pointers:

$ gcc217 danglingptr.c -o danglingptr

$ valgrind danglingptr

==336== Memcheck, a memory error detector

==336== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==336== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==336== Command: danglingptr

==336== 

5

==336== Invalid read of size 4

==336==    at 0x40059E: main (danglingptr.c:9)

==336==  Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd

==336==    at 0x4A063F0: free (vg_replace_malloc.c:446)

==336==    by 0x400599: main (danglingptr.c:8)

==336== 

5

==336== 

==336== HEAP SUMMARY:

==336==     in use at exit: 0 bytes in 0 blocks

==336==   total heap usage: 1 allocs, 1 frees, 4 bytes allocated

==336== 

==336== All heap blocks were freed -- no leaks are possible

==336== 

==336== For counts of detected and suppressed errors, rerun with: -v

==336== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)
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Appendix 3: Valgrind

Valgrind can detect memory corruption:

$ gcc217 toosmall.c -o toosmall

$ valgrind toosmall

==436== Memcheck, a memory error detector

==436== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==436== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==436== Command: toosmall

==436== 

==436== Invalid write of size 4

==436==    at 0x40056E: main (toosmall.c:6)

==436==  Address 0x4c2a040 is 0 bytes inside a block of size 1 alloc'd

==436==    at 0x4A069EE: malloc (vg_replace_malloc.c:270)

==436==    by 0x400565: main (toosmall.c:5)

==436== 

==436== Invalid read of size 4

==436==    at 0x400578: main (toosmall.c:7)

==436==  Address 0x4c2a040 is 0 bytes inside a block of size 1 alloc'd

==436==    at 0x4A069EE: malloc (vg_replace_malloc.c:270)

==436==    by 0x400565: main (toosmall.c:5)

==436== 

5
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Valgrind can detect memory corruption (cont.):

==436== 

==436== HEAP SUMMARY:

==436==     in use at exit: 0 bytes in 0 blocks

==436==   total heap usage: 1 allocs, 1 frees, 1 bytes allocated

==436== 

==436== All heap blocks were freed -- no leaks are possible

==436== 

==436== For counts of detected and suppressed errors, rerun with: -v

==436== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)

Continued from previous slide
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Valgrind caveats:

• Not intended for programmers who are new to C

• Messages may be cryptic

• Suggestion:

• Observe line numbers referenced by messages

• Study code at those lines

• Infer meanings of messages
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