"Princeton University

Computer Science 217: Introduction to Programming Systems

Building

Fall 2017 J

p
Review: Multi-File Programs g!g

intmath.h (interface)

#ifndef INTMATH_INCLUDED
#define INTMATH_INCLUDED
int ged(int i, int j);
int Icm(int i, int j);
#endif

testintmath.c (client)

#include “intmath.h"
#include <stdio.h>

int main(void)

{ int i;
int j;
printf("Enter the first integer:\n");
scanf(C'%d™”, &i);
printf("Enter the second integer:\n");
scanf('%d™, &j);
printf('Greatest common divisor: %d.\n",

intmath.c (implementation)

#include “intmath.h"

int ged(int i, int j)
{ int temp;

while (§ !'= 0) ged(i, §));
{ temp = i % j; printf(Least common multiple: %d.\n",
i=j; lem(i, §);
J = temp; return 0;
3
return i; K K
b Note: intmath.h is

#included into intmath.c
and testintmath.c

int Icm(int i, int j)
{ return (i / gedCi, i) * i;
X

See precept handouts for stylistically better version 3)

(Agenda g!g

Motivation for Make
Make Fundamentals
Nonfile Targets
Macros
Abbreviations

Pattern Rules

Vs

S

Goals of this Lecture

>

Help you learn about:
* The build process for multi-file programs
« Partial builds of multi-file programs
* make, a popular tool for automating (partial) builds

Why?
« A complete build of a large multifile program typically consumes
many hours
» To save build time, software engineers do partial builds
» We automate (partial) builds using make

p
Review: Multi-File Programs g!g

~N

p
Motivation for Make (Part 1) 9!4

—E|intmath.c
intmath.i

intmath.1i

testintmath.c

gcec217 —E testintmath.e
> testingmath_ i

testintmath.i

Preprocess

gce217 —S testintmath. i Complle gce217 -9 intmath. i
testintmath.s intmath.s
gce217 —c testintmath.s Assemble gce217 —c|intmath.s

testintmath.o intmath.o

n
intmath.o —o

#atmath.o

testintmath

gcc217 tes

Building testintmath, approach 1:
» Use one gcc217 command to preprocess, compile, assemble, and
link

testintmath-c| |intmath-h| |intmath-c

gce217 testintmath.c iptmath.c —o festintmath

testintmath

¢

-

S

Partial Builds

Approach 2 allows for partial builds
« Example: Change intmath.c
* Must rebuild intmath.o and testintmath
* Need not rebuild testintmath.o!!!

<| i ntmat@

.0 —o testintmath

testintmath.c
testintmath.o

gcc2l7 tes

| intmath.h |

iqtmath.o i

testintmath

S

-

Partial Builds

4 N
Motivation for Make (Part 2) g!g
Building testintmath, approach 2:
» Preprocess, compile, assemble to produce .o files
« Link to produce executable binary file
Recall: -c option
tells gcc217 to omit link
| intmath.h | | intmath.c |
gce2 te intmath.c
gce217 testintmath.o 0 —0 testintmath
7
4 N
Partial Builds g!g
« Example: Change testintmath.c
* Must rebuild testintmath.o and testintmath
« Need not rebuild intmath.o!!!
If program contains many .c files, could save many hours of build time
changed
= e — -
(testintmath.c) | intmath.h | | intmath.c |
Se——
g6c217 —¢c”intmath.c
gcc2l7 testintmath.o intma#tf.o —o testintmath
°)
4 N

<

Wouldn’t It Be Nice...

Observation
» Doing partial builds manually is tedious and error-prone
« Wouldn’t it be nice if there were a tool

How would the tool work?
* Input:
« Dependency graph (as shown previously)
» Specifies file dependencies
» Specifies commands to build each file from its dependents
« Date/time stamps of files
« Algorithm:
« If file B depends on A and date/time stamp of A is newer than
date/time stamp of B, then rebuild B using the specified
command

That’ s make!

However, changing a .h file can be more dramatic

« Example: Change intmath._h

= intmath.h is #included into testintmath.c and intmath.c

» Changing intmath._h effectively changes testintmath.c
and intmath.c

* Must rebuild testintmath.o, intmath.o, and testintmath

changed

testintmath.o

gcc217 testi

| intmath.c |

e > intmath.c

.0 —0 testintmath

testintmath

)

-

Agenda

Motivation for Make
Make Fundamentals
Nonfile Targets
Macros
Abbreviations

Pattern Rules

4)
The Make Tool 3
Who? Stuart Feldman '68
When? 1976
Where? Bell Labs
Why? Automate partial builds
(This is Stu Feldman recently;
in 1976 he looked younger)
L)
4)
Dependency Rules 9!5
Dependency rule syntax
target: dependencies
<tab>command
= target: the file you want to build
= dependencies: the files on which the target depends
= command: what to execute to create the target (after a TAB
character)
Dependency rule semantics
« Build target iff it is older than any of its dependencies
» Use command to do the build
Work recursively; examples illustrate...
)
4)
Version 1 in Action g!g
At first, to build testintmath Use the touch command to
make issues all three gcc change the date/time stamp
commands of intmath.c
make does a partial build
make notes that the specified
target is up to date
The default target is testintmath,
the target of the first dependency rule)

-

Make Command Syntax

Command syntax
make [-f makefile] [target]

= makefile
« Textual representation of dependency graph
« Contains dependency rules
« Default name is makefile, then Makefile

- target
* What make should build
« Usually: .o file, or an executable binary file
« Default is first one defined in makefile

4

-

Makefile Version 1

gcec217 0 —o testintmath

Makefile:

)

-

Agenda

Motivation for Make
Make Fundamentals
Nonfile Targets
Macros
Abbreviations

Pattern Rules

5)

-

N
Non-File Targets g!a

Adding useful shortcuts for the programmer
= make all: create the final executable binary file
= make clean: delete all .o files, executable binary file

= make clobber: delete all Emacs backup files, all .o files, executable binary

file

Commands in the example
< rm —F: remove files without querying the user

‘s

« Files ending in ‘~’ and starting/ending in ‘# are Emacs backup files

®)

-

Version 2 in Action

g!q\

make observes that “clean” target|
doesn’ t exist; attempts to build it
by issuing “rm” command

Same idea here, but
“clobber” depends upon “clean

“all” depends upon
“testintmath”

“all” is the default target|

)

-

Macros

g!q\

make has a macro facility

» Performs textual substitution
« Similar to C preprocessor’s #define

Macro definition syntax

macroname = macrodefinition
= make replaces $(macroname) with macrodefinition in remainder of
Makefile

Example: Make it easy to change build commands
CC = gcc217

Example: Make it easy to change build flags
CFLAGS = -D NDEBUG -0

2)

e D
Makefile Version 2 g!g

»)

(Agenda g!ﬂ_\

Motivation for Make

Make Fundamentals
Nonfile Targets
Macros
Abbreviations

Pattern Rules

2)

4 N
Makefile Version 3 S

)

p
Version 3 in Action

Same as Version 2

p
Abbreviations

Abbreviations
* Target file: $@
« First item in the dependency list: $<

Example

|

p
Version 4 in Action

Same as Version 2

-

Agenda

Motivation for Make
Make Fundamentals
Nonfile Targets
Macros
Abbreviations

Pattern Rules

)

-

Makefile Version 4

»)

-

Agenda

Motivation for Make
Make Fundamentals
Non-File Targets
Macros
Abbreviations

Pattern Rules

)

-

Pattern Rules

S

Pattern rule
» Wildcard version of dependency rule
* Example:

« Translation: To build a .o file from a .c file of the same name, use
the command $(CC) $(CFLAGS) -c $<
» With pattern rule, dependency rules become simpler:

Can omit build command |

-

Pattern Rules Bonus

)

-

Makefile Version 5

<

Bonus with pattern rules
« First dependency is assumed

]

Can omit first dependency

2)

-

Version 5 in Action

2)

-

<

Makefile Guidelines

a.o: a.c a.h c.h d.h
gcc21l7 —c a.c

2

In a proper Makefile, each object file:
» Depends upon its .c file
» Does not depend upon any other .c file
« Does not depend upon any .o file
» Depends upon any .h file that its .c file #includes directly or

Same as Version 2

*)

-

<

Makefile Guidelines

indirectly 35)

x: a.o b.o
gcc217 a.o b.o —o x

In a proper Makefile, each executable binary file:
» Depends upon the .o files that comprise it
» Does not depend upon any .c files
» Does not depend upon any .h files

)

-

Making Makefiles

In this course
» Create Makefiles manually

Beyond this course
» Can use tools to generate Makefiles
« See mkmf, others

-

Makefile Gotchas

S

)

-

<

Make Resources

C Programming: A Modern Approach (King) Section 15.4
GNU make

« http://www.gnu.org/software/make/manual/make.html

Beware:

« Each command (i.e., second line of each dependency rule) must
begin with a tab character, not spaces

* Use the rm —F command with caution

)

-

Summary

»)

Motivation for Make
» Automation of partial builds

Make fundamentals (Makefile version 1)
« Dependency rules, targets, dependencies, commands

Nonfile targets (Makefile version 2)
Macros (Makefile version 3)
Abbreviations (Makefile version 4)

Pattern rules (Makefile version 5)

)

