~N

"Princeton University

Computer Science 217: Introduction to Programming Systems

Data Structures

-

“Programming in the Large” Steps

~N

Design & Implement
* Program & programming style (done)
« Common data structures and algorithms <-- we are here
« Modularity
 Building techniques & tools (done)

Debug
* Debugging techniques & tools (done)

Test
« Testing techniques (done)

Maintain
« Performance improvement techniques & tools

-

Goals of this Lecture

Help you learn (or refresh your memory) about:
e Common data structures: linked lists and hash tables

Why? Deep motivation:
« Common data structures serve as “high level building blocks”
« A power programmer:
» Rarely creates programs from scratch
« Often creates programs using high level building blocks

Why? Shallow motivation:
* Provide background pertinent to Assignment 3
... esp. for those who have not taken COS 226

-

Common Task

Maintain a collection of key/value pairs
« Each key is a string; each value is an int
« Unknown number of key-value pairs

Examples
 (student name, grade)
« (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81)
 (baseball player, number)
« (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)
* (variable name, value)
« (“maxLength”, 2000), (“i”, 7), (“j”, -10)

-
Agenda

Linked lists
Hash tables

Hash table issues

-

Linked List Data Structure

struct Node

{ const char *key;
int value;
struct Node *next;

};

struct List
{ struct Node *first;

};

Really this is the
address at which

struct struct “Ruth” resides

struct Node Node
List

-

Linked List Data Structure

struct
List

Really this is the
address at which
“Ruth” resides

-

Linked List Algorithms

Create
 Allocate List structure; set first to NULL

* Performance: O(1) = fast

Add (no check for duplicate key required)
* Insert new node containing key/value pair at front of list
* Performance: O(1) = fast

Add (check for duplicate key required)
« Traverse list to check for node with duplicate key
* Insert new node containing key/value pair into list
* Performance: O(n) = slow

-

Linked List Algorithms

Search
» Traverse the list, looking for given key
« Stop when key found, or reach end
* Performance: O(n) = slow

Free
* Free Node structures while traversing
* Free List structure

* Performance: O(n) = slow

Would it be better to
keep the nodes
sorted by key?

-
Agenda

Linked lists
Hash tables

Hash table issues

2

-

Hash Table Data Structure

Array of linked lists

Really this is the

address at which
enum {BUCKET COUNT = 1024} ; “Ruth” resides

struct Binding
{ const char *key; struct
int wvalue; Tabl e

struct Binding *next;

};

struct
Binding
struct

Binding

struct Table

{ struct Binding *buckets[BUCKET_ COUNT] ;
};

n

-
Hash Table Data Structure

Binding

>‘\ Bucket

BUCKET COUNT-1

Hash function maps given key to an integer
Mod integer by BUCKET COUNT to determine proper bucket

2

-

Hash Table Example

Example: BUCKET COUNT =7

Add (if not already present) bindings with these keys:
the, cat, in, the, hat

5

-

Hash Table Example (cont.)

First key: “the”
+ hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; not found

o O WDNDBKHEO

Y

-

Hash Table Example (cont.)

Add binding with key “the” and its value to buckets[1]

- the

o O WDNDBKHEO

s

-

Hash Table Example (cont.)

7

Second key: “cat
+ hash(“cat”) = 3895848756; 3895848756 % 7 = 2

Search buckets[2] for binding with key “cat”; not found

- the

o O WDNDBKHEO

5

-

Hash Table Example (cont.)

Add binding with key “cat” and its value to buckets[2]

- the

cat

o O WDNDBKHEO

)

-

Hash Table Example (cont.)

Third key: “in”
« hash(“in”) = 6888005; 6888005% 7 = 5

Search buckets[5] for binding with key “in”; not found

- the

cat

o O WDNDBKHEO

)

-

Hash Table Example (cont.)

Add binding with key “in” and its value to buckets[5]

- the

cat

in

o O WDNDBKHEO

9

-

Hash Table Example (cont.)

Fourth word: “the”
» hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; found it!
« Don’ t change hash table

- the

cat

in

o O WDNDBKHEO

%)

-

Hash Table Example (cont.)

Fifth key: “hat”
« hash(“hat”) = 865559739; 865559739 % 7 = 2

Search buckets[2] for binding with key “hat”; not found

- the

cat

in

o O WDNDBKHEO

%

-

Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets[2]

« At front or back? Doesn’t matter

* Inserting at the front is easier, so add at the front

the

hat

cat

in

o O WDNDBKHEO

2

-

Hash Table Algorithms

Create
 Allocate Table structure; set each bucket to NULL

* Performance: O(1) = fast

Add

« Hash the given key
Mod by BUCKET COUNT to determine proper bucket
Traverse proper bucket to make sure no duplicate key
Insert new binding containing key/value pair into proper bucket
Performance: O(1) = fast

Is the add
performance
always fast?

J

-

Hash Table Algorithms

Search
« Hash the given key
* Mod by BUCKET COUNT to determine proper bucket
» Traverse proper bucket, looking for binding with given key
« Stop when key found, or reach end
* Performance: O(1) = fast

Is the search
performance

Free always fast?

« Traverse each bucket, freeing bindings
* Free Table structure

* Performance: O(n) = slow

*

-
Agenda

Linked lists
Hash tables

Hash table issues

%)

-

How Many Buckets?

Many!
« Too few = large buckets = slow add, slow search

But not too many!
« Too many = memory is wasted

This is OK:

v

v

BUCKET COUNT-1

%)

-
What Hash Function?

Should distribute bindings across the buckets well
» Distribute bindings over the range 0, 1, .., BUCKET COUNT-1

* Distribute bindings evenly to avoid very long buckets

This Is not so good:

v

BUCKET COUNT-1

v

What would be the
worst possible hash
function?

i

How to Hash Strings?

Simple hash schemes don’ t distribute the keys evenly
enough

« Number of characters, mod BUCKET COUNT
< Sum the numeric codes of all characters, mod BUCKET COUNT

A reasonably good hash function:
* Weighted sum of characters s; in the string s

* (£ a's;) mod BUCKET COUNT
 Bestif a and BUCKET COUNT are relatively prime
 E.g.,, a =65599, BUCKET COUNT = 1024

Footnote: | originally designed this homework so that BUCKET_COUNT is a prime number.
In 2016 I wondered, “wouldn’t it work just as well if a and BUCKET COUNT are just relatively

prime? Measurements show no: using a prime number of buckets leads to more even 28
distribution of bucket contents.”

How to Hash Strings?

Potentially expensive to compute & at's;

So let’ s do some algebra (“Horner’s rule”)
* (by example, for string s of length 5, a=65599):

h = 2165599i*s,

h = 65599%s, + 655991*s, + 655992*s, + 655993*s, + 65599%*s,
Direction of traversal of s doesn' t matter, so..

h = 65599%s, + 65599'*s; + 655992*s, + 655993*s, + 65599%*s,

h

65599%*s, + 655993*s, + 655992*s, + 65599'*s, + 655990*sg,

o p
I

(((((s,) * 65599 + s;) * 65599 + s,) * 65599 + s;) * 65599) + s,

29

How to Hash Strings?

Yielding this function

{

size t hash(const char *s, size t bucketCount)

size t 1i;
size t h = 0;
for (i=0; s[i]'='\0"'; i++)
h =h * 65599 + (size t)s[i];
return h % bucketCount;

30

How to Protect Keys?

Suppose Table add () function contains this code:

void Table add(struct Table *t, const char *key, int value)
{ ..
struct Binding *p =

(struct Binding*)malloc(sizeof (struct Binding)) ;
p->key = key;

31

-

How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;

Table add(t, k, 3);

char k[100] = "Ruth"; k

Ruth\O0

2/

-

How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;
char k[100] = "Ruth";

k| cehrig\o

Table add(t, k, 3);
strcpy (k, "Gehrig") ;

What happens if the
client searches t for
“Ruth”? For Gehrig?

%)

How to Protect Keys?

Solution: Table add () saves a defensive copy of the
given key

void Table add(struct Table *t, const char *key, int value)
{ ..
struct Binding *p =

(struct Binding*)malloc(sizeof (struct Binding)) ;
p->key = (const char*)malloc(strlen(key) + 1);
strcpy ((char*)p->key, key)

) Why add 17

34

-

How to Protect Keys?

Now consider same calling code:

struct Table *t;

Table add(t, k, 3);

char k[100] = "Ruth"; k

Ruth\O0

Ruth\O0

%)

-

How to Protect Keys?

Now consider same calling code:

struct Table *t;
char k[100] = "Ruth";

Table add(t, k, 3);
strcpy(k, "Gehrig") ;

Hash table is
not corrupted

Gehrig\0

Ruth\O0

*/

-

Who Owns the Keys?

Then the hash table owns its keys
« That is, the hash table owns the memory in
which its keys reside
- Hash free () function must free the memory
In which the key resides

)

-

Summary

Common data structures and associated algorithms
e Linked list
« (Maybe) fast add
» Slow search
* Hash table
* (Potentially) fast add
» (Potentially) fast search
* Very common

Hash table issues
» Hashing algorithms
 Defensive copies
« Key ownership

®)

~N

"Princeton University

Computer Science 217: Introduction to Programming Systems

Debugging (Part 2)

*/

-

“Programming in the Large” Steps

~N

Design & Implement
* Program & programming style (done)
« Common data structures and algorithms
« Modularity
 Building techniques & tools (done)

Test
« Testing techniques (done)

Debug
* Debugging techniques & tools <-- we are still here

Maintain
« Performance improvement techniques & tools

)

-

Goals of this Lecture

Help you learn about:

* Debugging strategies & tools related to dynamic memory
management (DMM) *

Why?
« Many bugs occur in code that does DMM
« DMM errors can be difficult to find
« DMM error in one area can manifest itself in a distant area

« A power programmer knows a wide variety of DMM debugging
strategies

» A power programmer knows about tools that facilitate DMM
debugging

* Management of heap memory viamalloc (), calloc(),
realloc (), and free ()

)

-
Agenda

(9) Look for common DMM bugs
(10) Diagnose seq faults using gdb
(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

)

Look for Common DMM Bugs

Some of our favorites:

int *p; /* value of p undefined */

*p = somevalue;

char *p; /* value of p undefined */

fgets(p, 1024, stdin);

int *p;

; = (int*)malloc(sizeof (int)) ;
o = 5;

Eree(p);

*p=6;

What are
the
errors?

43

Look for Common DMM Bugs

Some of our favorites:

int *p;

; = (int*)malloc(sizeof (int)) ;
*p = 5;

; = (int*)malloc(sizeof (int)) ;
int *p;

; = (int*)malloc(sizeof (int)) ;
*p = 5

Eree(p);

Eree(p);

What are
the
errors?

44

-
Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

*/

-

Diagnose Seg Faults Using GDB

Segmentation fault => make it happen in gdb
* Then issue the gdb where command

« Qutput will lead you to the line that caused the fault
« But that line may not be where the error resides!

*/

-
Agenda

(9) Look for common DMM bugs
(10) Diagnose seq faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

)

-

Manually Inspect Malloc Calls

)(
A [y ®

Manually inspect each call of malloc ()
* Make sure it allocates enough memory

Do the same for calloc () and realloc ()

)

Manually Inspect Malloc Calls

Some of our favorites:

char *sl = "hello, world";
char *s2;
s2 = (char*)malloc(strlen(sl));

strcpy (s2, sl);

char *sl = "Hello"; What are
char *s2; the
s2 = (char*)malloc(sizeof(sl));

rrors?
strcpy(s2, sl); S

long double *p;
P = (long double*)malloc(sizeof (long double*)) ;

long double *p;
P = (long double*)malloc(sizeof (p));

49

-
Agenda

(9) Look for common DMM bugs
(10) Diagnose seq faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

%

-

Hard-Code Malloc Calls

Temporarily change each call of malloc () to request a

large number of bytes
« Say, 10000 bytes

« If the error disappears, then at least one of your calls is requesting
too few bytes

Then incrementally restore each call of malloc () to its

previous form
* When the error reappears, you might have found the culprit

Do the same for calloc () and realloc ()

Y

-
Agenda

(9) Look for common DMM bugs
(10) Diagnose seq faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

2

-

Comment-Out Free Calls

Temporarily comment-out every call of £free ()
« If the error disappears, then program is
* Freeing memory too soon, or
* Freeing memory that already has been freed, or
* Freeing memory that should not be freed,
 Etc.

Then incrementally “comment-in” each call of £ree ()
* When the error reappears, you might have found the culprit

%

-
Agenda

(9) Look for common DMM bugs
(10) Diagnose seq faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

)

-

Use Meminfo

Use the Meminfo tool
« Simple tool

Initial version written by Dondero
Current version written by COS 217 alumnus RJ Liljestrom
Reports errors after program execution

« Memory leaks

¢ Some memory corruption
User-friendly output

Appendix 1 provides example buggy programs

Appendix 2 provides Meminfo analyses

%)

-
Agenda

(9) Look for common DMM bugs
(10) Diagnose seq faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

%)

-

Use Valgrind

Use the Valgrind tool

« Complex tool

« Written by multiple developers, worldwide
« See www.valgrind.org

* Reports errors during program execution
« Memory leaks
« Multiple frees
» Dereferences of dangling pointers
« Memory corruption

« Comprehensive output
« But not always user-friendly

>

-

Use Valgrind

Appendix 1 provides example buggy programs

Appendix 3 provides Valgrind analyses

%)

-

Summary

Strategies and tools for debugging the DMM aspects of your

code:
* Look for common DMM bugs
« Diagnose seqg faults using gdb
« Manually inspect malloc calls
« Hard-code malloc calls
« Comment-out free calls
« Use Meminfo
» Use Valgrind

%)

Appendix 1: Buggy Programs

leak.c

oo JdJoy Ul d WD R

{

}

. #include <stdio.h>
. #include <stdlib.h>
. int main(void)

int *pi;

pi = (int*)malloc(sizeof (int)) ;
*pi = 5;

printf ("$d\n", *pi);

pi = (int*)malloc(sizeof (int)) ;
*pi = 6;

printf ("$d\n", *pi);

free (pi) ;

return O;

Memory leak:

Memory allocated at line 5 Is leaked

60

Appendix 1: Buggy Programs

doublefree.c

. #include <stdio.h>
. #include <stdlib.h>
. int main(void)

{ int *pi;

*pi = 5;

printf ("$d\n", *pi);
free (pi) ;

free (pi) ;

return O;

ROwWOoOOdo Uk WDNHKH

B

pi = (int*)malloc(sizeof (int));

Multiple free:

Memory allocated at line 5 iIs freed twice

61

Appendix 1: Buggy Programs
danglingptr.c

. #include <stdio.h>
. #include <stdlib.h>
. int main(void)
{ int *pi;
pi = (int*)malloc(sizeof (int)) ;
*pi = 5;
printf ("$d\n", *pi);
free (pi) ;
printf ("$d\n", *pi);
return O;

ROwWOoOOdo Uk WDNHKH

B

Dereference of dangling pointer:
Memory accessed at line 9 already was freed

62

Appendix 1: Buggy Programs

toosmall.c

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main (void)

4. { 1int *pi;

5. pi = (int*)malloc(1l);
6. *pi = 5;

7. printf ("$d\n", *pi);
8. free (pi) ;

9. return O;
10. }

Memory corruption:
Too little memory is allocated at line 5
Line 6 corrupts memory

63

-

Appendix 2: Meminfo

Meminfo can detect memory leaks:

)

Appendix 2: Meminfo

Meminfo can detect memory corruption:

S gcc2l7m toosmall.c -o toosmall
$ toosmall
5
S 1s
toosmall.c toosmall meminfo31891.out

S meminforeport meminfo31891.out
Errors:

** Underflow detected at toosmall.c:8 for memory allocated at toosmall.c:5
Summary Statistics:

Maximum bytes allocated at once: 1

Total number of allocated bytes: 1
Statistics by Line:

Bytes Location
1 toosmall.c:5
=1l toosmall.c:8
0 TOTAL
Statistics by Compilation Unit:
0 toosmall.c
0 TOTAL

65

-
Appendix 2: Meminfo

Meminfo caveats:
« Don’ t mix .o files built with gec217 and gec217m

« meminfo*.out files can be large
« Should delete frequently

* Programs built with gec217m run slower than those built with
gcec2l7

« Don’ t build with gec217m when doing timing tests

o

Appendix 3: Valgrind

Valgrind can detect memory leaks:

==31921==
==31921==
==31921==
==31921==
==31921==
5

6

==31921==
==31921==
==31921==
==31921==
==31921==
==31921==
==31921==
==31921==
==31921==
==31921==
==31921==
==31921==
==31921==
==31921==
==31921==

S gcc2l7 leak.c -o leak
$ valgrind leak

Memcheck, a memory error detector
Copyright (C) 2002-2012,

Using Valgrind-3.8.1 and LibVEX;

Command: leak

HEAP SUMMARY :

in use at exit:
total heap usage:

LEAK SUMMARY:

definitely lost:
indirectly lost:
possibly lost:
still reachable:
suppressed:

O O O

0

and GNU GPL'd, by Julian Seward et al.

rerun with -h for copyright info

bytes in 1 blocks
allocs,

bytes
bytes
bytes
bytes
bytes

in
in
in
in
in

1
0
0
0
0

1 frees, 8 bytes allocated

blocks
blocks
blocks
blocks
blocks

Rerun with --leak-check=full to see details of leaked memory

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 6 from 6)

67

Appendix 3: Valgrind

Valgrind can detect memory leaks:

==476==
==476==
==476==
==476==
==476==
5

6

==476==
==476==
==476==
==476==
==476==
==476==
==476==
==476==
—=476==
—=476==
==476==
==476==
==476==
==476==
==476==
==476==
==476==
==476==

$ valgrind --leak-check=full leak

Memcheck, a memory error detector

Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
Command: leak

HEAP SUMMARY :
in use at exit: 4 bytes in 1 blocks
total heap usage: 2 allocs, 1 frees, 8 bytes allocated

4 bytes in 1 blocks are definitely lost in loss record 1 of 1
at O0x4A069EE: malloc (vg_replace malloc.c:270)
by 0x400565: main (leak.c:5)

LEAK SUMMARY:

definitely lost: 4 bytes in 1 blocks
indirectly lost: 0O bytes in 0 blocks
possibly lost: 0O bytes in 0 blocks
still reachable: 0 bytes in 0 blocks
suppressed: 0 bytes in 0 blocks

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

68

Appendix 3: Valgrind

Valgrind can detect multiple frees:

—=31951==
—=31951==
—=31951==
—=31951==
—=31951==
5

==31951==
==31951==
==31951==
==31951==
==31951==
==31951==
—=31951==
—=31951==
—=31951==
—=31951==
—=31951==
—=31951==
==31951==
==31951==
==31951==
==31951==

S gcc2l7 doublefree.c -o doublefree
$ valgrind doublefree

Memcheck, a memory error detector

Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
Command: doublefree

Invalid free() / delete / delete[] / realloc()
at 0x4A063F0: free (vg_replace malloc.c:446)
by 0x4005A5: main (doublefree.c:9)
Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd
at 0x4A063F0: free (vg_replace malloc.c:446)
by 0x400599: main (doublefree.c:8)

HEAP SUMMARY :
in use at exit: 0 bytes in 0 blocks
total heap usage: 1 allocs, 2 frees, 4 bytes allocated

All heap blocks were freed -- no leaks are possible

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

69

Appendix 3: Valgrind

Valgrind can detect dereferences of dangling pointers:

==336==
==336==
==336==
==336==
==336==
5

==336==
==336==
==336==
==336==
==336==
==336==
5

==336==
==336==
==336==
==336==
==336==
==336==
==336==
==336==
==336==

$ gcc2l17 danglingptr.c -o danglingptr
$ valgrind danglingptr

Memcheck, a memory error detector

Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
Command: danglingptr

Invalid read of size 4
at 0x40059E: main (danglingptr.c:9)

Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd
at 0x4A063F0: free (vg_replace malloc.c:446)
by 0x400599: main (danglingptr.c:8)

HEAP SUMMARY :
in use at exit: 0 bytes in 0 blocks
total heap usage: 1 allocs, 1 frees, 4 bytes allocated

All heap blocks were freed -- no leaks are possible

For counts of detected and suppressed errors, rerun with: -v
ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

70

-
Appendix 3: Valgrind

Valgrind can detect memory corruption:

Continued on next slide

W

-

Appendix 3: Valgrind

Valgrind can detect memory corruption (cont.):

Continued from previous slide

==436==

==436== HEAP SUMMARY:

==436== in use at exit: 0 bytes in 0 blocks

==436== total heap usage: 1 allocs, 1 frees, 1 bytes allocated
==436==

==436== All heap blocks were freed -- no leaks are possible

==436==

==436== For counts of detected and suppressed errors, rerun with: -v
==436== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)

2

-
Appendix 3: Valgrind

Valgrind caveats:

* Not intended for programmers who are new to C
« Messages may be cryptic

e Suggestion:
* Observe line numbers referenced by messages
» Study code at those lines
 Infer meanings of messages

%

