Data Structures
“Programming in the Large” Steps

Design & Implement
- Program & programming style (done)
- Common data structures and algorithms
- Modularity
- Building techniques & tools (done)

Debug
- Debugging techniques & tools (done)

Test
- Testing techniques (done)

Maintain
- Performance improvement techniques & tools
Help you learn (or refresh your memory) about:
 • Common data structures: linked lists and hash tables

Why? Deep motivation:
 • Common data structures serve as “high level building blocks”
 • A power programmer:
 • Rarely creates programs from scratch
 • Often creates programs using high level building blocks

Why? Shallow motivation:
 • Provide background pertinent to Assignment 3
 • … esp. for those who have not taken COS 226
Common Task

Maintain a collection of key/value pairs

• Each key is a **string**; each value is an **int**
• Unknown number of key-value pairs

Examples

• (student name, grade)
 • ("john smith", 84), ("jane doe", 93), ("bill clinton", 81)
• (baseball player, number)
 • ("Ruth", 3), ("Gehrig", 4), ("Mantle", 7)
• (variable name, value)
 • ("maxLength", 2000), ("i", 7), ("j", -10)
Agenda

Linked lists

Hash tables

Hash table issues
struct Node
{ const char *key;
 int value;
 struct Node *next;
};

struct List
{ struct Node *first;
};

Really this is the address at which “Ruth” resides
Linked List Data Structure

Really this is the address at which “Ruth” resides
Create

- Allocate `List` structure; set `first` to `NULL`
- Performance: \(O(1) \) ⇒ fast

Add (no check for duplicate key required)

- Insert new node containing key/value pair at front of list
- Performance: \(O(1) \) ⇒ fast

Add (check for duplicate key required)

- Traverse list to check for node with duplicate key
- Insert new node containing key/value pair into list
- Performance: \(O(n) \) ⇒ slow
Linked List Algorithms

Search
- Traverse the list, looking for given key
- Stop when key found, or reach end
- Performance: $O(n) \Rightarrow$ slow

Free
- Free Node structures while traversing
- Free List structure
- Performance: $O(n) \Rightarrow$ slow

Would it be better to keep the nodes sorted by key?
Agenda

Linked lists

Hash tables

Hash table issues
Hash Table Data Structure

Array of linked lists

```
enum {BUCKET_COUNT = 1024};

struct Binding {
    const char *key;
    int value;
    struct Binding *next;
};

struct Table {
    struct Binding *buckets[BUCKET_COUNT];
};
```

Really this is the address at which “Ruth” resides
Hash function maps given key to an integer
Mod integer by BUCKET_COUNT to determine proper bucket
Example: \texttt{BUCKET_COUNT} = 7

Add (if not already present) bindings with these keys:

- the, cat, in, the, hat
First key: “the”
 • hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; not found
Add binding with key “the” and its value to buckets[1]
Hash Table Example (cont.)

Second key: “cat”
 • hash(“cat”) = 3895848756; 3895848756 % 7 = 2

Search buckets[2] for binding with key “cat”; not found
Add binding with key “cat” and its value to buckets [2]
Third key: “in”
• hash(“in”) = 6888005; 6888005% 7 = 5

Search buckets[5] for binding with key “in”; not found
Add binding with key “in” and its value to buckets[5]
Fourth word: “the”
 • hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; found it!
 • Don’t change hash table
Fifth key: “hat”
 - hash(“hat”) = 865559739; 865559739 % 7 = 2
Search `buckets[2]` for binding with key “hat”; not found
Add binding with key “hat” and its value to $\text{buckets}[2]$

- At front or back? Doesn’t matter
- Inserting at the front is easier, so add at the front
Hash Table Algorithms

Create
- Allocate Table structure; set each bucket to NULL
- Performance: $O(1) \Rightarrow$ fast

Add
- Hash the given key
- Mod by BUCKET_COUNT to determine proper bucket
- Traverse proper bucket to make sure no duplicate key
- Insert new binding containing key/value pair into proper bucket
- Performance: $O(1) \Rightarrow$ fast

Is the add performance always fast?
Hash Table Algorithms

Search

• Hash the given key
• Mod by \texttt{BUCKET_COUNT} to determine proper bucket
• Traverse proper bucket, looking for binding with given key
• Stop when key found, or reach end
• Performance: $O(1) \Rightarrow$ fast

Free

• Traverse each bucket, freeing bindings
• Free \texttt{Table} structure
• Performance: $O(n) \Rightarrow$ slow

Is the search performance always fast?
Agenda

- Linked lists
- Hash tables
- Hash table issues
How Many Buckets?

Many!
 • Too few ⇒ large buckets ⇒ slow add, slow search

But not too many!
 • Too many ⇒ memory is wasted

This is OK:
What Hash Function?

Should distribute bindings across the buckets well
 • Distribute bindings over the range $0, 1, \ldots, \text{BUCKET_COUNT}-1$
 • Distribute bindings *evenly* to avoid very long buckets

This is not so good:

What would be the worst possible hash function?
How to Hash Strings?

Simple hash schemes don’t distribute the keys evenly enough

• Number of characters, mod BUCKET_COUNT
• Sum the numeric codes of all characters, mod BUCKET_COUNT
• …

A reasonably good hash function:

• Weighted sum of characters s_i in the string s
 • $(\sum a^i s_i) \mod BUCKET_COUNT$
• Best if a and BUCKET_COUNT are relatively prime
 • E.g., $a = 65599$, $BUCKET_COUNT = 1024$

Footnote: I originally designed this homework so that BUCKET_COUNT is a prime number. In 2016 I wondered, “wouldn’t it work just as well if a and BUCKET_COUNT are just relatively prime? Measurements show no: using a prime number of buckets leads to more even distribution of bucket contents.”
How to Hash Strings?

Potentially expensive to compute $\sum a^i s_i$

So let’s do some algebra (“Horner’s rule”)
 • (by example, for string s of length 5, $a=65599$):

\[
\begin{align*}
 h &= \sum 65599^i s_i \\
 h &= 65599^0 s_0 + 65599^1 s_1 + 65599^2 s_2 + 65599^3 s_3 + 65599^4 s_4 \\
 \text{Direction of traversal of } s \text{ doesn’t matter, so…} \\
 h &= 65599^0 s_4 + 65599^1 s_3 + 65599^2 s_2 + 65599^3 s_1 + 65599^4 s_0 \\
 h &= 65599^4 s_0 + 65599^3 s_1 + 65599^2 s_2 + 65599^1 s_3 + 65599^0 s_4 \\
 h &= (((((s_0) \ast 65599 + s_1) \ast 65599 + s_2) \ast 65599 + s_3) \ast 65599) + s_4
\end{align*}
\]
How to Hash Strings?

Yielding this function

```c
size_t hash(const char *s, size_t bucketCount) {
    size_t i;
    size_t h = 0;
    for (i=0; s[i]!="\0"; i++)
        h = h * 65599 + (size_t)s[i];
    return h % bucketCount;
}
```
How to Protect Keys?

Suppose `Table_add()` function contains this code:

```c
void Table_add(struct Table *t, const char *key, int value)
{
    struct Binding *p = (struct Binding*)malloc(sizeof(struct Binding));
    p->key = key;
    ...
}
```
How to Protect Keys?

Problem: Consider this calling code:

```c
struct Table *t;
char k[100] = "Ruth";
...
Table_add(t, k, 3);
```
Problem: Consider this calling code:

```c
struct Table *t;
char k[100] = "Ruth";
...
Table_add(t, k, 3);
strcpy(k, "Gehrig");
```

What happens if the client searches \(t \) for "Ruth"? For Gehrig?
How to Protect Keys?

Solution: `Table_add()` saves a **defensive copy** of the given key

```c
void Table_add(struct Table *t, const char *key, int value) {
    ... 
    struct Binding *p =
        (struct Binding*)malloc(sizeof(struct Binding));
    p->key = (const char*)malloc(strlen(key) + 1);
    strcpy((char*)p->key, key);
    ... 
}
```

Why add 1?
How to Protect Keys?

Now consider same calling code:

```c
struct Table *t;
char k[100] = "Ruth";
... Table_add(t, k, 3);
```
How to Protect Keys?

Now consider same calling code:

```c
struct Table *t;
char k[100] = "Ruth";
...
Table_add(t, k, 3);
strcpy(k, "Gehrig");
```

Hash table is not corrupted
Who Owns the Keys?

Then the hash table *owns* its keys

- That is, the hash table owns the memory in which its keys reside
- `Hash_free()` function must free the memory in which the key resides
Common data structures and associated algorithms

• Linked list
 • (Maybe) fast add
 • Slow search
• Hash table
 • (Potentially) fast add
 • (Potentially) fast search
 • Very common

Hash table issues

• Hashing algorithms
• Defensive copies
• Key ownership
Debugging (Part 2)
“Programming in the Large” Steps

Design & Implement
• Program & programming style (done)
• Common data structures and algorithms
• Modularity
• Building techniques & tools (done)

Test
• Testing techniques (done)

Debug
• Debugging techniques & tools <-- we are still here

Maintain
• Performance improvement techniques & tools
Goals of this Lecture

Help you learn about:

• Debugging strategies & tools related to dynamic memory management (DMM) *

Why?

• Many bugs occur in code that does DMM
• DMM errors can be difficult to find
 • DMM error in one area can manifest itself in a distant area
• A power programmer knows a wide variety of DMM debugging strategies
• A power programmer knows about tools that facilitate DMM debugging

* Management of heap memory via malloc(), calloc(), realloc(), and free()
(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind
Look for Common DMM Bugs

Some of our favorites:

```c
int *p; /* value of p undefined */
...
*p = somevalue;
```

```c
char *p; /* value of p undefined */
...
fgets(p, 1024, stdin);
```

```c
int *p;
...
p = (int*)malloc(sizeof(int));
...
*p = 5;
...
free(p);
...
*p = 6;
```

What are the errors?
Look for Common DMM Bugs

Some of our favorites:

```c
int *p;
...
p = (int*)malloc(sizeof(int));
...
*p = 5;
...
p = (int*)malloc(sizeof(int));
```

```c
int *p;
...
p = (int*)malloc(sizeof(int));
...
*p = 5;
...
free(p);
...
free(p);
```

What are the errors?
Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind
Diagnose Seg Faults Using GDB

Segmentation fault => make it happen in gdb
 • Then issue the gdb `where` command
 • Output will lead you to the line that caused the fault
 • But that line may not be where the error resides!
(9) Look for common DMM bugs
(10) Diagnose seg faults using gdb
(11) **Manually inspect malloc calls**
(12) Hard-code malloc calls
(13) Comment-out free calls
(14) Use Meminfo
(15) Use Valgrind
Manually Inspect Mallocl Calls

Manually inspect each call of `malloc()`
 • Make sure it allocates enough memory

Do the same for `calloc()` and `realloc()`
Manually Inspect Malloc Calls

Some of our favorites:

```c
char *s1 = "hello, world";
char *s2;
s2 = (char*)malloc(strlen(s1));
strcpy(s2, s1);
```

```c
char *s1 = "Hello";
char *s2;
s2 = (char*)malloc(sizeof(s1));
strcpy(s2, s1);
```

```c
long double *p;
p = (long double*)malloc(sizeof(long double*));
```

```c
long double *p;
p = (long double*)malloc(sizeof(p));
```

What are the errors?
Agenda

(9) Look for common DMM bugs
(10) Diagnose seg faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls
(13) Comment-out free calls
(14) Use Meminfo
(15) Use Valgrind
Hard-Code Malloc Calls

Temporarily change each call of `malloc()` to request a large number of bytes
- Say, 10000 bytes
- If the error disappears, then at least one of your calls is requesting too few bytes

Then incrementally restore each call of `malloc()` to its previous form
- When the error reappears, you might have found the culprit

Do the same for `calloc()` and `realloc()`
Agenda

(9) Look for common DMM bugs
(10) Diagnose seg faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls
(13) **Comment-out free calls**
(14) Use Meminfo
(15) Use Valgrind
Comment-Out Free Calls

Temporarily comment-out every call of `free()`

- If the error disappears, then program is
 - Freeing memory too soon, or
 - Freeing memory that already has been freed, or
 - Freeing memory that should not be freed,
 - Etc.

Then incrementally “comment-in” each call of `free()`

- When the error reappears, you might have found the culprit
Agenda

(9) Look for common DMM bugs
(10) Diagnose seg faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls
(13) Comment-out free calls
(14) Use Meminfo
(15) Use Valgrind
Use Meminfo

Use the Meminfo tool

- Simple tool
- Initial version written by Dondero
- Current version written by COS 217 alumnus RJ Liljestrom
- Reports errors after program execution
 - Memory leaks
 - Some memory corruption
- User-friendly output

Appendix 1 provides example buggy programs
Appendix 2 provides Meminfo analyses
Agenda

(9) Look for common DMM bugs
(10) Diagnose seg faults using gdb
(11) Manually inspect malloc calls
(12) Hard-code malloc calls
(13) Comment-out free calls
(14) Use Meminfo
(15) Use Valgrind
Use the **Valgrind** tool

- Complex tool
- Written by multiple developers, worldwide
 - See www.valgrind.org
- Reports errors **during** program execution
 - Memory leaks
 - Multiple frees
 - Dereferences of dangling pointers
 - Memory corruption
- Comprehensive output
 - But not always user-friendly
Use Valgrind

Appendix 1 provides example buggy programs
Appendix 3 provides Valgrind analyses
Summary

Strategies and tools for debugging the DMM aspects of your code:

• Look for common DMM bugs
• Diagnose seg faults using gdb
• Manually inspect malloc calls
• Hard-code malloc calls
• Comment-out free calls
• Use Meminfo
• Use Valgrind
Appendix 1: Buggy Programs

leak.c

```c
1. #include <stdio.h>
2. #include <stdlib.h>
3. int main(void)
4. {  int *pi;
5.    pi = (int*)malloc(sizeof(int));
6.    *pi = 5;
7.    printf("%d\n", *pi);
8.    pi = (int*)malloc(sizeof(int));
9.    *pi = 6;
10.   printf("%d\n", *pi);
11. free(pi);
12. return 0;
13. }
```

Memory leak:
Memory allocated at line 5 is leaked
Appendix 1: Buggy Programs

doublefree.c

1. #include <stdio.h>
2. #include <stdlib.h>
3. int main(void)
4. {
5. int *pi;
6. pi = (int*)malloc(sizeof(int));
7. *pi = 5;
8. printf("%d\n", *pi);
9. free(pi);
10. free(pi);
11. }

Multiple free:
Memory allocated at line 5 is freed twice
Appendix 1: Buggy Programs

danglingptr.c

```
1. #include <stdio.h>
2. #include <stdlib.h>
3. int main(void)
4. {
5.   int *pi;
6.   pi = (int*)malloc(sizeof(int));
7.   *pi = 5;
8.   printf("%d\n", *pi);
9.   free(pi);
10.  printf("%d\n", *pi);
11. }
```

Dereference of dangling pointer:
Memory accessed at line 9 already was freed
Appendix 1: Buggy Programs

toomsmall.c

1. #include <stdio.h>
2. #include <stdlib.h>
3. int main(void)
4. { int *pi;
5. pi = (int*)malloc(1);
6. *pi = 5;
7. printf("%d\n", *pi);
8. free(pi);
9. return 0;
10. }

Memory corruption:
Too little memory is allocated at line 5
Line 6 corrupts memory
Appendix 2: Meminfo

Meminfo can detect memory leaks:

```bash
$ gcc217m leak.c -o leak
$ leak
5
6
$ ls
..  leak.c  leak  meminfo30462.out
$ meminforeport meminfo30462.out
Errors:
  ** 4 un-freed bytes (1 block) allocated at leak.c:5
Summary Statistics:
  Maximum bytes allocated at once: 8
  Total number of allocated bytes: 8
Statistics by Line:

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>leak.c:11</td>
</tr>
<tr>
<td>4</td>
<td>leak.c:5</td>
</tr>
<tr>
<td>4</td>
<td>leak.c:8</td>
</tr>
<tr>
<td>4</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Statistics by Compilation Unit:

| 4     | leak.c      |
| 4     | TOTAL       |
```
Meminfo can detect memory corruption:

$ gcc217m toosmall.c -o toosmall
$ toosmall
5
$ ls
. .. toosmall.c toosmall meminfo31891.out
$ meminforeport meminfo31891.out

Errors:
** Underflow detected at toosmall.c:8 for memory allocated at toosmall.c:5

Summary Statistics:
Maximum bytes allocated at once: 1
Total number of allocated bytes: 1

Statistics by Line:

<table>
<thead>
<tr>
<th>Bytes</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toosmall.c:5</td>
</tr>
<tr>
<td>-1</td>
<td>toosmall.c:8</td>
</tr>
<tr>
<td>0</td>
<td>TOTAL</td>
</tr>
</tbody>
</table>

Statistics by Compilation Unit:

<table>
<thead>
<tr>
<th>Compilation Unit</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>toosmall.c</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>0</td>
</tr>
</tbody>
</table>
Appendix 2: Meminfo

Meminfo caveats:

• Don’t mix .o files built with gcc217 and gcc217m

• meminfo*.out files can be large
 • Should delete frequently

• Programs built with gcc217m run slower than those built with gcc217
 • Don’t build with gcc217m when doing timing tests
Appendix 3: Valgrind

Valgrind can detect memory leaks:

$ gcc217 leak.c -o leak
$ valgrind leak
==31921== Memcheck, a memory error detector
==31921== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==31921== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==31921== Command: leak
==31921==
5
6
==31921==
==31921== HEAP SUMMARY:
==31921== in use at exit: 4 bytes in 1 blocks
==31921== total heap usage: 2 allocs, 1 frees, 8 bytes allocated
==31921==
==31921== LEAK SUMMARY:
==31921== definitely lost: 4 bytes in 1 blocks
==31921== indirectly lost: 0 bytes in 0 blocks
==31921== possibly lost: 0 bytes in 0 blocks
==31921== still reachable: 0 bytes in 0 blocks
==31921== suppressed: 0 bytes in 0 blocks
==31921== Rerun with --leak-check=full to see details of leaked memory
==31921==
==31921== For counts of detected and suppressed errors, rerun with: -v
==31921== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 6 from 6)
Appendix 3: Valgrind

Valgrind can detect memory leaks:

```
$ valgrind --leak-check=full leak
==476== Memcheck, a memory error detector
==476== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==476== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==476== Command: leak
==476==
==476== 5
==476== 6
==476==
==476== HEAP SUMMARY:
==476==     in use at exit: 4 bytes in 1 blocks
==476==   total heap usage: 2 allocs, 1 frees, 8 bytes allocated
==476==
==476== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1
==476== at 0x4A069EE: malloc (vg_replace_malloc.c:270)
==476== by 0x400565: main (leak.c:5)
==476==
==476== LEAK SUMMARY:
==476==   definitely lost: 4 bytes in 1 blocks
==476==   indirectly lost: 0 bytes in 0 blocks
==476==   possibly lost: 0 bytes in 0 blocks
==476==   still reachable: 0 bytes in 0 blocks
==476==   suppressed: 0 bytes in 0 blocks
==476==
==476== For counts of detected and suppressed errors, rerun with: -v
==476== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)
```
Appendix 3: Valgrind

Valgrind can detect multiple frees:

```bash
$ gcc217 doublefree.c -o doublefree
$ valgrind doublefree
==31951== Memcheck, a memory error detector
==31951== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==31951== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==31951== Command: doublefree
==31951==
5
==31951== Invalid free() / delete / delete[] / realloc()
==31951==    at 0x4A063F0: free (vg_replace_malloc.c:446)
==31951==    by 0x4005A5: main (doublefree.c:9)
==31951== Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd
==31951==    at 0x4A063F0: free (vg_replace_malloc.c:446)
==31951==    by 0x400599: main (doublefree.c:8)
==31951==
==31951== HEAP SUMMARY:
==31951==     in use at exit: 0 bytes in 0 blocks
==31951==     total heap usage: 1 allocs, 2 frees, 4 bytes allocated
==31951==
==31951== All heap blocks were freed -- no leaks are possible
==31951==
==31951== For counts of detected and suppressed errors, rerun with: -v
==31951== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)
```
Appendix 3: Valgrind

Valgrind can detect dereferences of dangling pointers:

```
$ gcc217 danglingptr.c -o danglingptr
$ valgrind danglingptr
==336== Memcheck, a memory error detector
==336== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==336== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==336== Command: danglingptr
==336==
5
==336== Invalid read of size 4
==336== at 0x40059E: main (danglingptr.c:9)
==336== Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd
==336== at 0x4A063F0: free (vg_replace_malloc.c:446)
==336== by 0x400599: main (danglingptr.c:8)
==336==
5
==336==
==336== HEAP SUMMARY:
==336==    in use at exit: 0 bytes in 0 blocks
==336==    total heap usage: 1 allocs, 1 frees, 4 bytes allocated
==336==
==336== All heap blocks were freed -- no leaks are possible
==336==
==336== For counts of detected and suppressed errors, rerun with: -v
==336== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)
```
Appendix 3: Valgrind

Valgrind can detect memory corruption:

```bash
$ gcc217 toosmall.c -o toosmall
$ valgrind toosmall
==436== Memcheck, a memory error detector
==436== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.
==436== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info
==436== Command: toosmall
==436==
==436== Invalid write of size 4
==436==    at 0x40056E: main (toosmall.c:6)
==436==    Address 0x4c2a040 is 0 bytes inside a block of size 1 alloc'd
==436==    at 0x4A069EE: malloc (vg_replace_malloc.c:270)
==436==    by 0x400565: main (toosmall.c:5)
==436==
==436== Invalid read of size 4
==436==    at 0x400578: main (toosmall.c:7)
==436==    Address 0x4c2a040 is 0 bytes inside a block of size 1 alloc'd
==436==    at 0x4A069EE: malloc (vg_replace_malloc.c:270)
==436==    by 0x400565: main (toosmall.c:5)
==436==
5
```

Continued on next slide
Valgrind can detect memory corruption (cont.):

Continued from previous slide

```
==436==
==436== HEAP SUMMARY:
==436==     in use at exit: 0 bytes in 0 blocks
==436==   total heap usage: 1 allocs, 1 frees, 1 bytes allocated
==436==
==436== All heap blocks were freed -- no leaks are possible
==436==
==436== For counts of detected and suppressed errors, rerun with: -v
==436== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)
```
Appendix 3: Valgrind

Valgrind caveats:

• Not intended for programmers who are new to C
 • Messages may be cryptic

• Suggestion:
 • Observe line numbers referenced by messages
 • Study code at those lines
 • Infer meanings of messages