
1

Data Structures

Princeton University
Computer Science 217: Introduction to Programming Systems

“Programming in the Large” Steps

Design & Implement
• Program & programming style (done)

• Common data structures and algorithms <-- we are here

• Modularity

• Building techniques & tools (done)

Debug
• Debugging techniques & tools (done)

Test
• Testing techniques (done)

Maintain
• Performance improvement techniques & tools

2

Goals of this Lecture

Help you learn (or refresh your memory) about:
• Common data structures: linked lists and hash tables

Why? Deep motivation:
• Common data structures serve as “high level building blocks”

• A power programmer:

• Rarely creates programs from scratch

• Often creates programs using high level building blocks

Why? Shallow motivation:
• Provide background pertinent to Assignment 3

• … esp. for those who have not taken COS 226

3

Common Task

Maintain a collection of key/value pairs
• Each key is a string; each value is an int

• Unknown number of key-value pairs

Examples
• (student name, grade)

• (“john smith”, 84), (“jane doe”, 93), (“bill clinton”, 81)

• (baseball player, number)

• (“Ruth”, 3), (“Gehrig”, 4), (“Mantle”, 7)

• (variable name, value)

• (“maxLength”, 2000), (“i”, 7), (“j”, -10)

4

Agenda

Linked lists

Hash tables

Hash table issues

5

6

Linked List Data Structure

struct Node

{ const char *key;

int value;

struct Node *next;

};

struct List

{ struct Node *first;

};

4

"Gehrig"

3

"Ruth"

NULL

struct

List

struct

Node

struct

Node

Really this is the

address at which

“Ruth” resides

7

Linked List Data Structure

4 3

NULL

struct

List

struct

Node

struct

Node

Really this is the

address at which

“Ruth” resides

R u t h \0? ??

G e h r \0i g?

Linked List Algorithms

Create
• Allocate List structure; set first to NULL

• Performance: O(1) ⇒ fast

Add (no check for duplicate key required)
• Insert new node containing key/value pair at front of list

• Performance: O(1) ⇒ fast

Add (check for duplicate key required)
• Traverse list to check for node with duplicate key

• Insert new node containing key/value pair into list

• Performance: O(n) ⇒ slow

8

Linked List Algorithms

Search
• Traverse the list, looking for given key

• Stop when key found, or reach end

• Performance: O(n) ⇒ slow

Free
• Free Node structures while traversing

• Free List structure

• Performance: O(n) ⇒ slow

9

Would it be better to

keep the nodes

sorted by key?

Agenda

Linked lists

Hash tables

Hash table issues

10

11

Hash Table Data Structure

enum {BUCKET_COUNT = 1024};

struct Binding

{ const char *key;

int value;

struct Binding *next;

};

struct Table

{ struct Binding *buckets[BUCKET_COUNT];

};

NULL

4

"Gehrig"

NULL

3

"Ruth"

NULL

NULL

NULL0

1

806

23

723

…

…

…

NULL1023

…

struct

Table
struct

Binding
struct

Binding

Array of linked lists
Really this is the

address at which

“Ruth” resides

12

Hash Table Data Structure

Hash function maps given key to an integer

Mod integer by BUCKET_COUNT to determine proper bucket

0

BUCKET_COUNT-1

Binding

Bucket

Hash Table Example

Example: BUCKET_COUNT = 7

Add (if not already present) bindings with these keys:
• the, cat, in, the, hat

13

Hash Table Example (cont.)

First key: “the”
• hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; not found

14

0

1

2

3

4

5

6

Hash Table Example (cont.)

Add binding with key “the” and its value to buckets[1]

15

0

1

2

3

4

5

6

the

Hash Table Example (cont.)

Second key: “cat”
• hash(“cat”) = 3895848756; 3895848756 % 7 = 2

Search buckets[2] for binding with key “cat”; not found

16

0

1

2

3

4

5

6

the

Hash Table Example (cont.)

Add binding with key “cat” and its value to buckets[2]

17

0

1

2

3

4

5

6

the

cat

Hash Table Example (cont.)

Third key: “in”
• hash(“in”) = 6888005; 6888005% 7 = 5

Search buckets[5] for binding with key “in”; not found

18

0

1

2

3

4

5

6

the

cat

Hash Table Example (cont.)

Add binding with key “in” and its value to buckets[5]

19

0

1

2

3

4

5

6

the

cat

in

Hash Table Example (cont.)

Fourth word: “the”
• hash(“the”) = 965156977; 965156977 % 7 = 1

Search buckets[1] for binding with key “the”; found it!

• Don’t change hash table

20

0

1

2

3

4

5

6

the

cat

in

Hash Table Example (cont.)

Fifth key: “hat”
• hash(“hat”) = 865559739; 865559739 % 7 = 2

Search buckets[2] for binding with key “hat”; not found

21

0

1

2

3

4

5

6

the

cat

in

Hash Table Example (cont.)

Add binding with key “hat” and its value to buckets[2]

• At front or back? Doesn’t matter

• Inserting at the front is easier, so add at the front

22

0

1

2

3

4

5

6

the

hat

in

cat

Hash Table Algorithms

Create
• Allocate Table structure; set each bucket to NULL

• Performance: O(1) ⇒ fast

Add
• Hash the given key

• Mod by BUCKET_COUNT to determine proper bucket

• Traverse proper bucket to make sure no duplicate key

• Insert new binding containing key/value pair into proper bucket

• Performance: O(1) ⇒ fast

23

Is the add

performance

always fast?

Hash Table Algorithms

Search
• Hash the given key

• Mod by BUCKET_COUNT to determine proper bucket

• Traverse proper bucket, looking for binding with given key

• Stop when key found, or reach end

• Performance: O(1) ⇒ fast

Free
• Traverse each bucket, freeing bindings

• Free Table structure

• Performance: O(n) ⇒ slow

24

Is the search

performance

always fast?

Agenda

Linked lists

Hash tables

Hash table issues

25

How Many Buckets?

Many!
• Too few ⇒ large buckets ⇒ slow add, slow search

But not too many!
• Too many ⇒ memory is wasted

This is OK:

26

0

BUCKET_COUNT-1

27

What Hash Function?

Should distribute bindings across the buckets well
• Distribute bindings over the range 0, 1, …, BUCKET_COUNT-1

• Distribute bindings evenly to avoid very long buckets

This is not so good:

0

BUCKET_COUNT-1
What would be the

worst possible hash

function?

28

How to Hash Strings?

Simple hash schemes don’t distribute the keys evenly

enough
• Number of characters, mod BUCKET_COUNT

• Sum the numeric codes of all characters, mod BUCKET_COUNT

• …

A reasonably good hash function:
• Weighted sum of characters si in the string s

•(Σ aisi) mod BUCKET_COUNT

• Best if a and BUCKET_COUNT are relatively prime

• E.g., a = 65599, BUCKET_COUNT = 1024
Why?

Footnote: I originally designed this homework so that BUCKET_COUNT is a prime number.

In 2016 I wondered, “wouldn’t it work just as well if a and BUCKET_COUNT are just relatively

prime? Measurements show no: using a prime number of buckets leads to more even

distribution of bucket contents.”

29

How to Hash Strings?

Potentially expensive to compute Σ aisi

So let’s do some algebra (“Horner’s rule”)
• (by example, for string s of length 5, a=65599):

h = Σ65599i*si

h = 655990*s0 + 655991*s1 + 655992*s2 + 655993*s3 + 655994*s4

Direction of traversal of s doesn’t matter, so…

h = 655990*s4 + 655991*s3 + 655992*s2 + 655993*s1 + 655994*s0

h = 655994*s0 + 655993*s1 + 655992*s2 + 655991*s3 + 655990*s4

h = (((((s0) * 65599 + s1) * 65599 + s2) * 65599 + s3) * 65599) + s4

30

How to Hash Strings?

Yielding this function

size_t hash(const char *s, size_t bucketCount)

{ size_t i;

size_t h = 0;

for (i=0; s[i]!='\0'; i++)

h = h * 65599 + (size_t)s[i];

return h % bucketCount;

}

31

How to Protect Keys?

Suppose Table_add() function contains this code:

void Table_add(struct Table *t, const char *key, int value)

{ …

struct Binding *p =

(struct Binding*)malloc(sizeof(struct Binding));

p->key = key;

…

}

32

How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);

3

NULL

N0

1

806

23

723

…

…

1023

…

t

Ruth\0k

33

How to Protect Keys?

Problem: Consider this calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);

strcpy(k, "Gehrig");

What happens if the

client searches t for

“Ruth”? For Gehrig?

3

NULL

N0

1

806

23

723

…

…

1023

…

t

Gehrig\0k

34

How to Protect Keys?

Solution: Table_add() saves a defensive copy of the

given key

void Table_add(struct Table *t, const char *key, int value)

{ …

struct Binding *p =

(struct Binding*)malloc(sizeof(struct Binding));

p->key = (const char*)malloc(strlen(key) + 1);

strcpy((char*)p->key, key);

…

} Why add 1?

35

How to Protect Keys?

Now consider same calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);

3

NULL

N0

1

806

23

723

…

…

1023

…

t

Ruth\0k

Ruth\0

36

How to Protect Keys?

Now consider same calling code:

struct Table *t;

char k[100] = "Ruth";

…

Table_add(t, k, 3);

strcpy(k, "Gehrig");

3

NULL

N0

1

806

23

723

…

…

1023

…

t

Gehrig\0k

Ruth\0

Hash table is

not corrupted

37

Who Owns the Keys?

Then the hash table owns its keys
• That is, the hash table owns the memory in

which its keys reside

• Hash_free() function must free the memory

in which the key resides

Summary

Common data structures and associated algorithms
• Linked list

• (Maybe) fast add

• Slow search

• Hash table

• (Potentially) fast add

• (Potentially) fast search

• Very common

Hash table issues
• Hashing algorithms

• Defensive copies

• Key ownership

38

39

Debugging (Part 2)

Princeton University
Computer Science 217: Introduction to Programming Systems

“Programming in the Large” Steps

Design & Implement
• Program & programming style (done)

• Common data structures and algorithms

• Modularity

• Building techniques & tools (done)

Test
• Testing techniques (done)

Debug
• Debugging techniques & tools <-- we are still here

Maintain
• Performance improvement techniques & tools

40

41

Goals of this Lecture

Help you learn about:
• Debugging strategies & tools related to dynamic memory

management (DMM) *

Why?
• Many bugs occur in code that does DMM

• DMM errors can be difficult to find

• DMM error in one area can manifest itself in a distant area

• A power programmer knows a wide variety of DMM debugging

strategies

• A power programmer knows about tools that facilitate DMM

debugging

* Management of heap memory via malloc(), calloc(),

realloc(), and free()

42

Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

43

Look for Common DMM Bugs

Some of our favorites:

int *p; /* value of p undefined */

…

*p = somevalue;

char *p; /* value of p undefined */

…

fgets(p, 1024, stdin);

int *p;

…

p = (int*)malloc(sizeof(int));

…

*p = 5;

…

free(p);

…

*p = 6;

What are

the

errors?

44

Look for Common DMM Bugs

Some of our favorites:

int *p;

…

p = (int*)malloc(sizeof(int));

…

*p = 5;

…

p = (int*)malloc(sizeof(int));

int *p;

…

p = (int*)malloc(sizeof(int));

…

*p = 5;

…

free(p);

…

free(p);

What are

the

errors?

45

Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

Diagnose Seg Faults Using GDB

Segmentation fault => make it happen in gdb
• Then issue the gdb where command

• Output will lead you to the line that caused the fault

• But that line may not be where the error resides!

46

47

Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

48

Manually Inspect Malloc Calls

Manually inspect each call of malloc()

• Make sure it allocates enough memory

Do the same for calloc() and realloc()

49

Manually Inspect Malloc Calls

Some of our favorites:

char *s1 = "hello, world";

char *s2;

s2 = (char*)malloc(strlen(s1));

strcpy(s2, s1);

long double *p;

p = (long double*)malloc(sizeof(long double*));

char *s1 = "Hello";

char *s2;

s2 = (char*)malloc(sizeof(s1));

strcpy(s2, s1);

long double *p;

p = (long double*)malloc(sizeof(p));

What are

the

errors?

50

Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

Hard-Code Malloc Calls

Temporarily change each call of malloc() to request a

large number of bytes
• Say, 10000 bytes

• If the error disappears, then at least one of your calls is requesting

too few bytes

Then incrementally restore each call of malloc() to its

previous form
• When the error reappears, you might have found the culprit

Do the same for calloc() and realloc()

51

52

Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

Comment-Out Free Calls

Temporarily comment-out every call of free()

• If the error disappears, then program is

• Freeing memory too soon, or

• Freeing memory that already has been freed, or

• Freeing memory that should not be freed,

• Etc.

Then incrementally “comment-in” each call of free()

• When the error reappears, you might have found the culprit

53

54

Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

Use Meminfo

Use the Meminfo tool
• Simple tool

• Initial version written by Dondero

• Current version written by COS 217 alumnus RJ Liljestrom

• Reports errors after program execution

• Memory leaks

• Some memory corruption

• User-friendly output

Appendix 1 provides example buggy programs

Appendix 2 provides Meminfo analyses

55

56

Agenda

(9) Look for common DMM bugs

(10) Diagnose seg faults using gdb

(11) Manually inspect malloc calls

(12) Hard-code malloc calls

(13) Comment-out free calls

(14) Use Meminfo

(15) Use Valgrind

Use Valgrind

Use the Valgrind tool
• Complex tool

• Written by multiple developers, worldwide

• See www.valgrind.org

• Reports errors during program execution

• Memory leaks

• Multiple frees

• Dereferences of dangling pointers

• Memory corruption

• Comprehensive output

• But not always user-friendly

57

Use Valgrind

Appendix 1 provides example buggy programs

Appendix 3 provides Valgrind analyses

58

Summary

Strategies and tools for debugging the DMM aspects of your

code:
• Look for common DMM bugs

• Diagnose seg faults using gdb

• Manually inspect malloc calls

• Hard-code malloc calls

• Comment-out free calls

• Use Meminfo

• Use Valgrind

59

Appendix 1: Buggy Programs

leak.c

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main(void)

4. { int *pi;

5. pi = (int*)malloc(sizeof(int));

6. *pi = 5;

7. printf("%d\n", *pi);

8. pi = (int*)malloc(sizeof(int));

9. *pi = 6;

10. printf("%d\n", *pi);

11. free(pi);

12. return 0;

13. }

60

Memory leak:

Memory allocated at line 5 is leaked

Appendix 1: Buggy Programs

doublefree.c

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main(void)

4. { int *pi;

5. pi = (int*)malloc(sizeof(int));

6. *pi = 5;

7. printf("%d\n", *pi);

8. free(pi);

9. free(pi);

10. return 0;

11. }

61

Multiple free:

Memory allocated at line 5 is freed twice

Appendix 1: Buggy Programs

danglingptr.c

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main(void)

4. { int *pi;

5. pi = (int*)malloc(sizeof(int));

6. *pi = 5;

7. printf("%d\n", *pi);

8. free(pi);

9. printf("%d\n", *pi);

10. return 0;

11. }

62

Dereference of dangling pointer:

Memory accessed at line 9 already was freed

Appendix 1: Buggy Programs

toosmall.c

1. #include <stdio.h>

2. #include <stdlib.h>

3. int main(void)

4. { int *pi;

5. pi = (int*)malloc(1);

6. *pi = 5;

7. printf("%d\n", *pi);

8. free(pi);

9. return 0;

10. }

63

Memory corruption:

Too little memory is allocated at line 5

Line 6 corrupts memory

Appendix 2: Meminfo

Meminfo can detect memory leaks:

$ gcc217m leak.c -o leak

$ leak

5

6

$ ls

. .. leak.c leak meminfo30462.out

$ meminforeport meminfo30462.out

Errors:

** 4 un-freed bytes (1 block) allocated at leak.c:5

Summary Statistics:

Maximum bytes allocated at once: 8

Total number of allocated bytes: 8

Statistics by Line:

Bytes Location

-4 leak.c:11

4 leak.c:5

4 leak.c:8

4 TOTAL

Statistics by Compilation Unit:

4 leak.c

4 TOTAL
64

Appendix 2: Meminfo

Meminfo can detect memory corruption:

$ gcc217m toosmall.c -o toosmall

$ toosmall

5

$ ls

. .. toosmall.c toosmall meminfo31891.out

$ meminforeport meminfo31891.out

Errors:

** Underflow detected at toosmall.c:8 for memory allocated at toosmall.c:5

Summary Statistics:

Maximum bytes allocated at once: 1

Total number of allocated bytes: 1

Statistics by Line:

Bytes Location

1 toosmall.c:5

-1 toosmall.c:8

0 TOTAL

Statistics by Compilation Unit:

0 toosmall.c

0 TOTAL

65

Appendix 2: Meminfo

Meminfo caveats:

• Don’t mix .o files built with gcc217 and gcc217m

• meminfo*.out files can be large

• Should delete frequently

• Programs built with gcc217m run slower than those built with

gcc217

• Don’t build with gcc217m when doing timing tests

66

Appendix 3: Valgrind

Valgrind can detect memory leaks:

$ gcc217 leak.c -o leak

$ valgrind leak

==31921== Memcheck, a memory error detector

==31921== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==31921== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==31921== Command: leak

==31921==

5

6

==31921==

==31921== HEAP SUMMARY:

==31921== in use at exit: 4 bytes in 1 blocks

==31921== total heap usage: 2 allocs, 1 frees, 8 bytes allocated

==31921==

==31921== LEAK SUMMARY:

==31921== definitely lost: 4 bytes in 1 blocks

==31921== indirectly lost: 0 bytes in 0 blocks

==31921== possibly lost: 0 bytes in 0 blocks

==31921== still reachable: 0 bytes in 0 blocks

==31921== suppressed: 0 bytes in 0 blocks

==31921== Rerun with --leak-check=full to see details of leaked memory

==31921==

==31921== For counts of detected and suppressed errors, rerun with: -v

==31921== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 6 from 6)

67

Appendix 3: Valgrind

Valgrind can detect memory leaks:

$ valgrind --leak-check=full leak

==476== Memcheck, a memory error detector

==476== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==476== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==476== Command: leak

==476==

5

6

==476==

==476== HEAP SUMMARY:

==476== in use at exit: 4 bytes in 1 blocks

==476== total heap usage: 2 allocs, 1 frees, 8 bytes allocated

==476==

==476== 4 bytes in 1 blocks are definitely lost in loss record 1 of 1

==476== at 0x4A069EE: malloc (vg_replace_malloc.c:270)

==476== by 0x400565: main (leak.c:5)

==476==

==476== LEAK SUMMARY:

==476== definitely lost: 4 bytes in 1 blocks

==476== indirectly lost: 0 bytes in 0 blocks

==476== possibly lost: 0 bytes in 0 blocks

==476== still reachable: 0 bytes in 0 blocks

==476== suppressed: 0 bytes in 0 blocks

==476==

==476== For counts of detected and suppressed errors, rerun with: -v

==476== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6) 68

Appendix 3: Valgrind

Valgrind can detect multiple frees:

$ gcc217 doublefree.c -o doublefree

$ valgrind doublefree

==31951== Memcheck, a memory error detector

==31951== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==31951== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==31951== Command: doublefree

==31951==

5

==31951== Invalid free() / delete / delete[] / realloc()

==31951== at 0x4A063F0: free (vg_replace_malloc.c:446)

==31951== by 0x4005A5: main (doublefree.c:9)

==31951== Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd

==31951== at 0x4A063F0: free (vg_replace_malloc.c:446)

==31951== by 0x400599: main (doublefree.c:8)

==31951==

==31951==

==31951== HEAP SUMMARY:

==31951== in use at exit: 0 bytes in 0 blocks

==31951== total heap usage: 1 allocs, 2 frees, 4 bytes allocated

==31951==

==31951== All heap blocks were freed -- no leaks are possible

==31951==

==31951== For counts of detected and suppressed errors, rerun with: -v

==31951== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

69

Appendix 3: Valgrind

Valgrind can detect dereferences of dangling pointers:

$ gcc217 danglingptr.c -o danglingptr

$ valgrind danglingptr

==336== Memcheck, a memory error detector

==336== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==336== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==336== Command: danglingptr

==336==

5

==336== Invalid read of size 4

==336== at 0x40059E: main (danglingptr.c:9)

==336== Address 0x4c2a040 is 0 bytes inside a block of size 4 free'd

==336== at 0x4A063F0: free (vg_replace_malloc.c:446)

==336== by 0x400599: main (danglingptr.c:8)

==336==

5

==336==

==336== HEAP SUMMARY:

==336== in use at exit: 0 bytes in 0 blocks

==336== total heap usage: 1 allocs, 1 frees, 4 bytes allocated

==336==

==336== All heap blocks were freed -- no leaks are possible

==336==

==336== For counts of detected and suppressed errors, rerun with: -v

==336== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 6 from 6)

70

Appendix 3: Valgrind

Valgrind can detect memory corruption:

$ gcc217 toosmall.c -o toosmall

$ valgrind toosmall

==436== Memcheck, a memory error detector

==436== Copyright (C) 2002-2012, and GNU GPL'd, by Julian Seward et al.

==436== Using Valgrind-3.8.1 and LibVEX; rerun with -h for copyright info

==436== Command: toosmall

==436==

==436== Invalid write of size 4

==436== at 0x40056E: main (toosmall.c:6)

==436== Address 0x4c2a040 is 0 bytes inside a block of size 1 alloc'd

==436== at 0x4A069EE: malloc (vg_replace_malloc.c:270)

==436== by 0x400565: main (toosmall.c:5)

==436==

==436== Invalid read of size 4

==436== at 0x400578: main (toosmall.c:7)

==436== Address 0x4c2a040 is 0 bytes inside a block of size 1 alloc'd

==436== at 0x4A069EE: malloc (vg_replace_malloc.c:270)

==436== by 0x400565: main (toosmall.c:5)

==436==

5

Continued on next slide
71

Appendix 3: Valgrind

Valgrind can detect memory corruption (cont.):

==436==

==436== HEAP SUMMARY:

==436== in use at exit: 0 bytes in 0 blocks

==436== total heap usage: 1 allocs, 1 frees, 1 bytes allocated

==436==

==436== All heap blocks were freed -- no leaks are possible

==436==

==436== For counts of detected and suppressed errors, rerun with: -v

==436== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 6 from 6)

Continued from previous slide

72

Appendix 3: Valgrind

Valgrind caveats:

• Not intended for programmers who are new to C

• Messages may be cryptic

• Suggestion:

• Observe line numbers referenced by messages

• Study code at those lines

• Infer meanings of messages

73

